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QMRA for Drinking Water: 2. The Effect of Pathogen
Clustering in Single-Hit Dose-Response Models

Vegard Nilsen∗ and John Wyller

Spatial and/or temporal clustering of pathogens will invalidate the commonly used assump-
tion of Poisson-distributed pathogen counts (doses) in quantitative microbial risk assessment.
In this work, the theoretically predicted effect of spatial clustering in conventional “single-hit”
dose-response models is investigated by employing the stuttering Poisson distribution, a very
general family of count distributions that naturally models pathogen clustering and contains
the Poisson and negative binomial distributions as special cases. The analysis is facilitated
by formulating the dose-response models in terms of probability generating functions. It is
shown formally that the theoretical single-hit risk obtained with a stuttering Poisson distribu-
tion is lower than that obtained with a Poisson distribution, assuming identical mean doses.
A similar result holds for mixed Poisson distributions. Numerical examples indicate that the
theoretical single-hit risk is fairly insensitive to moderate clustering, though the effect tends
to be more pronounced for low mean doses. Furthermore, using Jensen’s inequality, an up-
per bound on risk is derived that tends to better approximate the exact theoretical single-hit
risk for highly overdispersed dose distributions. The bound holds with any dose distribution
(characterized by its mean and zero inflation index) and any conditional dose-response model
that is concave in the dose variable. Its application is exemplified with published data from
Norovirus feeding trials, for which some of the administered doses were prepared from an
inoculum of aggregated viruses. The potential implications of clustering for dose-response
assessment as well as practical risk characterization are discussed.
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1. INTRODUCTION

In both natural and engineered systems, water-
borne microbial pathogens such as viruses, bacteria,
and protozoan parasites may, in principle, exist in
aqueous suspensions as completely dispersed single
pathogens or they may instead be spatially associated
to some extent, in aggregates/clusters/clumps.(1–3)

The extent and strength of the association will de-
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pend on the pathogen concentration, the processes
that resulted in aggregation, the mechanisms by
which pathogens are associated, and the physico-
chemical properties of the water. Some processes
may introduce pathogens in the water in a clumped
form, e.g., if a host sheds pathogens that are aggre-
gated, if solids with accumulated pathogens detach
from filter media, or if parts of biofilms separate. In
the latter two cases, spatially associated pathogens
are likely to be part of a large, complex particle
that may not be easily dissociated. In other cases,
it may be primarily electrostatic forces that hold
pathogens together, and such interaction is likely to
be more sensitive to changes in the environment of
the pathogens.
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Within the field of quantitative microbial risk
assessment (QMRA)(4) for drinking water, a base-
line assumption is that pathogen numbers in water
samples are Poisson distributed. In particular, this
is a common assumption in the development and
application of conventional semi-mechanistic single-
hit dose-response models(4–9) that provide the proba-
bilistic link between pathogen exposure levels (dose)
and the resulting health consequences (response) for
exposed individuals. The Poisson assumption is ap-
propriate when pathogens are completely and ran-
domly dispersed in the water source throughout the
time period of interest.

However, in practice, it is most commonly ob-
served that the variance in pathogen counts is
larger than what can be accommodated by the one-
parameter Poisson distribution.(10–13) This overdis-
persion will result if pathogens accumulate in space
or time in excess of that which could occur by
chance in a completely dispersed suspension. The
phenomenon of temporal variation(13) in pathogen
concentrations is well known, documented, and at-
tempts are often made to account for it in appli-
cations. It can, e.g., be caused by relatively slow
variation in raw water quality due to seasonal ef-
fects or could be the result of sudden changes such
as treatment plant failures. Spatial accumulation of
pathogens in the form of physical clusters, i.e., two or
more pathogens sticking together or to the same sus-
pended particle, is more difficult to document experi-
mentally, and information on the pathogen clustering
state is practically never available in applications.

Conventional water treatment (both drinking
water and waste water) involving coagulation/
flocculation processes is designed to promote parti-
cle aggregation in order to enhance downstream par-
ticle separation processes. This treatment is likely to
affect pathogens (that are particles) to some extent
as well, although difficult to verify and quantify ex-
perimentally. On the other hand, the generally low
concentration of pathogens in drinking water implies
that the average distance between pathogens is much
larger than the pathogens themselves, reducing the
chance of pathogens colliding and sticking together.
Furthermore, colloid stability theory(1,14) predicts in-
creasing dispersion of microorganisms at low ionic
strength and pH-values away from their isoelectric
points (typically less than neutral pH), which coin-
cide with common conditions in drinking water.

Nevertheless, some empirical indications of clus-
tering do exist. Gale and co-workers showed(10,11)

that the variation between replicate counts of bac-

terial spores in water samples increased significantly
after water treatment. Clustering would indeed pro-
duce such overdispersion, but independent confirma-
tion of physical clustering is needed to fundamentally
distinguish it from temporal variation in mean spore
concentrations and/or variation in analytical recov-
ery between samples. In another case of possible
clustering,(15) polio virus plaques grown from sewage
samples were shown to contain two different types of
polio viruses, clashing with the standard assumption
that each plaque arises from a single virus particle.
Among several possible explanations, the authors
found aggregation of viruses to be the more plau-
sible. Clustering was also observed during electron
microscopy in a protein-rich laboratory stock sus-
pension of Norovirus that was used in human feeding
trials for dose-response assessment.(16) The latter has
motivated efforts to represent clustering in single-hit
dose-response models.(16–18)

In general, at least four aspects of QMRA
may be identified, in which the clustering state of
pathogens may impact the analysis:

1. Clustering may obscure interpretation of mi-
croorganism counts from laboratory methods.
First, it could possibly affect the recovery of
concentration procedures. Second, some meth-
ods typically return results that relate to the to-
tal number of organisms, such as quantitative
real-time polymerase chain reaction (qPCR)
that measures the number of genome copies
present. Other methods will tend to return re-
sults that relate more to the total number of
clusters, such as plaque/colony counting meth-
ods where it is difficult to assess whether a
macroscopic plaque/colony stems from a single
organism or a cluster of organisms.(15) A disper-
sion step (e.g., using Tween(10)) may be added
to the laboratory protocol of the latter meth-
ods to obtain the total numbers of organisms
instead.

2. Clustering may play a role in the exposure as-
sessment in a broad sense, since the transport
properties of pathogens in nature and their
removal and inactivation during water treat-
ment and distribution may depend on the ex-
tent of clustering. For example, settling and
filtration processes are size-sensitive, as well
as disinfection processes such as chlorination
(see, for example, Thurston-Enriquez et al.(19))
and ultraviolet radiation (where clustering of
pathogens/particles may shield pathogens from
radiation).
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3. Clustering could affect pathogen infectivity
upon entering a human host. That is, for a given
number of pathogens ingested, is it relevant for
the host-pathogen interaction whether they oc-
cur as single particles or are part of a cluster of
a certain size? Any such dependence would in-
duce a correlation between the dose and the in-
fectivity of a single pathogen (since the dose and
occurrence of certain cluster sizes would be cor-
related), which is inconsistent with traditional
single-hit models (Section 2.1). If such effects
exist and are important, dose-response models
would require modification to account for them,
which would complicate the modeling process.
Designing an experiment that can detect and
quantify such effects, if they are present, ap-
pears challenging.

4. Clustering affects the dose distribution. Even
if the host is insensitive to the pathogen clus-
tering state, clustering of pathogens will affect
the probability distribution for the total number
of pathogens included in a water sample (the
dose), whether the “sample” is for human con-
sumption or for laboratory analysis. The choice
of a dose distribution (usually Poisson) is an
integral part of the development of classical
single-hit dose-response models, as well as in
designing Monte Carlo simulations for practical
risk characterization.

This article focuses on item 4 above; i.e.,
the effect of clustering on the dose distribution
(total pathogen count) as it applies to single-hit
dose-response models. Regarding item 3, it will be
assumed that the host/pathogen interaction is insen-
sitive to pathogen clustering state. This is potentially
unrealistic, but has nevertheless been the assumption
(tacitly or explicitly) in published work on Norovirus
dose response(16–18) and it seems difficult to relax in
a simple way. A primitive generalization of single-hit
models to account for the effects mentioned in item
3 is provided in Section S.5 of the online appendix.

The introductory paragraphs above motivate the
purpose of the present work, which is to

i. Investigate the theoretically predicted effect
of pathogen clustering on single-hit dose-
response models in QMRA; i.e., what is fun-
damentally built into the single-hit risk frame-
work with respect to the effects of pathogen
clustering (or more generally, overdispersion
in the dose distribution)?

ii. Simulate the effects of moderate clustering on
single-hit risk estimates, a situation that may be
particularly relevant for background risk levels
in drinking water. Are single-hit models robust
with respect to unaccounted for clustering?

iii. Introduce a risk bound (the Jensen bound)
that emerged during the investigation of bul-
let point i, which could be useful for many sit-
uations where one has an overdispersed dose
distribution.

For some of the technical derivations, we will
draw upon the dose-response model formulation in
terms of probability generating functions (pgfs) pre-
sented in the companion paper.(9)

In discussing dose-response modeling, we should
distinguish between dose-response assessment and
dose-response models as employed in practical
risk characterization studies. The purpose of dose-
response assessment is to estimate dose-response
parameters for a particular pathogen, which can
subsequently be used in a dose-response model to
estimate infection risk in a risk characterization
study, possibly undertaken as a simulation study
using Monte Carlo methods. The dose distributions
need not be the same in the two cases, and if it is non-
Poisson due to clustering, it will not be known in any
detail. For dose-response assessment, it is very con-
venient1 if the dose-response model can be expressed
in closed form, which limits the choice of dose distri-
bution to simple ones. For risk characterization, this
is less important since a complicated dose distribu-
tion may easily be specified in a Monte Carlo study,
in conjunction with a conditional(7) dose-response
model (Section 2.1). The material presented in this
article should be useful for both purposes.

2. MODEL DEVELOPMENT

The semi-mechanistic single-hit dose-response
framework has been described by many authors.(4–9)

We first recapitulate the essentials of this framework
(Section 2.1) using the formulations of our compan-
ion paper,(9) before introducing some basic concepts
of clustering in Section 2.2. Section 2.3 introduces the
stuttering Poisson distribution, which forms the basis
for the analysis presented in Section 3.1.

1Although not necessary if the required quantities can be com-
puted numerically with sufficient precision.
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2.1. Single-Hit Dose-Response Framework

In a single-hit model, it is assumed that a sin-
gle pathogen may be capable of causing an infection,
and that individual pathogens act independently of
each other. Under more precise assumptions stated
at the end of this section, a randomly selected host
that ingests a random2 number of pathogens X has
a probability PI of becoming infected, which equals
the probability that at least one pathogen establishes
infection:

PI = 1 − (1 − R)X. (1)

Here, R is a random variable that equals the prob-
ability that a single pathogen establishes infection
(the single-hit probability). We allow for the possibil-
ity that X (as in so-called conditional dose-response
models) and/or R (as, e.g., in the exponential model)
may degenerate to constants. It has been shown(7–9)

that within single-hit theory, R derives its random-
ness from the variation in host susceptibility and that
the variation in pathogen infectivity enters only indi-
rectly through its modulating effect on the distribu-
tion of R.

The actual dose-response model is given by the
marginal probability E(PI) (the expected value of
PI) as a function of the dose distribution parameters.
E(PI) serves as a dose-dependent success probabil-
ity in a binomial model for the number of infected
hosts when one or more hosts are exposed. It can be
written as:

E(PI) = 1 −
∫ 1

0

∞∑
x=0

(1 − r)x pX(x) fR(r) dr

= 1 −
∫ 1

0
GX(1 − r) fR(r) dr, (2)

where pX(x) is the probability mass function (pmf)
of X, fR(r) is the probability density function3 (pdf)
of R, and GX(1 − r) is the pgf of X, evaluated at
1 − r . The pgf is an alternative representation of the
distribution of a count random variable, and the ba-
sics of pgfs are reviewed in Section S.1 of the online
appendix since they play a central role in our dose-
response models.

2Throughout this article, strict adherence is made to the conven-
tion of denoting random variables with uppercase letters and par-
ticular instances of the same variables with the corresponding
lowercase letters.

3 R may also be represented as a mixed random variable(9) with
both continuous and discrete parts (e.g., if some hosts are fully
immune), in which case fR is a mixed probability density/pmf.

The baseline assumption in QMRA is that X is
Poisson distributed with pmf:

Pr(X = x) = pX(x) = λxe−λ

x!
, (3)

which has a single parameter λ > 0 and E(X) =
Var(X) = λ. The parameter λ can be interpreted as
the product cv of the pathogen concentration c in the
water source and the sample volume v. The pgf of a
Poisson variable with mean λ is:

GX(z) = eλ(z−1). (4)

With this, Equation (2) reduces to:

E(PI) = 1 −
∫ 1

0
e−λr fR(r) dr. (5)

Various parameterized dose-response models will re-
sult for different choices of fR.(4,9)

Inherent in the simple formulation in
Equation (2) are several statistical independence
assumptions on random variables representing host
susceptibility, pathogen infectivity, and the dose. For
their precise formulation, the companion paper(9)

should be consulted. They can be summarized briefly
as follows:

1. The probability that any single pathogen estab-
lishes infection is independent of the failure of
one or more other pathogens within the same
dose to do so.

2. The infectivities of the individual pathogens in
the water sample are mutually independent.

3. The dose and the infectivity of each individual
pathogen in the water sample are mutually in-
dependent.

4. The dose and the susceptibility of the host are
mutually independent.

2.2. Nomenclature and Basic Concepts

One of the axioms used in a rigorous develop-
ment of the Poisson distribution says that, roughly,
for a very small sample volume, the probability of
observing more than one pathogen is zero.(20) The
presence of pathogen clustering will obviously inval-
idate this assumption and the dose distribution will
not be Poisson anymore. In practice, deviations from
the Poisson distribution may be identified by a sta-
tistically significant difference between the sample
mean and variance. A useful statistic in this respect
is the dispersion index:

δ = Var(X)
E(X)

. (6)
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Fig. 1. Example of mild aggregation.

One may distinguish between the following
situations:

� Underdispersion, i.e., δ < 1. This can happen
when there is a tendency toward special unifor-
mity in the distribution of pathogens, and re-
sults in a pathogen count that is “less random”
(its entropy is lower) than a Poisson variable.

� Poisson dispersion, i.e., δ = 1.
� Overdispersion, i.e., δ > 1. This is the type

of deviation that is most commonly observed
in practice,(10,11) and could be the effect of
pathogen clustering.

Another useful measure of spread that will be
employed below is the zero-inflation index, defined
by:

θ = 1 + ln[pX(0)]
E(X)

. (7)

In general, θ < 1. For a Poisson variable, θ = 0, while
θ > 0 for a situation with clustering, as discussed in
Section 2.3.

Assume now that a sample is taken from a wa-
ter source in which some of the pathogens may be
clustered. Fig. 1 shows a conceptual example of how
pathogens may be distributed in a sample from such
a water source with (moderate) clustering. Some
pathogens exist as single particles, some are clustered
together, and some are attached to other types of
particles of various sizes. We will use the term n-

cluster for any collection of particles that contains n
(n ≥ 1) pathogens, in which the association between
the pathogens is sufficiently strong that the cluster
behaves as a single unit during sampling. With this
terminology, the simplest cluster is the one consist-
ing of a single pathogen (a 1-cluster). Furthermore,
clusters are characterized only by the number of
pathogens they contain, and not by the number and
size of other types of particles included in the cluster.

The number of n-clusters contained in the water
sample is a random variable and will be denoted as
Xn. The total number of pathogens contained in the
sample, X, and the total number of clusters, Xcl, are
functions of the Xns and given, respectively, by:

X =
∞∑

n=1

nXn = X1 + 2X2 + 3X3 + · · · (8)

Xcl =
∞∑

n=1

Xn = X1 + X2 + X3 + · · · (9)

The sums are over all cluster sizes with the assump-
tion that E(X) < ∞ (and hence E(Xcl) < ∞).

Since Xn represents the count of a specific type
of cluster, clustering itself is no longer a source
of overdispersion in the distribution of Xn (e.g., if
two n-clusters form a new cluster, they are instead
counted as a 2n-cluster). Hence, if clusters can be
considered to move about essentially randomly
and independently, it is natural to assume that the
distribution of each Xn is Poisson with corresponding
parameter λn = cnv, where cn represents the concen-
tration (number per unit volume) of n-clusters in the
water source. The general distribution of X under
this assumption is considered in Section 2.3.

It is worth emphasizing again the similarities and
differences between clustering as defined above and
other sources of spatiotemporal heterogeneity in the
distribution of pathogens. If some of the pathogens
tend to stay close in space or time, without actually
being physically clustered, this will also contribute to
overdispersion in the dose distribution and can be
difficult, if not impossible, to distinguish from cluster-
ing only on the basis of observing pathogen counts.
Temporal variation in the mean pathogen concentra-
tion on larger time scales will also induce overdisper-
sion. While these sources of overdispersion may pos-
sibly also be representable by a distribution of the
form of Equation (8), the interpretation of the pa-
rameters in terms of clusters is lost. The main focus of
this article is on suspensions that have a given mean
pathogen concentration λ = E(X), for which some of
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the pathogens are actually clustered, and the clusters
themselves behave as Poisson particles.

2.3. A General Dose Distribution Accounting
for Clustering

We are interested in the distribution of X as
expressed in Equation (8), where the Xns are as-
sumed to be Poisson distributed. It is demonstrated
in Section S.1 of the online appendix that the dis-
tribution of X is, in fact, a general stuttering Pois-
son distribution,(20–22) i.e., a Poisson-stopped sum
of nonnegative discrete random variables. Special
cases of this distribution have, for example, been
used to model bulk arrivals in queuing theory(21)

and the number of radiation-induced chromosome
defects.(23) For the case where there is a fixed
maximum cluster size N > 1, the distribution of X
has been called the Nth-order (univariate) Hermite
distribution.(24) For N = 2, it is known simply as the
Hermite distribution.(25,26) This special case was used
to model bacterial counts as early as 1926(27) (al-
though the name “Hermite” distribution was coined
later) and may be of particular importance for di-
lute suspensions, where larger clusters are unlikely
to form. For the case where the only cluster sizes
are 1 and N, it is known as the generalized Hermite
distribution.(28)

The stuttering Poisson distribution may become
very complicated (e.g., many modes), owing to the
essentially combinatorial character of the problem of
obtaining it (Section S.1 of the online appendix). Its
pmf is generally not expressible in closed form, but
can be obtained as a convenient recursive formula(22)

that evaluates quite rapidly on an ordinary computer
as long as the mean of the stuttering Poisson distribu-
tion is only moderately large. A proof of the follow-
ing expression for the pmf is reproduced in Section
S.1 of the online appendix (Lemma 1):

pX(x) =
{

e−∑∞
n=1 λn if x = 0

= 1
x

∑x
n=1 nλn pX(x − n) if x ≥ 1.

(10)

We may use Equation (10) to compute the dose dis-
tribution resulting from any given clustering state in
the water source, which is specified by the set of pa-
rameters λn = cnv, n = 1, 2, . . . . Table S1 in Section
S.1 of the online appendix gives expressions for δ and
θ as a function of the parameters λn.

A special case of the stuttering Poisson is the
two-parameter negative binomial distribution, which
has been used to accommodate a larger than Pois-
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Fig. 2. Comparison of the Hermite distribution with the Poisson
(equivalent λ) and the negative binomial (equivalent λ and δ, or λ

and θ).

son variance in QMRA studies.(10,16,18) For the
negative binomial, the distribution of cluster sizes
follows a logarithmic series distribution with param-
eter 0 < a < 1. The details are given in Section S.1 of
the online appendix. When parameterized in terms
of the mean λ and a dispersion parameter b = a/(1 −
a), the pmf is given by:

pX(x) = �(x + λ/b)
x!�(λ/b)

(
b

b + 1

)x ( 1
b + 1

)λ/b

. (11)

The variance is Var(X) = λ(1 + b). The negative bi-
nomial reduces to the Poisson distribution with mean
λ as b → 0. Its pgf is:

GX(z) = [1 + b(1 − z)]−λ/b
, (12)

which we will use in Section 3.1.
In Fig. 2, an example of the Hermite distribu-

tion (N = 2) is compared with the Poisson dis-
tribution (identical means) and the negative bino-
mial distribution (identical means/dispersion indexes
or means/zero inflation indexes). The example rep-
resents a situation where as much as 80% of the
pathogens are contained in 2-clusters, which accen-
tuates the jagged nature of the Hermite distribution.
It is seen that, compared to the Poisson, the three
other distributions give a higher probability of ob-
taining zero pathogens and lower probability of ob-
taining exactly 1.

It is interesting to compare some key general
properties of the Poisson distribution with mean λ

and a stuttering Poisson with the same mean, i.e.,
λ = ∑∞

n=1 nλn (in terms of pathogen concentrations,
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c = ∑∞
n=1 ncn). The detailed expressions for the mo-

ments have been left to Table S1 in Section S.1 of
the online appendix. The important fact is that the
variance in the dose distribution will always increase
after clustering, and therefore the dispersion index δ

also increases. If there is a maximum cluster size N,
it can easily be shown that 1 ≤ δ ≤ N, where δ = 1
if and only if X is simple Poisson and δ = N if and
only if all the pathogens are contained exclusively in
N-clusters. Therefore, if a reliable estimate of δ can
be obtained experimentally, it gives an indication of
cluster sizes: there are at least some clusters greater
than or equal to δ. However, obtaining a reliable δ es-
timate may be difficult in practice, requiring that we
sample from a stationary distribution for X and that
analytical procedures have a constant 100% recovery
efficiency.

Since pX(0) increases as a result of clustering
(which means that the zero-inflation index θ also
increases), the probability of getting at least one
pathogen always decreases. Slightly counterintuitive,
the probability of getting exactly one pathogen may
increase or decrease, even though the concentra-
tion of 1-clusters always decreases. The direction of
change depends on details of the clustering state.
However, for low pathogen concentrations (λ < 1),
we can show that pX(1) always decreases after clus-
tering. Consider the fraction:

Pr(X = 1)cl

Pr(X = 1)disp
= λ1e−∑∞

n=1 λn

λe−λ
= λ1e−λ1

λe−λ
e−∑∞

n=2 λn . (13)

The last exponential is always less than 1. Inspection
of the function λe−λ will show that it is strictly in-
creasing for 0 < λ < 1. Thus, since λ > λ1, the frac-
tion (λ1e−λ1 )/(λe−λ) will always be less than 1 for
0 < λ < 1. Typically, the expected pathogen dose in
a glass of water will rarely exceed 1.

3. ANALYTICAL RESULTS AND EXAMPLES

3.1. Dose Response with Stuttering Poisson Doses

Fortunately, the dose-response expression in
Equation (2) requires not the complicated pmf of X,
but instead the pgf, which has a simple expression. In
Section S.1 of the online appendix, it is shown that it
is given by:

GX(z) = exp

( ∞∑
n=1

λn(zn − 1)

)
. (14)

For any given λ, we may reparameterize the stutter-
ing Poisson distribution by letting qn = nλn

λ
, i.e., qn de-

notes the fraction of the total pathogen count that is
contained in n-clusters. With this, Equation (14) be-
comes:

GX(z) = exp

(
λ

∞∑
n=1

qn

n
(zn − 1)

)
. (15)

Using the pgf of the stuttering Poisson
(Equation (14)) in the general single-hit expres-
sion in Equation (2) gives us the dose-response
relation:

E(PI,sPo) = 1 −
∫ 1

0
exp

{ ∞∑
n=1

λn[(1 − r)n − 1]

}
fR(r) dr.

(16)

Thus, within the single-hit theoretical framework,
we may specify the parameters of the stuttering
Poisson distribution corresponding to any given
clustering state, and use Equation (16) to compute
the (expected) probability of infection. Given the
generality of the above expression, it is conjectured
that it may encompass most, if not all, plausible
“single-hit” dose-response relationships unless the
dose distribution is underdispersed (δ < 1), but this
seems to be rare for microbial counts. It reduces
to the conventional dose-response relationships
(exponential, beta-Poisson) for specific choices of
the parameters λn and the distribution fR.(4,9)

The dose-response formulation in Equation (16)
enables us to show quite generally that clustering,
as represented by a stuttering Poisson distribution,
always decreases the (expected) probability of
infection in a single-hit model. We formulate this
main result as a proposition, with the proof left to
the Appendix.

Proposition 1 (Risk with stuttering Poisson doses).
Let the dose X be stuttering Poisson distributed with
λN > 0 for some N > 1 (i.e., there exists some clus-
ters) and fix the mean E(X) = λ = ∑∞

n=1 nλn. Then,
the corresponding single-hit risk E(PI,sPo) is bounded
from above by E(PI,Po), the single-hit risk computed
using a Poisson distribution with the same mean λ.

Proposition 1 is illustrated in Fig. 3, which shows
a contour plot of the following ratio:

E(PI)
E(PI,He)

= 1 − e−λr

1 − e−λr(1− 1
2 q2r)

. (17)

This is the ratio of the risk computed with a
Poisson distribution (i.e., the exponential model)
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Fig. 3. Contour plot of the ratio in Equation (17), comparing the
risk computed with the Poisson distribution (exponential model)
to that computed with the Hermite distribution. q2 is the propor-
tion of pathogens in 2-clusters. A corresponding plot assuming
beta-distributed R is given in Fig. S1 in the online appendix.

to the risk computed with the Hermite dis-
tribution, assuming a constant single-hit prob-
ability r . The denominator is obtained from
Equation (16) with only λ1 and λ2 nonzero, r
constant, and using q2 = 2λ2/λ. It is the sim-
plest possible comparison between a clustered/non-
clustered situation, but it may potentially be of prac-
tical relevance in dilute suspensions for pathogens
that fit the exponential model. Furthermore, it un-
covers some general tendencies of interest. First, for
any r (single-hit probability) and q2 (proportion of
pathogens in 2-clusters), the effect of clustering be-
comes less important as the mean λ of the distri-
butions increases. Second, for any λ and q2, the ef-
fect of clustering becomes negligible when r becomes
small since we are then approaching the lower-left
corner of the plot. Third, even for small λ and large
r , the effect of clustering is negligible unless q2 is
quite large. In summary, the effect of clustering only
becomes important for jointly small λ, large r , and
large q2 (rq2 � 0.2 is required for a ratio of 1.1 or
larger). The ratio in Equation (17) is bounded from
above by 2. Fig. S1 in the online appendix generalizes
Fig. 3 to the case of beta-distributed R, parameter-
ized in terms of E(R) = α/(α + β) and α. The effect
of clustering generally increases with E(R) and q2

and decreases with α. For any given E(R) and q2, the
effect of clustering is relatively small unless both α

and λ are small.
Fig. 4 is similar to Fig. 3 and shows a contour plot
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Fig. 4. Contour plot (solid lines) of the ratio in Equation (18),
comparing the risk computed with the Poisson distribution (ex-
ponential model) to that computed with the negative binomial dis-
tribution. Dotted lines indicate a constant value of λ/b. A corre-
sponding plot assuming beta-distributed R is given in Fig. S2 in the
online appendix.

E(PI)
E(PI,nb)

= 1 − e−λr

1 − (1 + br)−λ/b , (18)

where the denominator is the risk computed using
the negative binomial distribution (no host hetero-
geneity), obtained by using Equation (2) with Equa-
tion (12). Here, the extent of clustering increases with
the dispersion parameter b = δ − 1. The situation is
a bit more complicated than in Fig. 3. It is still cor-
rect that clustering becomes negligible as r or b be-
comes very small. When holding r and b constant
while decreasing λ, the ratio reaches a near steady
state for λr < 1. The ratio is above 1.1 if λr < 1 and
br > 0.25. The effect of increasing r while holding b
and λ constant (moving along dotted lines) depends
on whether λr is below (ratio increases) or above (ra-
tio decreases) 1. For drinking water applications, it
will usually be below 1. Fig. S2 in the online appendix
generalizes Fig. 4 to the case of beta-distributed R.
The effect of clustering generally increases with E(R)
and b and decreases with α.

3.2. Dose Response with Mixed Poisson Doses

For completeness, we now consider an alterna-
tive generalization of the dose distribution known as
mixed Poisson distributions. Here, the Poisson pa-
rameter λ is considered to be randomly drawn from a
so-called mixing distribution that represents the vari-
ation in λ. Such distributions have, e.g., been used to
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model seasonal variations in pathogen count in raw
water (e.g., the Poisson log-normal distribution). In
the case of mixed Poisson doses, the pmf pX(x) of
the dose distribution is obtained by marginalizing the
Poisson distribution over λ:

pX(x) =
∫ ∞

0
pXPo (x) f�(λ) dλ =

∫ ∞

0

λxe−λ

x!
f�(λ) dλ,

(19)

where pXPo is the pmf of a Poisson distribution with
parameter λ and f�(λ) is the pdf of the mixing dis-
tribution. It can be demonstrated that the distribu-
tion in Equation (19) is indeed overdispersed rela-
tive to the Poisson distribution. By the law of total
variance, we have Var(X) = Var(�) + E(�), which
has a minimum when � is point mass distributed
(i.e., X is Poisson and Var(�)=0). When f� is spec-
ified, pX may be used in the general single-hit ex-
pression (Equation (2)) to obtain a (possibly closed-
form) marginal dose-response model. However, vari-
ation in λ is often more relevant for risk characteri-
zation (as opposed to dose-response assessment), for
which it may be easier to sample sequentially from
f� and pX during Monte Carlo simulations than it is
to use a marginal dose-response model.

By an advanced theorem of probability,(20,29) a
mixed Poisson distribution that is constructed from
a so-called infinitely divisible mixing distribution will
also be a stuttering Poisson distribution, so in many
cases, the two families of distributions overlap (e.g.,
the negative binomial affords both interpretations).
For completeness, though, we include the following
proposition, which is the equivalent to Proposition
1, but for Poisson mixtures (the proof is left to the
Appendix).

Proposition 2 (Risk with mixed Poisson doses). Let
the dose X be mixed Poisson distributed with mixing
distribution f�(λ) and pmf given by Equation (19).
Then, the corresponding single-hit risk E(PI,mPo) is
bounded from above by E(PI,Po), the single-hit risk
computed using a Poisson distribution with mean
equal to the mean of the mixing distribution, E(�).

In order to build some intuition for why Propo-
sitions 1 and 2 hold, note that the single-hit model in
Equation (2) may be written:

E(PI) = EX [ER(PI)]

=
∞∑

x=0

pX(x)
∫ 1

0
[1 − (1 − r)x] fR(r) dr, (20)

where the subscripts denote expectation with respect
to the indicated random variables. The integral
expression ER(PI) has been called a conditional
dose-response model(7) since it gives the (expected)
risk if exactly x pathogens are ingested. The essential
property of ER(PI), which may be verified by twice
differentiation under the integral sign, is that it
is always concave4 in x for x ≥ 0. Furthermore,
the variance of X increases when X is stuttering
Poisson or mixed Poisson, as compared to a Poisson-
distributed X with the same mean. Thus, in the
weighted sum EX[ER(PI)] of conditional dose-
response models, more weight is put on x-values
far from the mean of X (on both sides of it). Since
ER(PI) is concave in x (i.e., it becomes progressively
flatter), the dispersion of weights may intuitively be
expected to reduce the risk estimate. This property
may be expected to not hold for a model that incor-
porates between-pathogen cooperation, which tends
to introduce a convex region in the low-dose range
of the conditional dose-response model (see Section
S.4 of the online appendix).

While Propositions 1 and 2 agree with intuition,
their strength is their generality: there exists no stut-
tering or mixed Poisson distribution, no matter how
obscure, that increases the risk estimate compared
to a Poisson distribution with the same mean. One
may still ask how general these families of distribu-
tions are, and whether overdispersed count (dose)
distributions that are not representable as stuttering
or mixed Poisson lead to similar results as Proposi-
tions 1 and 2.5 While we have not succeeded in find-
ing a definitive answer, it has been shown(30) that any
count random variable for which Pr(X = 0) > 0.5
follows a generalized6 stuttering Poisson distribution,
but it is not clear to us whether the proof of Proposi-
tion 1 can be modified to cover this case.

Finally, we want to briefly mention the con-
cept of stochastic dominance,(31,32) widely used in ex-
pected utility theory in economics, and a potentially
useful tool also for microbial risk analysis. In par-
ticular, for any concave conditional dose-response
model, second-order stochastic dominance dictates
that the risk from dose distribution XA is higher than
the risk from dose distribution XB if XB is a so-called

4Often, dose-response models are plotted on log-log or semi-log
plots, which gives the appearance of a convexity in the low-dose
region.

5Section S.3 in the online appendix shows that it also holds when
the Xi s in Equation (8) are binomial random variables with iden-
tical success probabilities.

6The generalized version allows for negative λns.
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mean-preserving spread(33) of XA, i.e., if XB = XA +
Z for some random variable Z and E(Z|xA) = 0 for
all xA.

4. AN APPROXIMATE DOSE-RESPONSE
MODEL FROM JENSEN’S INEQUALITY

From Propositions 1 and 2, it is clear that
the single-hit risk obtained with an overdispersed
dose distribution in the form of stuttering or mixed
Poisson-distributed doses is bounded from above by
the risk obtained with Poisson-distributed doses. As
shown in Figs. 3 and 4 and Figs. S1 and S2 in the
online appendix, the difference in risk between the
Poisson case and the overdispersed case may become
substantial for extreme overdispersion. The follow-
ing proposition gives another bound on risk that ap-
pears to be significantly closer (shown below) to the
exact single-hit risk for highly overdispersed dose dis-
tributions, and could be useful for practical purposes.
It is valid for any dose distribution (not necessar-
ily stuttering or mixed Poisson) and any conditional
dose-response model that is concave in the dose vari-
able (not necessarily single-hit), and it requires only
one additional parameter (the zero-inflation index)
of the dose distribution compared to the Poisson dis-
tribution. The proof is again left to the Appendix.

Proposition 3. Introduce the notation P0
I(x) ≡

ER(PI)|X=x for a general concave (in x) condi-
tional dose-response model. Then, the risk E(PI) =∑∞

x=0 pX(x)P0
I(x) is bounded from above by:

E(PI,J) = [1 − pX(0)] · P0
I

(
λ

1 − pX(0)

)

=
(

1 − eλ(θ−1)
)

· P0
I

(
λ

1 − eλ(θ−1)

)
, (21)

where θ is the zero-inflation index of the distribution
of X.

It is readily verified that Equation (21) satisfies
some fundamental requirements of a dose-response
model:

0 ≤ E(PI,J) ≤ 1,

lim
λ→0

E(PI,J) = 0, (22)

lim
λ→∞

E(PI,J) = 1.

The latter property holds only if there are no com-
pletely immune hosts.(9) The Jensen bound takes par-
ticular forms depending on which conditional dose-

response model P0
I we choose. If R has a single point

mass, the Jensen bound becomes:

E(PI,J) =
(

1 − eλ(θ−1)
)

·
(

1 − (1 − r)λ/(1−eλ(θ−1))
)

. (23)

If R is beta distributed, the Jensen bound is:

E(PI,J) =
(

1 − eλ(θ−1)
)

·
(

1 − B
[
α, β + λ/

(
1 − eλ(θ−1)

)]
B(α, β)

)
,

(24)

where B denotes the beta function.
As mentioned, Equation (21) seems to be a very

good risk bound in the single-hit case, i.e., it is quite
close to the exact single-hit risk. Figs. 5 and 6 illus-
trate this. Fig. 5 shows a contour plot for the follow-
ing ratio of the risk from the Jensen bound to the risk
computed with a Hermite distribution (no host het-
erogeneity, i.e., a constant R = r):

E(PI,J)
E(PI,He)

=
(
1 − eλ(θ−1)

) ·
(

1 − (1 − r)λ/(1−eλ(θ−1))
)

1 − e−λr(1− 1
2 q2r)

. (25)

Also shown (red curves (color visible in on-line ver-
sion)) is the ratio in Equation (17) for comparison.
For all parameter values, the Jensen bound stays
within about 10% of the exact risk. In those cases
where the exponential model (red curves) severely
overestimates risk, the Jensen bound is markedly
closer to the exact risk from the Hermite model.
In other cases, where clustering is less pronounced,
the exponential model tends to give a slightly more
precise estimate of the exact risk than the Jensen
bound. Fig. S1 in the online appendix generalizes
Fig. 5 to the case of beta-distributed R, and the
trends are similar; the Jensen bound performs very
well overall and particularly in those cases where the
exact beta-Poisson model overestimates risk.

Fig. 6 shows a contour plot for the following ra-
tio of the risk from the Jensen bound to the risk com-
puted with a negative binomial distribution (again,
no host heterogeneity):

E(PI,J)
E(PI,nb)

=
(
1 − eλ(θ−1)

) ·
(

1 − (1 − r)λ/(1−eλ(θ−1))
)

1 − (1 + br)−λ/b
. (26)

Also shown (red curves) is the ratio in Equation (18)
for comparison. Again, the bound seems to be very
good in those cases where the exponential model
(red curves) severely overestimates risk; for some pa-
rameter values close to two orders of magnitude bet-
ter. Fig. S2 in the online appendix generalizes Fig. 6
to the case of beta-distributed R, and the trends are
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Fig. 5. Black curves are contours for the ratio in Equation (25),
comparing the risk computed with the Jensen bound to that com-
puted with the Hermite distribution. Red curves are contours for
the ratio of risk computed with the Poisson distribution to that
computed with the Hermite distribution. This figure is based on a
constant R = r ; Fig. S1 in the online appendix shows the case of
beta-distributed R.

similar; the Jensen bound performs very well overall
and particularly in those cases where the exact beta-
Poisson model overestimates risk.

Finally, we compare the Jensen bound risk
to the risk computed with the discrete Weibull
distribution.(34) This distribution has been
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Fig. 6. Black curves are contours for the ratio in Equation (26),
comparing the risk computed with the Jensen bound to that com-
puted with the negative binomial distribution. Red curves are con-
tours for the ratio of risk computed with the Poisson distribution
to that computed with the neg.bin. distribution. This figure is based
on a constant R = r ; Fig. S2 in the online appendix shows the case
of beta-distributed R.

suggested(12,13,35) as a natural model for long-term
pathogen counts in drinking water with the ability
to account for rare, high-consequence events such
as treatment plant failures. Hence, it can potentially
model pathogen counts that are subject to temporal
clustering. Its pmf, mean, and zero-inflation index
are given by, respectively:

pX(x) = qxη − q(x+1)η

, (27)
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λ =
∞∑

x=1

qxη

, (28)

θ = 1 + ln(1 − q)
λ

, (29)

with shape parameters η > 0 and 0 < q < 1. The infi-
nite sum for the mean was computed in this work by
means of an approximation given by Englehardt and
Li.(12) It can be shown that Equations (28) and (29)
uniquely determine q and η for any given pair λ > 0
and θ < 1; hence, we may reparameterize the distri-
bution in terms of λ and θ . This was used in Figs. 7
(low θ values; θ on vertical axis) and 8 (high θ values;
1 − θ on vertical axis), which show contour plots of
the following ratio:

E(PI,J)
E(PI,dW)

=
(
1 − eλ(θ−1)

) ·
(

1 − (1 − r)λ/(1−eλ(θ−1))
)

1 −∑∞
x=0 pX(x)(1 − r)x

, (30)

where X is discrete Weibull distributed. The denom-
inator was computed to full numerical precision,
i.e., until the term pX(x)(1 − r)x evaluated to 0.
The trends in these figures are similar to those for
the Hermite and negative binomial distribution;
the Jensen bound performs very well in those cases
where overdispersion causes a marked reduction in
the exact risk, while it is also reasonably close to
the exact risk when there is little overdispersion.
Fig. S3 in the online appendix generalizes Figs. 7 and
8 to the case of beta-distributed R, and the trends are
similar; the Jensen bound performs very well overall
and particularly in those cases where the exact
beta-Poisson model overestimates risk. In summary,
the Jensen bound examples in this section appear
to indicate that the single-hit risk is only moderately
sensitive to the details of an overdispersed dose
distribution, but quite sensitive to the overall degree
of overdispersion, as expressed by the zero-inflation
index.

5. APPLICATION OF THE APPROXIMATE
MODEL: DOSE-RESPONSE FOR
NOROVIRUS

Dose-response assessment for Norovirus(16–18)

has been complicated by aggregation of viruses in the
inoculum used for human feeding trials. Here, we fit
the beta-Jensen bound (Equation (24)) to the avail-
able Norovirus dose-response data for the purposes
of demonstrating its application, and for simple com-
parison with previous studies.
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Several studies have reported Norovirus dose-
response data from human feeding trials.(16,36–38) The
essential data from those studies are given in Table I.
In the study by Teunis et al.,(16) the suspension used
as inoculum had been stored for a long time and, us-
ing electron microscopy, the viruses were observed to
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Table I. Norovirus Dose-Response Data from Human Feeding Trials (16,36–38)

Designation Aggregated Source Mean Dose (PCR Units) Total Subjects Infected Subjects

8fIIa GI.1 Y Teunis et al.(16)

3.24×100 8 0
3.24×101 9 0
3.24×102 9 3
3.24×103 3 2
3.24×105 8 7
3.24×106 7 3
3.24×107 3 2
3.24×108 6 5

8fIIb GI.1 N Teunis et al.(16)

6.92×105 8 3
6.92×106 18 14
2.08×107 1 1

8fIIb GI.1 N (presumed) Seitz et al.(36)

6.50×107 13 10
8fIIa GI.1 Y (presumed) Atmar et al.(37)

1.92×102 13 1
1.92×103 13 7
1.92×104 8 7
1.92×106 7 6

GII.4 Y (presumed) Frenck et al.(38)

2.00×107 23 16

Note: 8fIIa: “Primary” inoculum from the original Norwalk isolate. 8fIIb: “Secondary” inoculum from stool samples of an infected individ-
ual. GI.1: Genogroup I/genotype 1. GII.4: Genogroup II/genotype 4.

be significantly clustered and could not be dispersed
by sonication. The assumptions on aggregation in the
other studies have been adopted here from Messner
et al.(17) The dose levels in all these studies were de-
termined by quantitative PCR. Recently, Norovirus
was cultivated in vitro for the first time,(39) which may
pave the way for quantification by culturing methods
that will arguably be more relevant for dose-response
assessment.

Table II gives an overview of the models that
were fitted to the data in this work. The exact
beta-Poisson model assumes completely dispersed
pathogens and is included as a reference. The
beta-negative binomial model was suggested and
fitted by Teunis et al.(16) and refitted7 to an extended
data set by Messner et al.(17) Messner et al.(17) also
suggested a model, termed fractional Poisson, in
which R is Bernoulli distributed, i.e., hosts are either
fully immune or fully susceptible. In that case, the
model does not require the full dose distribution;

7Note that we arrive at parameter estimates for the beta-negative
binomial model in this work that are different from those of Mess-
ner et al.,(17) using the same data set. We believe that the esti-
mates reported here are correct, as our computed likelihood val-
ues agree to full reported precision with those of Schmidt.(18)

only pX(0) is needed. The model contains two fitting
parameters: the fraction of (fully) immune hosts, φ,
and the mean aggregate size μ. Schmidt(18) inves-
tigated a range of models, including the previously
mentioned ones, but extended all models to include
a host immunity parameter and showed that the
omission/inclusion of an immunity parameter may
have a large effect on the results.

When fitting the Jensen bound, we have to
assume that θ is constant across all dose levels, which
is an assumption that warrants some attention. If
we can assume that the only effect of dilution is
to scale the concentration of each cluster size, it
can be seen from the expression for θ in Table S1
(online appendix, Section S.1) that θ can be expected
to be conserved across dilutions of a suspension,
since every λn is scaled by the same (expected)
factor. Equivalent assumptions have been made
in the previously published models on Norovirus,
either by stating the assumption explicitly(18) or
implicitly by treating the aggregation parameter as a
constant across all dose levels in a feeding trial.(16,17)

In practice, however, the diluent may affect the
colloidal stability and hence clustering state of the
pathogens, and mechanical mixing procedures may
also have an effect. Thus, there is some uncertainty
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Table II. Dose-Response Models Fitted to Data in Table I

Distr. of R Dose distr. − agg. E(PI) − agg. E(PI) − disp. θ

Exact beta-Poisson Beta Poisson 1 − 1 F1(α, α + β, −λ) As for agg. ≡ 0
Beta-neg.bin. Beta Neg.bin. 1 − 2 F1(λ/b, α; α + β; −b) Ex. b.-Po. 1 − ln(b + 1)/b

= 1 − 1/μ

Fractional Poisson Bernoulli pX(0) = e−λ/μ (1 − φ)(1 − e−λ/μ) As for agg. with μ ≡ 1 1 − 1/μ

Beta-Jensen Beta. Not fully specified Equation (24) Ex. b.-Po. 1 − 1/μ

Beta-Jensen with imm. Beta. Not fully specified (1 − φ) times Eq. (24) Ex. b.-Po. 1 − 1/μ
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Fig. 8. Black curves are contours for the ratio in Equation (30),
comparing the risk computed with the Jensen bound to that com-
puted with the discrete Weibull distribution for high θ values. Red
curves are contours for the ratio of risk computed with the Poisson
distribution to that computed with the d.Wei. distribution. This fig-
ure is based on a constant R = r ; Fig. S3 in the online appendix
shows the case of beta-distributed R.

associated with treating the aggregation parameter
as a constant.

For parameter fitting, maximum likelihood esti-
mation was used. The likelihood function for this ex-
perimental setup is given by the product of binomial
likelihood functions, where each factor corresponds
to a certain dose level:

L(ω) =
I∏

i=1

(
ni

wi

)
{E(PI)i [λi , ω]}wi {1 − E(PI)i [λi , ω]}ni −wi .

(31)

Here, ω is a parameter vector, I is the number of dose
levels, λi , wi , and ni are the dose, number of positive
(infected) subjects, and total number of subjects, re-
spectively (at dose level indexed by i). E(PI)i [λi , ω]
is the dose-response model as a function of the mean
dose and parameters to be fitted. Note that when
constructing the likelihood function, we use differ-
ent model formulations for data stemming from the
use of aggregated and dispersed viruses, respectively
(except in the case of the exact beta-Poisson model).
Table II specifies which model formulation was used
in each case. Thus, both the aggregated and dispersed
data can be used simultaneously to estimate the pa-
rameters of the distribution of R, as well as the ag-
gregation parameter. The maximum likelihood esti-
mate of the unknown parameter vector ω is given by
numerical optimization of Equation (31), which was
performed in MATLAB.(40) The deviance, Y, also
stated in Table III, is given by:

Y = −2 ln
(

L(ω)
LS

)
, (32)

where LS is the likelihood of the so-called saturated
model:

LS =
I∏

i=1

(
ni

wi

)(
wi

ni

)wi
(

1 − wi

ni

)ni −wi

. (33)

The p-value stated in Table III is for a chi-square
goodness-of-fit test with the null hypothesis being
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Table III. Parameter Estimates for the Dose-Response Models Fitted to Data in Table I

α̂ β̂ θ̂ φ̂ ˆE(R) Deviance p-Value

Exact beta-Poisson 0.1103 29.55 ≡ 0 ≡ 0 3.719×10−3 21.030 0.136
Beta-neg.bin. 8.128 × 10−3 3.756 × 10−3 0.999024 ≡ 0 0.6840 13.270 0.505
Fractional Poisson – – 0.999096 0.2775 0.7225 13.288 0.580
Jensen-beta 7.663×10−3 3.504×10−3 0.999045 ≡ 0 0.6862 13.273 0.505
Jensen-beta with imm. 2.478 2,186 0.993140 0.2756 8.200×10−4 13.080 0.442
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Fig. 9. Dose-response models (solid curves) in Table II fitted to the data in Table I. Dashed curves are derived from the respective fitted
models by setting the value of the aggregation parameter to that corresponding to fully dispersed pathogens.

“acceptable fit” and the alternative hypothesis “lack
of fit.”

Table III and Fig. 9 give the results from pa-
rameter estimation. There are several points to note.
First, the fitted models and their associated deviances
are similar, except for the exact beta-Poisson model,
which shows a somewhat poorer fit. Second, the
fitted beta parameters of the beta-Jensen model
(without immunity) are remarkably similar to those
of the beta-negative binomial model. This result may
not carry over to other cases, though, as the fitted
beta distribution is quite extreme with almost all
probability mass concentrated at 0 or 1.(17) Third,
the mean single-hit probabilities of the exact beta-
Poisson model and the beta-Jensen model with im-
munity deviate sharply from those in the three other

models. Fourth, when eliminating the aggregation
parameter from the fitted models (dashed curves in
Fig. 9), the resulting dose-response curves are very
different from their counterparts with the aggrega-
tion parameter, except for the beta-Jensen model
with immunity, which almost does not change when
compared with the exact beta-Poisson model (the
corresponding dispersed model). This sensitivity to
the inclusion/omission of an immunity parameter is
consistent with what was reported by Schmidt.(18)

It should be noted, though, that the parameter
estimates returned by the optimization routine for
the beta-negative binomial model and the Jensen
models seem quite sensitive to the initial guess that
is supplied to the routine. The estimates reported
here were obtained by maximizing the likelihood
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over a range of initial values until the routine de-
livered consistent results. Worryingly, there seems
to exist a wide range of parameter sets, correspond-
ing to a “ridge” or “plateau” in the likelihood sur-
face, that gives approximately the same likelihood
(i.e., changes in one parameter may be compensated
by corresponding changes in (an)other parameter(s)
without affecting the likelihood significantly). Simi-
lar challenges with nearly nonunique maximum like-
lihood estimates were reported by Messner et al.(17)

when refitting the model used by Teunis et al.,(16)

and by Schmidt(18) for several models incorporat-
ing aggregation. There is significant nonmonotonicity
in the data, and there may not be enough informa-
tion to fit three parameters (or even four, as for the
beta-Jensen model with immunity) reliably.

6. DISCUSSION AND CONCLUDING
REMARKS

In this work, we have argued that the stutter-
ing Poisson distribution (Equation (10)) is a gen-
eral and natural model for the dose distribution in
the presence of pathogen clustering. By formulating
the single-hit dose-response model in terms of a pgf,
the stuttering Poisson leads to a simple expression
for the dose-response model (Equation (16)). It was
shown formally that the single-hit risk computed with
a stuttering Poisson distribution is bounded from
above by the risk computed with a Poisson dis-
tribution (Proposition 1) with the same mean. An
equivalent result was obtained for mixed Poisson
distributions (Proposition 2). We derived another
risk bound (the Jensen bound; Proposition 3), valid
for any dose distribution and any concave conditional
dose-response model, which appears to approximate
the single-hit risk quite closely for highly overdis-
persed dose distributions. This bound may also serve
as an approximate dose-response model and its ap-
plication to a real data set was demonstrated in
Section 5.

Throughout this article, we have maintained
the single-hit assumption of independently acting
pathogens, even in the presence of pathogen clus-
tering, as has been assumed in the published work
on Norovirus clustered dose response.(16–18) This is a
potentially unrealistic assumption that deserves some
further attention in future work, although it may be
challenging to test it experimentally with sufficient
rigor. Propositions 1 and 2, as well as the Jensen
bound, suggest that reduced risk from overdispersion
(assuming equivalent mean doses) is a property that

is fundamentally built into the single-hit framework,
and as such is a theoretical prediction that can pos-
sibly be tested against data. In the remaining para-
graphs, we make an attempt to discuss some potential
practical implications of the theoretical results in the
event that they actually do coincide with real-world
effects. We should distinguish between risk charac-
terization using an already calibrated dose-response
model and dose-response assessment or parameter es-
timation in dose-response models.

The figures in Section 3.1 and in Section S.2
of the online appendix indicate that the effects of
clustering in a single-hit model tend to be more
pronounced at low doses, coinciding with typical
background dose levels in most cases of drinking
water risk characterization. However, the effects
seem to become relevant only when there is pro-
nounced clustering and when r is simultaneously
large (or E(R) large and α small in the case of
beta-distributed R). Therefore, it appears that
moderate unaccounted for clustering in drinking
water, as exemplified by the Hermite distribution,
is unlikely to introduce much additional uncertainty
or error into a single-hit risk characterization study,
given that QMRA studies often have to quantify
uncertainties by order-of-magnitude estimates. In
the case of significant temporal variation in pathogen
concentrations, periods/events of high doses may
dominate the long-term mean risk. Since the theo-
retical effects of clustering become smaller at larger
doses, it appears relatively unimportant to account
for any physical clustering during these events.

Given the (likely) modest importance of ac-
counting for clustering in single-hit drinking water
studies, and the theoretical prediction that the risk
computed using a Poisson distribution forms an up-
per bound for the risk computed using overdispersed
distributions (stuttering or mixed Poisson), we have
compelling arguments to direct our efforts at ob-
taining a correct mean dose rather than character-
izing the dose distribution in greater detail. That is,
provided that we can obtain a reliable estimate of
the mean pathogen concentration (and, of course,
the single-hit probability, or its distribution), using a
Poisson distribution for the single-hit dose-response
model during risk characterization will produce a
higher (more conservative) mean risk estimate than
using an overdispersed distribution with the same
mean. Note, however, that it may be very difficult in
practice to obtain a good estimate of the pathogen
concentration, in particular for clustered suspen-
sions or when temporal variation(12,35) is important,
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which may leave the risk estimate imprecise or even
biased.

If one is interested in accounting for overdisper-
sion, the Jensen bound in Equation (21) may prove
useful. If a reliable estimate of both the mean concen-
tration and the zero-inflation index (experimentally
available from the proportion of zero counts) can be
obtained, a significantly more precise single-hit risk
estimate may be obtained for a situation with a highly
overdispersed dose distribution without needing to
consider further details of that dose distribution. For
relatively dispersed suspensions, however, this bound
may be more conservative than the risk obtained us-
ing a Poisson distribution, which means that the two
should be compared before choosing which risk esti-
mate to use.

When fitting a dose-response model to data, the
implications of clustering are somewhat different.
The risk computed with Poisson-distributed doses
represents an upper bound on risk, so using the
Poisson distribution when pathogens are, in fact,
significantly clustered is likely to lead to an underes-
timation of the (mean) single-hit probability E(R),
exemplified by the exact beta-Poisson parameters in
Table III. This is because the parameters of the dis-
tribution for R will be chosen by the fitting procedure
to compensate for the tendency toward increased
risk enforced by the Poisson-distributed dose X.
This problem may be somewhat counteracted by
fitting the Jensen bound instead of a Poisson-based
model, but only in those cases where the data allow
reliable estimation of the additional parameter θ

introduced in this model, which may represent a
challenge.

The application of the Jensen bound in fit-
ting dose-response data was illustrated in Section 5
with published data from human feeding trials on
Norovirus. For this application, the Jensen bound
model produced results that were very similar to the
previously suggested beta-negative binomial model.
However, like Schmidt,(18) we have some reserva-
tions regarding the possibility of reliably fitting three
parameters to this data set. There appears to be a
wide range of parameter values that gives roughly the
same likelihood. Furthermore, Schmidt showed that
the inclusion or omission of a host immunity param-
eter has a large effect on the results, which was also
seen for the Jensen bound model in this work. Thus,
there is still a need to obtain more dose-response
data for Norovirus, preferably using nonaggregated
viruses.
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APPENDIX

This appendix contains proofs of the three
propositions that were presented in the main text. An
overview of the contents of the online supplementary
appendix can be found after the list of references.

A.1 Proofs of Propositions

Proposition 1 (Risk with stuttering Poisson doses).
Let the dose X be stuttering Poisson distributed with
λN > 0 for some N > 1 (i.e., there exists some clus-
ters) and fix the mean E(X) = λ = ∑∞

n=1 nλn. Then,
the corresponding single-hit risk E(PI,sPo) is bounded
from above by E(PI,Po), the single-hit risk computed
using a Poisson distribution with the same mean λ.

Proof. Consider the difference:

E(PI,Po) − E(PI,sPo) =
∫ 1

0
[GX(1 − r) − e−λr ] fR(r) dr,

(A.1)

where we used the general expression of Equation
(2) for E(PI,sPo) and Equation (5) for E(PI,Po). We
need to show that Equation (A.1) is positive when
X is stuttering Poisson. Since fR ≥ 0 for all r ∈ [0, 1]
and fR > 0 on some subset of the unit interval, it will
suffice to take r > 0 and show the positivity of the
remaining factor in the integrand, �G:

�G = GX(1 − r) − e−λr

= [
GX(1 − r)eλr − 1

]
e−λr

= exp
{∑∞

n=1 λn [(1 − r)n − (1 − nr)]
}− 1

eλr
.

(A.2)

Here, we used the pgf of a stuttering Poisson distri-
bution (Equation (14)) and the identity (by assump-
tion) λ = ∑∞

n=1 nλn. We now show that the numer-
ator in Equation (A.2) is positive. Let h(n) = (1 −
r)n − (1 − nr). We have h(1) = 0 and for n ≥ 1, we
have the difference:

h(n + 1) − h(n) = r [1 − (1 − r)n] > 0, (A.3)

since (1 − r)n < 1 for n ≥ 1. By mathematical induc-
tion, h(n) > 0 for n ≥ 2. Since there exists some N >

1 such that λN > 0, we have exp[
∑∞

n=1 λnh(n)] > 1,
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which shows that �G > 0. This proves the
proposition. �
Proposition 2 (Risk with mixed Poisson doses). Let
the dose X be mixed Poisson distributed with mixing
distribution f�(λ) and pmf given by Equation (19).
Then, the corresponding single-hit risk E(PI,mPo) is
bounded from above by E(PI,Po), the single-hit risk
computed using a Poisson distribution with mean
equal to the mean of the mixing distribution, E(�).

Proof. We need the pgf of X, which is given by:

GX(z) =
∞∑

x=0

zx
∫ ∞

0
pXPo (x) f�(λ) dλ

=
∫ ∞

0

∞∑
x=0

zx pXPo (x) f�(λ) dλ (A.4)

=
∫ ∞

0
eλ(z−1) f�(λ) dλ,

where we assumed that we may interchange integra-
tion and summation. Inserting Equation (A.4) in the
general single-hit expression (Equation (2)), we get:

E(PI,mPo) = 1 −
∫ 1

0

∫ ∞

0
e−λr f�(λ) dλ fR(r) dr. (A.4)

Since e−λr is a strictly convex function of λ on [0,∞),
we may use Jensen’s inequality to conclude that:∫ ∞

0
e−λr f�(λ) dλ > e−E(�)r . (A.6)

This leads to:

E(PI,mPo) < 1 −
∫ 1

0
e−E(�)r fR(r) dr, (A.7)

where the rhs. is recognized as E(PI,Po), the single-hit
risk computed with a Poisson distribution with mean
E(�), which concludes the proof. �
Proposition 3 (The Jensen bound). Introduce the no-
tation P0

I(x) ≡ ER(PI)
∣∣

X=x for a general concave (in
x) conditional dose-response model. Then, the risk
E(PI) = ∑∞

x=0 pX(x)P0
I(x) is bounded from above

by:

E(PI,J) = [1 − pX(0)] · P0
I

(
λ

1 − pX(0)

)

=
(

1 − eλ(θ−1)
)

· P0
I

(
λ

1 − eλ(θ−1)

)
, 21

where θ is the zero-inflation index of the distribution
of X.

Proof. We need Jensen’s inequality in the follow-
ing form. Let φ be a concave function on [0,∞), ux

points in the domain of φ and wx ≥ 0 be weights such
that

∑
wxux < ∞. Then, Jensen’s inequality states

(possibly involving infinite sums):∑
wxφ(ux)∑

wx
≤ φ

(∑
wxux∑
wx

)
. (A.8)

Make the identifications ux = x, wx = pX(x), and
φ(ux) = φ(x) = P0

I(x). Summing from x = 1 to infin-
ity, inequality (A.8) becomes:∑∞

x=1 pX(x)P0
I(x)∑∞

x=1 pX(x)
≤ P0

I

(∑∞
x=1 xpX(x)∑∞
x=1 pX(x)

)
. (A.9)

Using P0
I(0) = 0, we thus have:

E(PI) =
∞∑

x=0

pX(x)PI
0(x) =

∞∑
x=1

pX(x)P0
I(x)

≤
( ∞∑

x=1

pX(x)

)
· P0

I

(∑∞
x=1 xpX(x)∑∞
x=1 pX(x)

)

= [1 − pX(0)] · P0
I

(
λ

1 − pX(0)

)

=
(

1 − eλ(θ−1)
)

· P0
I

(
λ

1 − eλ(θ−1)

)
= E(PI,J),

(A.10)

where we used Equation (7) to introduce the zero-
inflation index. �
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Additional supporting information may be found in
the online version of this article at the publisher’s
website:

S.1. A compact review of the mathematical con-
cepts, in particular probability generating functions,
needed to fully understand the main article.
S.2. A collection of numerical examples to show how
clustering may affect single-hit models when R is beta
distributed, and how the Jensen bound performs in
these examples.
S.3. A parallel to Propositions 1 and 2 for binomially
distributed clusters.
S.4. A simple example to show that the conclusion
from Proposition 1 (reduced risk from clustering)
fails if the conditional dose-response model has a
convex portion in the low-dose range, as in the 2-hit
model.
S.5. A primitive generalization of the single-hit con-
cept to account for the effects discussed in bullet
point 3 in the introduction of the main article, i.e., if
the host-pathogen interaction for each pathogen de-
pends on that pathogen being part of a cluster or not.
S.6. A section to show how a single-hit risk esti-
mate may be affected by misinterpreting clusters as
single pathogen during enumeration, as discussed
in bullet point 1 in the introduction to the main
article.


