
Trends
Hundreds of studies convincingly
demonstrate functioning indirect
defenses in wild plants, but breeding
approaches have never considered the
underlying traits (e.g., food rewards or
shelter for carnivores, and volatiles that
mediate information-based interac-
tions) as desirable targets.

We argue that induced plant volatiles,
owing to their multiple roles as signals,
repellents, and antimicrobial com-
pounds, bear an as-yet underused
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Volatile compounds and extrafloral nectar are common defenses of wild plants;
however, in crops they bear an as-yet underused potential for biological control
of pests and diseases. Odor emission and nectar secretion are multigene traits
in wild plants, and thus form difficult targets for breeding. Furthermore, domes-
tication has changed the capacity of crops to express these traits. We propose
that breeding crops for an enhanced capacity for tritrophic interactions and
volatile-mediated direct resistance to herbivores and pathogens can contribute
to environmentally-friendly and sustainable agriculture. Natural plant volatiles
with antifungal or repellent properties can serve as direct resistance agents. In
addition, volatiles mediating tritrophic interactions can be combined with nec-
tar-based food rewards for carnivores to boost indirect plant defense.
potential for biological control, and that
future breeding efforts should enhance
the capacity of crops to engage in tri-
trophic interactions.

We also present ecological and evolu-
tionary considerations that can explain
why the constitutive release of volatile
compounds that have evolved as indu-
cible defenses is not likely to work, and
why extrafloral nectar is likely to repre-
sent a better food reward for carnivores
than floral nectar.
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Domestication and Biocontrol
Crop domestication aims to enhance the quality of plants for human use. In addition to yield,
domestication (see Glossary) most commonly has altered the size, taste, and nutritional quality
of the plant parts of interest, favoring synchronous ripening, homogenous plant sizes, apical
dominance, determinate growth, indehiscent fruits, or other characteristics of relevance for
cultivation and harvesting, as well as modifying traits that facilitate transport and storage [1–3].
Furthermore, enhanced resistance to pathogens or abiotic stress represents an integrated goal
in most plant breeding programs [4,5]. Breeding for resistance to herbivores (‘pests’) is less
common [3,6,7], although wild plants express multiple traits to resist herbivory. Therefore,
‘rewilding’ has become a new trend in crop breeding that opens exciting opportunities for
biological control and organic farming. However, multiple regulatory and political issues
currently impede the use of most genetic techniques to provide cultivars with specific resistance
traits, particularly when these cultivars are to be used in organic farming [3].

Many resistance-related traits are inducible [8,9] or can be primed for a faster and stronger
induction once damage occurs [10,11]. This phenotypic plasticity helps to balance costs and
benefits of defense expression because it assures that costly defenses are only expressed when
they are actually required [12,13]. Among the inducible traits, seemingly all plants respond to
herbivore-inflicted damage with the enhanced emission of volatile organic compounds (VOCs),
and plants in numerous taxa also respond with the secretion of extrafloral nectar (EFN)
[14–17]. Both VOCs and EFN attract adult parasitoids and predators (hereinafter collectively
termed ‘carnivores’), an effect that can significantly reduce herbivore pressure on wild plants
[18,19]. Nevertheless, relatively few attempts have made conscious use of VOCs or EFN for
biological pest control [20–26] and, to the best of our knowledge, classical breeding has never
aimed to improve anti-herbivore defense via VOCs or EFN [1,27] (but see [28] for the first attempt
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Glossary
Biological control: for the purposes
of this review, ‘biological control’
comprises all strategies in which
animals, plants, or plant-derived
compounds are used to control
pests and diseases in crops.
Domestication: the artificial
selection of plants or animals to
cultivate traits that are desirable to
the cultivator (i.e., humans).
Extrafloral nectar (EFN): nectar
that is secreted on the vegetative and
in some cases also on the
reproductive parts of plants and that
serves to attract carnivorous
arthropods as means of indirect
defense.
Green leaf volatiles (GLVs): small
C6 molecules that are immediately
released from damaged plant tissues
and that form part of the general
wound response of plants.
Parasitoids: arthropods that as
larvae develop within a living host
and kill this host before the
emergence of the adult stage.
Predators: animals that feed on
other animals and usually kill their
prey.
Rewilding: the reintroduction of
properties from the wild relatives of
crops, for example, to re-establish
resistance traits that were lost during
domestication.
to genetically engineer wheat (Triticum aestivum) for the emission of an aphid alarm pheromone
as a means to enhance repellence of aphids and attract aphid carnivores). We highlight the major
defensive functions of VOCs and EFN, discuss why VOCs and EFN are rarely included in
breeding programs, and propose how and to what degree these traits can be optimized to allow
better biological control of pests and crop diseases.

Plant VOCs, EFN, and Biological Control
Plants express multiple traits that provide resistance to the majority of potential herbivores and
pathogens [29]. Many traits act directly against these enemies via their toxic, repellent, or
antimicrobial effects or function as mechanical barriers, but other resistance strategies work
indirectly [18]. For example, plants release an array of VOCs when damaged [30–32], and the
particular blends depend on the type of wound and even the type of attacker [33,34]. Because
such induced VOCs frequently indicate the presence of a herbivore, they are utilized by many
carnivores as cues to find their prey, a behavior that can reduce herbivore loads and thus cause
‘indirect’ defense of the plants [35]. Studies searching for beneficial effects of VOCs have
reported multiple promising observations (Table 1), including enhanced recruitment of preda-
tors, parasitoids, or entomopathogenic nematodes to VOC-releasing plants [30,31,35–37],
enhanced parasitization rates in caterpillars that were reared close to VOC-emitting plants [38],
the successful use of intercropping with plant neighbors that mimic the emission of herbivore-
induced VOCs [39] or with repellent crops to ‘push’ pests out of maize fields and ‘pull’ them into
surrounding trap plants [20,40] (Figure 1), and enhanced density of parasitoids close to
dispensers emitting, for example, the VOC methyl salicylate (MeSA) [24,41–44].

In addition to VOCs, plants commonly attract and maintain carnivores by offering shelter (such as
domatia in the form of cavities or trichome tufts for ants and mites) or food rewards [such as
pollen, floral nectar (FN), extrafloral nectar (EFN), and plant sap] [18]. These rewards contain
carbohydrates and amino acids, and are consumed by a diverse range of carnivores [18], most
frequently during the adult stage [19,45–47]. In particular, the ingestion of nectar enhances the
longevity and predatory efficiency of carnivores or reduces intraguild predation [48–50]. These
food rewards affect the performance, behavior, and voracity of carnivores [19,45,47–49], an
effect that can be used to optimize the efficacy of biological control by using plant genotypes of a
desired quality [51]. In particular, the secretion of EFN usually reduces herbivory on the
respective plants [52–54]. In the horticultural context, there are reports of enhanced protection
from herbivores in plants that secrete EFN [22,55,56], produce large amounts of pollen [57], or
provide additional shelter to ants or predatory mites [58]. The availability of carbohydrates is a
common bottleneck for carnivores, whereas herbivores are usually limited by the supply of
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Figure 1. The Push–Pull System. The
push–pull system mainly consists of inter-
cropping the crop of interest (here maize)
with a plant species that emits volatile
organic compounds (VOCs) that repel
the major pest. Planting an attractive (pull)
plant around the field further enhances
directional movements of the pest insect
out of the field. Ideally, the pull plant does
not allow the pest to reproduce, and both
push and pull plants also serve other func-
tions, for example, as ornamental plants,
vegetables, spices, or as food for livestock
(see [39,40] for details).
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Table 1. Examples of Direct and Indirect Resistance Effects for Application in Biocontrol

Plant Species Environment Treatment Response Observed Refs

Barley
(Hordeum vulgare)

Laboratory Plants infested by aphid
(Rhopalosiphum padi)

Attraction of the predatory beetle,
Coccinella septempunctata

[121]

Birch
(Betula pubescens)

Field Presence of herbivore-
damaged leaves or
methyl jasmonate
(MeJA) treatment

Attraction of insectivorous birds [122,123]

Bean
(Phaseolus vulgaris)

Field Exposure to inoculated
or Benzothiadiazole
(BTH)-treated emitter
plant

Enhanced resistance to the fungal
pathogen, Colletotrichum
lindemuthianum, priming of PR-1,
2, and 4, and direct inhibition of
fungal spore germination on the
leaf surface

[62]

Cotton
(Gossypium hirsutum)

Field and Cage Herbivore-damaged
plants

Repellence of adult females of the
herbivore, Spodoptera littoralis

[124]

Maize (Zea mays) Laboratory Application of caterpillar
oral secretion to
wounded leaf tissue

Females of parasitic wasp Cotesia
marginiventris learn to respond to
the released VOCs

[31]

Maize (Zea mays) Field Damage by root-
feeding Diabrotica
larvae

Attraction of entomopathogenic
nematodes

[36]

Maize (Zea mays) Field Intercropping with the
grass, Melinis
minutiflora

Increased levels of infestation by
stem-borers and enhanced
parasitization rates of these

[39]

Lima bean
(Phaseolus lunatus)

Laboratory Damage inflicted by the
spider mite,
Tetranychus urticae

Enhanced attraction of the
predatory mite, Phytoseiulus
persimilis

[30]

Lima bean
(Phaseolus lunatus)

Field Supplementation of
EFN

Enhanced number of ants,
decreased rates of herbivory, and
enhanced seed set

[125]

Lima bean
(Phaseolus lunatus)

Laboratory Treatment with
jasmonic acid (JA)

Adult females of the herbivorous
beetles, Gynandrobrotica
guerreroensi and Cerotoma
ruficornis, preferred controls over
induced plants

[77]

Lima bean
(Phaseolus lunatus)

Laboratory Exposure to conspecific
plants treated with BTH
or to the pure VOC,
nonanal

Enhanced resistance to
pathogenic bacterium,
Pseudomonas syringae, and
priming of PR-2

[70]

Wild tobacco
(Nicotiana attenuata)

Release of cis-3-hexen-
1-ol, linalool, and cis-/
-bergamotene

Increased herbivore egg predation
rates by a generalist predator
(Geocoris pallens)

[35]

Wild tobacco
(Nicotiana attenuata)

Linalool and the
complete blend of
MeJA-treated plant

Decreased lepidopteran
(Manduca quinquemaculata)
oviposition rates

[35]

Tomato (Lycopersicon
esculentum)

Field Exogenous application
of JA

Higher parasitization rates of
caged caterpillars

[38]

Tobacco
(Nicotiana tabacum)

Field Damage by different
herbivores

Females of the specialist
parasitoid (Cardiochiles nigriceps)
distinguish plants damaged by
hosts vs non-host caterpillars

[37]

Tobacco plants
(Nicotiana tabacum)

Greenhouse Damage by Heliothis
virescence caterpillars

Repellence of conspecific females [126]
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proteins. Therefore, carbohydrate-based rewards can shift the balance in favor of the third
trophic level [19], even when a specific reward happens to be used by herbivores as well.
Similarly, domatia are usually occupied by predators rather than herbivores [18,58,59], and thus
should favor predators more than herbivores.

Finally, several green leaf volatiles (GLVs) [60,61] and other VOCs, that are quickly released in
response to injury, have direct antimicrobial effects and thereby contribute to an immediate
resistance to disease, both in the damaged plant and in its neighbors [15,60,62]. For example,
MeSA represents the volatile form of salicylic acid (SA), a central regulator of induced plant
resistance to biotrophic pathogens [63]. (Z)-3-hexenal and its isomer, (E)-2-hexenal, inhibit the
growth of several strains of bacteria and the pathogenic fungus Botrytis cinerea (see [60] for
review), and monoterpenes such as linalool and limonene at natural concentrations can inhibit
the germination of conidia of the pathogenic fungus, Colletotrichum lindemuthianum, on bean
plants [62].

In addition to their direct antimicrobial properties, such VOCs are known to trigger resistance
responses in remote parts of the same plant or in neighboring plants [64–66] and, frequently,
they prime resistance traits that are directed against herbivores [67–69] or pathogens [60,62,70].
The multiple functions of GLVs and other plant VOCs as plant hormones, direct antimicrobial
agents, and cues for host-searching carnivores break with the common trade-off between
(direct) resistance traits against pathogens and herbivores [71] and make these compounds
particularly attractive targets for integrated breeding efforts and other applications in biocontrol.

Putative Functions of VOCs in Biological Control
In most cases, biological control makes use of native or alien natural enemies of herbivores such
as predators and parasitoids. Common strategies to enhance the populations of these carni-
vores in agricultural or horticultural environments aim at conserving the natural populations of
these animals, attracting them from adjacent natural areas, or via the active release of com-
mercially reared animals. Although biological pest control represents an environmentally-friendly
strategy that has had tremendous success in particular systems, its wider success is frequently
limited by various intrinsic problems. First, carnivores that are released in open areas often
disperse to adjacent, more natural ecosystems (see examples in [72]). Second, carnivore
populations will crash as soon as they have eradicated the target pest if no alternative food
sources are provided. Third, beneficial carnivores in most systems cannot be released in a
preventive manner because they need to prey on herbivores for their own survival and
reproduction.

The discovery of the above-mentioned VOCs seemed to open new possibilities for biological
control [42]. These ‘semiochemicals’ or ‘infochemicals’ can be used by carnivores as host-
finding cues [18,32], and can be released artificially [41,42,44,73], or crops can be bred or
transformed for their enhanced emission [27,28,74–76], to attract beneficial organisms from wild
populations, maintain commercially released biocontrol agents in an agricultural field, or simply
repel herbivores from the target crop. However, VOC-based indirect resistance to herbivores
has not been adopted in traditional plant breeding [1,27] and, despite the above-mentioned
examples of successful biocontrol via plant VOCs, there are also examples of the opposite:
VOCs can be used by herbivores to localize their host plants [77,78], a situation which can lead
to highly counterproductive effects [26,77,79,80]. We argue that these seemingly contradictory
results are likely to be caused by the following factors.
(i) Plant VOCs play multiple roles in direct resistance to herbivores and pathogens, which

makes it unlikely that strategies that focus on one single mechanism can be successful.
Apparently for historic reasons, most work has focused on VOC-mediated tritrophic inter-
actions [15].
Trends in Plant Science, November 2015, Vol. 20, No. 11 701



(ii) The emission of plant volatiles depends on multiple environmental factors, including abiotic
ones such as heat, drought stress, and soil nutrient content [81–83]. After their release, the
compounds are directly exposed to the environment and, unfortunately, we know very
little on how air temperature, UV irradiation, and other variable environmental factors affect
the stability of individual VOCs [84,85]. Therefore, the release of VOCs and their biological
effects are strongly context-dependent.

(iii) Herbivore-induced (HI-) VOCs that are used by carnivores as ‘infochemicals’ solely represent
information rather than providing a resource per se [86]. Thus, responding to HI-VOCs in the
absence of herbivores can negatively affect the fitness of carnivores in general and, in
particular, reduce the survival rates of adult parasitoids. These animals will rapidly learn – or
be selected – to ignore the misleading information that is transmitted when VOCs are
released in a preventive manner. A recent study by Toby Bruce and colleagues [28] shows
that insects can even change the response to their own alarm pheromones if they are
exposed to the respective selective pressure. In an attempt to genetically engineer wheat
(Triticum aestivum) for constitutive release of the aphid alarm pheromone, (E)-b-farnesene,
transformed plants successfully repelled aphids in the laboratory. However, aphids that were
reared on (E)-b-farnesene emitting plants showed strongly reduced repellence responses
after only five generations [28].

(iv) Finally, disregarding the effects of domestication on the interactions between crops and the
natural enemies of pest insects (see [72] for recent review), and the multiple interactions
among the various defensive traits of plants, could lead to missed opportunities [87,88] and
unwanted repercussions. Tritrophic interactions are never ruled by HI-VOCs alone, and
apparently were rarely considered in the breeding process. In particular, plant surface
structures such as trichomes and plant-derived food rewards are important complements
of VOC-mediated attraction effects that are essential for stable and long-term indirect
defense via tritrophic interactions [18]. If domestication has negatively affected only one
of the underlying traits, biological control might be significantly impaired [72].

However, identifying the traits that currently limit the successful engagement of many crops in
successful tritrophic interactions will help to breed future cultivars for the capacity to express the
traits in question. Therefore, it is our ambition to inspire plant breeders to consider tritrophic
interactions and inducible resistance to a greater extent [27,89]. We present some of the plant
traits that are promising candidates for enhancing biocontrol, and discuss whether and how
these traits have been affected by domestication. Finally, we highlight resistance-related traits
that breeding should focus on, and experiments that still are needed for, enhancing the potential
of domesticated plants to engage successfully in tritrophic interactions (Figure 2 and Figure 3,
Key Figure). We focus here on the effects of plant-derived VOCs and food rewards because the
potential of microbial VOCs in sustainable agriculture has been reviewed recently [90].

Domestication Affects the Quality of Plants for Friends and Foes
Many of the traits that confer direct resistance to pests have been counter-selected during
domestication, either because they depend on undesirable properties such as bitterness,
hairiness, toughness, or toxicity, and thus reduce the quality of the consumed parts, or because
they cause a yield penalty as a consequence of the metabolic costs of resistance expression
[91]. Apart from the consequences of monocultures on the population dynamics of pests and
pathogens, this reduction in the natural levels of direct resistance is one of the major reasons why
most crops are more prone to infestation than are their wild ancestors.

Unfortunately, we know rather little on how domestication has affected the indirect defense of
crops via tritrophic interactions [72]. On the one hand, the higher food quality of domesticated
plants for herbivores can translate into a better quality of the herbivores as hosts for parasitoids
702 Trends in Plant Science, November 2015, Vol. 20, No. 11
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Figure 2. Direct Resistance-Related
Effects of Volatile Organic Com-
pounds (VOCs). Multiple plant VOCs
that are released from damaged tissue
or from intact tissue in response to
damage in other tissue, such as linalool,
can repel herbivores [35,126], and com-
pounds such as nonanal, decanal, and
limonene have antimicrobial properties
[62]. Owing to their direct nature, these
effects should be less context-dependent
than the more indirect mechanisms.
[92], an effect that would enhance the opportunities for biocontrol. On the other hand, enhanced
vigor of herbivores on crops can also enhance their capacity to perform immune responses,
such as the encapsulation of parasitoid eggs [93]. Domestication might even create ‘enemy-free
spaces’ for specific pests, and larger fruits or seeds of cultivated olive (Olea europaea) trees or
sunflowers (Helianthus annuus) allow herbivorous larvae to physically escape from parasitization
[94,95].

For some cases, breeding efforts against particular traits are likely to explain why attempts to
control pests by releasing biocontrol agents have failed [96]. For example, 50% of maize (Zea
mays) landraces tested responded to stemborer oviposition with the emission of HI-VOCs that
attracted parasitoids, whereas only two of 30 hybrid cultivars retained this capacity [7]. Tamiru
and colleagues conclude that ‘there is a steady decline in the prevalence of the trait from wild
ancestors to landraces to higher yielding hybrid varieties favored by breeders’ [7]. Similarly, the
ability to release aboveground (or, in the case of maize, also belowground) HI-VOCs has been
reduced or lost during the breeding of cotton, maize, and cranberry (Vaccinium macrocarpon)
[36,87,88,97]. Peach cultivars without extrafloral nectaries have been produced inadvertently
[55], and cotton (Gossypium hirsutum) lines without extrafloral nectaries were consciously
preferred by breeders and governmental agencies in the first half of the last century, because
the enhanced presence of insects on EFN-secreting plants was considered undesirable, and did
not discriminate among different feeding guilds [98].

By contrast, cultivated genotypes of bean (Phaseolus coccineus) and cabbage (Brassica
oleracea) were more attractive to parasitoids than related wild species [99], some cultivated
accessions of lima bean (Phaseolus lunatus) emitted more HI-VOCs than related wild acces-
sions, although they showed strongly impaired direct resistance via cyanogenesis [100], and the
overall quantities of HI-VOCs emitted from the aboveground parts of maize tended to be higher
in cultivated lines as compared to the ancestor, teosinte [101]. In summary, the few existing
Trends in Plant Science, November 2015, Vol. 20, No. 11 703



Key Figure
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Figure 3. (A) The emission of HI-VOCs
from non-infested plants, or luring para-
sitoids and predators by artificially dispen-
sing attractive compounds such as
MeSA, represent erroneous information
that negatively affects the fitness of the
attracted biocontrol organisms. There-
fore, the additional provision of a reward
such as floral or extrafloral nectar, EFN in
panel (B), can enhance the survival and
efficiency of parasitoids and predators,
and thus allow the establishment of more
stable populations of these biocontrol
organisms ([25,103] for details). Abbrevia-
tions: EFN, extrafloral nectar; HI-VOC,
herbivore-induced VOC; MeSA, methyl
salicylate; VOC, volatile organic
compound.
reports do not allow us to draw general conclusions concerning how domestication has affected
the capacity of crops to engage in tritrophic interactions or other indirect defense mechanisms
[72]. In particular, these seemingly opposite results concerning the capacity of maize to engage
in VOC-mediated interactions with biocontrol organisms [7,101] show that generalizations
are difficult, even when we consider the same crop, likely because the observed responses
are affected by various factors such as plant genotype, species and developmental stage of the
herbivore, type of ‘readout’ (i.e., performing chemical analyses of emitted VOCs versus observ-
ing the behavioral response of an animal), and environmental conditions. However, all these
studies also show that traits for tritrophic interactions have not been generally and irreversibly
reduced or eliminated in crops.
704 Trends in Plant Science, November 2015, Vol. 20, No. 11



Biological Control as a Goal in Plant Breeding: Opportunities
It seems that breeding never aimed consciously to modify tritrophic interactions [89], although
several reviews have described how pest control could be enhanced by considering biocontrol
already in the breeding programs [27,102,103]. Fortunately, crop wild relatives, landraces, and
commercial varieties of many crops retain genetic diversity with respect to indirect defense traits
[27,88,100,101,104,105], and these represent a genetic resource that could be utilized in
breeding for improved biocontrol. For example, some African and Latin American landraces of
maize produce HI-VOCs that attract Cotesia parasitoids [88]. Further examples of cultivated
plants for which genetic diversity in resistance-related VOCs has been reported are compiled in
Table 2. The genetic variation available for traits that provide food rewards, such as extrafloral
nectar, remains to be investigated for essentially all commercial plants and their wild relatives.
However, extrafloral nectar traits in wild cotton (Gossypium thurberi) [106] and aspen (Populus
tremuloides) [107] exhibit heritable genetic variation, and varieties that retain high EFN produc-
tion exist in peach [55]. Genetic variation in other rewarding traits has also been reported, for
example, in pepper varieties that support omnivorous mites leading to stronger top-down
suppression of thrips [57], and some European willow clones that support omnivorous predatory
bugs through high-quality plant sap [48]. This phenomenon found in European willow is already
being utilized in breeding for improved biocontrol [108].

Plants transformed or mutated in a single gene exhibited changes in GLVs, terpenoids, or
glucosinolate-related compounds, with subsequent effect on both herbivores and their natural
enemies (see [27] for overview), and plants can even be transformed to emit insect alarm
pheromones, an approach that might enhance direct resistance via repellence [28]. EFN is
restricted to specific plant taxa and is secreted by specific structures, properties that make it
more demanding to breed a specific crop for this type of reward. However, breeders could make
use of existing genetic variation in crops such as cotton, salicaceous trees, and all the fruiting
shrubs and trees in the Rosaceae that bear extrafloral nectaries (http://biosci-labs.unl.edu/Emeriti/
keeler/extrafloral/worldlistfamilies.htm). Finally, the chemical composition of plant saps that can be
used as favorable rewards for omnivores is less known, and should be explored further for breeding
purposes. In summary, genetic variability exists in traits that underlie indirect defense, but deeper
knowledge will be required before directed genetic improvements become feasible.

Biological Control as a Goal in Plant Breeding: Obstacles and Risks
All the examples in Table 2 represent crops in which genetic variation suggests that breeding for
improved biocontrol would be possible. Why, then, have these traits not been considered in
classical breeding programs? There are three possible reasons: (i) despite forming the topic of an
ever-increasing number of publications, herbivore-induced plant VOCs have a short history in
science [15]; the 30 years since the first description of the role of VOCs in tritrophic interactions
[30,31] might simply not have been sufficient to create the level of consciousness of VOC-based
interactions that would be required to be considered in larger breeding programs. (ii) As exemplified
elsewhere [27,89], improving a crop, for example, by crossing, mutation or transformation, or by
QTL-based breeding, requires stable phenotypes that can easily be monitored and quantified.
Whereas disease resistance is frequently based on gene-for-gene resistance, and thus depends
on the presence of a single and usually dominant gene, the blends of VOCs that exert biological
functions are complex and are subject to strong phenotypic plasticity [32,34,109]. Moreover, the
synthesis of VOCs is controlled by a network of hormonal pathways, and requires the involvement
of multiple biosynthetic pathways; the same appears to be true for the formation of an extrafloral
nectary and the synthesis and secretion of nectar. Therefore, it seems unlikely that classical
breeding strategies or targeted transformation could form suitable tools to enhance VOC- or EFN-
based tritrophic interactions. (iii) The physiological and ecological costs of a resistance trait need to
be considered. It is often assumed that VOCs are relatively cheap to produce in comparison to
direct defenses [110,111], but no data exist to support this assumption.
Trends in Plant Science, November 2015, Vol. 20, No. 11 705
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Table 2. Selected Examples of Cultivated Plant Species with Reported Genetic Variability in VOC Emission

Species Material Investigated Observation Refs

Bean
(Phaseolus vulgaris)

Four cultivars with different
levels of resistance to spider
mite (Tetranychus urticae)

Resistant cultivars respond to spider
mite infestation with the emission of
quantitatively and qualitatively more
VOCs than susceptible ones

[127]

Cabbage (Brassica
oleracea L. var. alba)

Four cultivars with different
attractiveness to Cotesia sp.
parasitoids

Amounts of terpenoids and methyl
salicylate emitted after caterpillar
feeding differ among the cultivars

[128]

Carrot (Daucus carota) Two cultivars Cultivars differed significantly in the
amount of sabinene, myrcene,
limonene, and methylisoeugenol
emitted after psyllid (Trioza apicalis)
feeding

[129]

Cotton
(Gossypium hirsutum)

Five cultivars and a naturalized
variety

The naturalized variety emitted
significantly more mono- and
sesquiterpenes and VOCs derived
from the LOX pathway

[97]

Cranberry (Vaccinium
macrocarpon)

Five varieties spanning a wild
ancestor and old and recent
cultivars

The varieties differed significantly in
released sesquiterpenes and
resistance-related phytohormones

[87]

Gerbera
(Gerbera jamesonii)

Four cultivars with different
levels of resistance to spider
mite (Tetranychus urticae)

Striking differences among cultivars in
the emission of cis-/-bergamotene,
trans-/-bergamotene, and trans-b-
bergamotene

[130]

Lima bean
(Phaseolus lunatus)

Sixteen accessions, covering
wild forms, landraces, and
cultivars

Up to 50-fold difference among
varieties in overall amounts of VOCs
released from JA-treated plants, with
no detectable overall effect of
domestication

[100]

Maize (Zea mays) Eleven maize cultivars and five
teosinte species

Total amounts and composition of
volatiles differed among maize
cultivars and among teosintes

[101]

Maize (Zea mays) Twenty-five landraces, 30
hybrids, and 22 inbred lines

Stemborer oviposition elicited
attraction of parasitoids in 13
landraces but only two hybrids

[7]

Pear (Pyrus spp.) Four cultivars with different
levels of resistance to psyllids
(Cacopsylla pyricola)

Up to fivefold difference among
cultivars varieties in overall amounts of
VOCs emitted from fully psyllid-
infested plants

[131]

Rice (Oryza sativa) Six cultivars Significant quantitative and qualitative
differences in the VOCs emitted from
JA-treated plants

[132]

Soybean (Glycine max) Three cultivars Specific VOCs [(Z)-2-octen-1-ol, (E)-
2-octen-1-ol,
(E)-2-hexenyl acetate, indole, and
DMNT] were only emitted from one of
the tested cultivars

[133]

Strawberry
(Fragaria � ananassa)

Two cultivars Significant quantitative and qualitative
differences in the VOCs emitted from
cyclamen mite-damaged plants

[134]

Willow (Salix spp.) Three clones: S. viminalis and
S. dasyclados cultivars, and a
native S. cinerea

Females of the omnivorous predator,
Anthocoris nemorum, distinguished
between intact and damaged plants
of the three clones in an olfactometer
set-up

[135]
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Box 1. Combining Breeding-Dependent and Cultivation-Based Strategies for Enhanced Biological
Control of Pests and Diseases

Plants VOCs and EFN represent notoriously difficult targets for directed breeding: few crops naturally secrete EFN, and
blends of VOCs and EFN secretion are phenotypically-plastic traits that are encoded by multiple genes. Thus, breeding-
dependent and cultivation-based strategies must be combined for optimized use of these traits.
Honest Signals
Breeding should aim at more efficient priming rather than constitutively upregulating the emission of VOCs that function in
tritrophic interactions.
Direct Effects
Breeding for enhanced emission should focus on specific VOCs with direct repellent or antimicrobial properties. Plant
VOCs that directly interfere with more than one central metabolic process of the targeted pest or pathogen are less likely
to facilitate the rapid evolution of counter-resistance phenomena.
Synergies
Breeding can also improve those anatomical and physiological traits that are known to favor indirect defense in the wild
species.
Breeding-Independent Strategies
Agricultural practices such as ‘push–pull’ and ‘attract and reward’ are successful and should receive more attention in
efforts for an integrated pest management.
Extrafloral nectar (EFN)
EFN is likely to represent a better reward for carnivores than FN because EFN has evolved for indirect defense and is
secreted over the entire vegetation period.
Above and beyond physiological costs, potential ecological costs warrant consideration. Plant
volatiles have multiple functions as direct resistance agents and as signals in plant–plant, plant–
herbivore, and plant–pollinator interactions [15]. Furthermore, dispensing artificial volatiles in
maize fields can lead to enhanced attraction of herbivores to the VOC-exposed plants [26],
herbivorous thrips were attracted to MeSA [103], and transgenic maize plants that constitutively
released (E)-caryophyllene and humulene also became more apparent to a specialist herbivore
[112]. This multifunctionality needs to be considered to avoid counterproductive results. Finally,
indirect defenses can interact with direct defenses in multiple ways. For example, attracting
carnivores with MeSA and rewarding them with floral nectar of intercropped buckwheat
(Fagopyrum esculentum) in vineyards did not benefit yield, and actually decreased the quality
of the grapes owing to enhanced levels of infection with a pathogenic fungus [103]; moreover,
parasitoids are exposed to direct plant defense compounds as they develop inside herbivores
[113–115]. In other cases, however, direct and indirect defense traits operate in synergy [116].
For example, phenolic glycoside-producing Salix, which reduces herbivore fitness, provides
high-quality plant sap to particular predators [48,117].

Biological Control as a Goal in Plant Breeding: Recommendations
We present a list of recommendations for how best to integrate tritrophic interactions in breeding
efforts and crop management (see Box 1 for a short overview). Based on the reports on
beneficial effects of plant VOCs and reward-based indirect defenses (Table 1), and on the
shortcomings of merely information-based tritrophic interactions [86], we suggest that research
and breeding could focus on the following biocontrol strategies:
(i) We should investigate the wild ancestor of the crop of interest to understand its strategies for

indirect defense, and compare the underlying traits in wild plants, landraces, and modern
cultivars. Provided that genetic variation still exists (Table 2), these traits can be reinforced in
contemporary high-yield cultivars. In this context, we must always consider that successful
tritrophic interactions frequently depend on synergies among several, seemingly indepen-
dent traits, for example, the combination of volatile infochemicals with food rewards or
physical shelter. Furthermore, care must be taken to avoid over-costly defense strategies as
well as strategies that negatively affect the quantity or quality of the product (fruit, grain, fiber
etc.). Much more research will be necessary to separate defensive traits that have inadver-
tently been lost during the breeding process from those traits that have been actively
(although in many cases unconsciously) counter-selected during breeding because their
Trends in Plant Science, November 2015, Vol. 20, No. 11 707



Outstanding Questions
How has breeding affected the capacity
of crops to engage in tritrophic interac-
tions? Among the few crop species
investigated so far for the emission of
herbivore-induced volatiles, both higher
and lower emission rates than their wild
relatives have been reported. Even less
information is available on the effects of
breeding on food rewards or shelter for
carnivores.

Can plant volatiles be used for biological
control of both pests and crop disease?
Volatile organic plant compounds are
usually investigated in the context of
herbivory, and biological control gener-
ally concerns pests, not pathogens.
However, recent reports on multiple
inhibitory effects of plant volatiles on
pathogenic fungi indicate that volatiles
might bear an as-yet underused poten-
tial for biological control of crop
diseases.

What are the limits for breeding crops
with biological control? The secretion
of extrafloral nectar is likely to depend
on hundreds of genes, which makes it
seemingly impossible to breed this trait
into a crop that does not naturally pos-
ses extrafloral nectaries. Similarly, most
herbivorous insects respond to overall
blends of plant volatiles rather than to
single compounds.
reduction or complete elimination had positive consequences on the traits of the plant as a
crop.

(ii) An unexplored potential for integrated crop protection is represented by the triple function of
many VOCs as antimicrobial agents, resistance-inducing hormones, and cues for carnivores
[60,62,75,118]. Direct VOC-mediated resistance to herbivores and microorganisms
(Figure 2) does not require the presence and action of any further organisms, and thus
might be less context-dependent than tritrophic interactions. Transforming plants for
enhanced emission of GLVs has been suggested explicitly ‘for improving plant resistance
against both herbivores and pathogens’ [75]. However, by analogy with HI-VOCs that
are ‘dishonest’ signals in the absence of prey or rewards, VOCs that only reduce herbivore
attraction and not subsequent herbivore performance may not be a durable strategy owing
to herbivore proximate and ultimate adaptations. In the aforementioned study by Bruce and
colleagues, wheat that was genetically engineered to emit the (E)-b-farnesene exhibited
significant repellent effects on aphids in the laboratory, whereas field trials revealed no
reduction in aphid infestation [28].

(iii) Any attempt to enhance the potential of crops for classical (tritrophic) biocontrol strategies
should breed for a continuously primed stage, rather than for constitutive expression, to
avoid constitutive emission of HI-VOCs in the absence of herbivores.

(iv) Information-based and reward-based defenses should be combined. Information-based
interactions are unlikely to function in isolation because VOCs can attract unwanted insects
[26] and because attracting carnivores to herbivore-free plants deprives them of any benefit.
A strategy known as ‘attract and reward’ (Figure 3) has already been successfully applied in
several systems [25,103]. In this approach, synthetically produced VOCs are combined with
intercropped floral resources. The ‘attract’ and the ‘reward’ parts independently improved
biocontrol in the studied systems, and their combination provided synergistic effects on the
target pest [103]. In this context, schemes relying on the attraction of naturally-occurring
parasitoids and predators should be compared to the consequences of the artificial release
of such biocontrol agents.

(v) In all attempts that employ rewards for carnivores, extrafloral nectar might represent an as-
yet underexplored possibility in biocontrol. Ultimately, EFN, rather than FN, represents the
type of nectar that serves to attract predators and parasitoids in natural systems, and EFN is
usually secreted over the entire lifespan of a plant whereas FN secretion is restricted to the
flowering phase [119]. Therefore, we should investigate the protective effects of EFN in
agronomic setups, both with and without the additional release of carnivores.

(vi) Breeding could aim at returning attracting and rewarding traits to the crops themselves and
reduce the need for intercropping. However, intercropping could also represent an inter-
esting option, particularly for organic farming and in regions where manual maintenance and
harvesting techniques still dominate. Alternatively, both VOCs and energy-rich resources can
be applied artificially to those crops that cannot express these traits or in more technological
agricultural systems.

(vii) We must consider carefully unwanted side effects, such as the induction of one resistance
type at the cost of another, the attraction of herbivores, and so on. Finally, we must measure
the effects that are relevant for the farmer. In the end, factors that are ultimately of interest for
the grower are crop yield and the quality of the resulting product (fruits, grains, vegetables)
obtained under realistic agronomic or horticultural conditions.

Concluding Remarks
Biological control of pests usually works best for perennial cropping systems and forest
systems, where carnivores have time to build up high populations [51], and in closed environ-
ments, such as greenhouses, where biological control agents can be released and confined. The
potential for utilizing carnivores in annual field crops and large monocultures appears to be more
limited. However, deploying VOCs as agents for biological control of plant disease [62] and
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adding rewards and shelter for predators [58] are two strategies that can enhance biocontrol
even in monoculture crops.

Tritrophic interactions are often complex, and plant traits that provide information and resources
may sometimes have unforeseen effects on ecological food webs. These and other interacting
effects might overwhelm and discourage plant breeders who traditionally consider direct
bitrophic interactions, which are unconsciously complemented with biocontrol in plant breeding
nurseries where an essential part of the selection for resistance is taking place. In addition, there
may be problems of acceptance by farmers because these more natural strategies usually do
not completely eliminate pests and pathogens from the systems. Finally, genetic engineering is
not accepted in several countries, and particularly not as a tool in organic farming [3], a situation
which is likely to limit the optimization of crops for biological control.

However, new regulations and changing consumer demands are gradually improving the
prospects for more sustainable agriculture. For example, European Parliament directive
2009/128/EG made the implementation of integrated pest management obligatory within
the EU from 2014. Thus, there are several trends towards increased acceptance of ‘good
enough’ solutions to pest problems. Indeed, two breeding projects already target natural
enemies of pests. In the SAMBA project (www.samba-webb.se), plant breeders collaborated
with insect ecologists to identify willow traits that attract and reward natural enemies of
detrimental leaf beetles [108]. The major natural enemies of the leaf beetles are omnivorous
bugs (mirids and anthocorids), which can maintain high densities even during periods of low prey
availability. A second promising breeding project involves the restoration of indirect defense traits
in maize, utilizing traits that are still available in some landraces [7,120].

Based on the considerations outlined in this paper, we stress the importance of including both
information-based and reward-based plant traits to achieve functioning tritrophic defense, and
of exploring the direct resistance-related functions of VOCs, which could allow biocontrol of
pests and pathogens independently of the third trophic level. The ‘attract-and-reward’ concept
and the direct defensive effects of plants VOCs provide a useful framework for the design of
biocontrol strategies that can allow sustainable and cost-efficient protection of our crops. The
resulting benefits are potentially very large, and data on the net-outcomes of specific strategies in
realistic agronomic and horticultural environments can be obtained quickly.
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