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Signaling studies in the rhizosphere have focused on close interactions between
plants and symbiotic microorganisms. However, this focus is likely to expand to
other microorganisms because the rhizomicrobiome is important for plant
health and is able to influence the structure of the microbial community. We
discuss here the shaping of the rhizomicrobiome and define which aspects can
be considered signaling. We divide signaling in the rhizosphere into three
categories: (i) between microbes, (ii) from plants to microorganisms, and (iii)
from microorganisms to plants. Signals act on diverse organisms including the
plant. Mycorrhizal and rhizobial interkingdom signaling has revealed its pivotal
role in establishing associations, and the recent discovery of signaling with non-
symbiotic microorganisms indicates the important role of communication in
shaping the rhizomicrobiome.

The Rhizosphere and the Rhizomicrobiome
The rhizosphere (see Glossary) is a highly complex ecosystem consisting of the narrow zone of
nutrient-rich soil that surrounds, and is influenced by, plant roots. It is densely populated by
diverse microorganisms including fungi, bacteria, protists, nematodes, and invertebrates. Plant
roots secrete an assortment of primary metabolites (e.g., organic acids, carbohydrates, and
amino acids) and secondary metabolites (e.g., alkaloids, terpenoids, and phenolics) which are
believed to shape, signal, interfere with, or in some way affect the rhizosphere microflora. This
release or exudation in the rhizosphere of a large assortment of chemicals comes at a significant
cost of carbon and nitrogen for the plant, with the ultimate benefit of attracting and promoting
beneficial microorganisms while combating pathogenic or otherwise harmful ones.

The rhizosphere microbiota extends the capacity of plants to adapt to the environment, and the
establishment of a particular microbiota member in the rhizosphere can be regarded as niche
colonization. As mentioned, the impact of the rhizosphere microbiome (rhizomicrobiome) is
believed to rely heavily upon the chemical exudates, which also mediate interactions via signaling
molecules which are produced and secreted by both plants and microbes. The extent to which
root and microbial exudates affect the rhizosphere microbial structure and function is a subject of
ongoing research; in particular, how the plant selects the rhizomicrobiome and most importantly
the beneficial microbial partners [1–4]. Studies have been mostly focused on bacteria, but the
recent extensive census of fungi and protists [5–7] will allow developing a much broader view of
the rhizosphere microbiome in the future. Apart from a handful of well-studied examples, which
will be discussed below, the signaling and impact of the rhizosphere chemistry on the microbial
community remains largely unknown. Scientists often refer to this aspect using several general
terms such as underground interactions, signaling or communication highways, rhizosphere
chemical language, and complex plant–microbe interactions, but two main questions remain –

what constitutes signaling in the rhizosphere and what are the underlying mechanisms?

The shaping and recruitment of the rhizomicrobiome by the rhizosphere chemistry can be
regarded as occurring via two general processes. First, via stimulation by the rhizodeposits or
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root exudates (this accounts for approximately 10% of photosynthetically fixed carbon and
15% of total plant nitrogen) of microbial multiplication in the vicinity of roots. This is an active and
pivotal way for recruiting, shaping, and tuning microbial rhizosphere communities from the
reservoir of microorganisms present in the soil, involving processes that support, restrict, or
terminate microbial growth and activity. We believe that this important role of chemicals in
determining rhizosphere residents cannot be considered signaling.

The other process affecting the rhizomicrobiome occurs via the detection and response to low
molecular weight compounds of either plants or microbes, resulting in a cellular response(s)
which is not only restricted to the catabolism, transformation, or other aspects (e.g., resistance)
of the compound being sensed. This entails a regulatory response/cascade which ultimately
leads to the transcription of loci in response to a particular compound. This is what we believe
suits the definition of signaling and, to further simplify our understanding of this rapidly growing
research field, we divide it into three categories representing the major types of signaling
mechanisms known to occur in the rhizosphere (Figure 1 and Box 1): (i) microbial intraspecies
and interspecies signaling, which occur mainly via quorum-sensing (QS) signal molecules
allowing microbial communities to form and synchronize their behavior; (ii) signaling from plants
to microorganisms via small plant-secreted molecules, which has been implicated in several
specialized symbiotic relationships and most probably occurs frequently in other interactions;
and (iii) signaling from microorganisms to plants documented so far by microbially produced
compounds affecting plant gene expression, root architecture, and plant defense responses.
Some molecules are involved in more than one type of signaling as discussed below. The aim of
this short review is to define and highlight these aspects of rhizosphere signaling and to delineate
some future directions.

Microbe–Microbe Signaling in the Rhizosphere
Many microorganisms synthesize signaling compounds to synchronize their gene expression in
response to cell density in a process known as QS [8]; this has been and is currently the subject
of extensive investigations in microbiological research. Importantly, many groundbreaking
studies on QS have been generated using models of plant–microbe associations regulating
diverse processes such as the production of virulence factors, synthesis of secondary metab-
olites, formation of biofilms, conjugation, and motility [8]. The signals produced by microbes
belong to a wide range of chemical classes, and multiple QS systems using different types of
signals often occur within a single organism. It is not the scope here to review exhaustively the
QS signals being produced by the rhizomicrobiome but instead to inform the reader of the major
trends and directions within the topic of rhizosphere signaling. This type of signaling among
microbes is likely to play a fundamental role in shaping and stabilizing the rhizosphere microbial
community as well as affecting plant development (Figure 1).

Cell–cell signaling among rhizosphere microorganisms is likely to occur commonly because
many strains isolated from the rhizosphere have been reported to produce QS signals. For
example, it has become apparent that a variety of proteobacterial rhizosphere isolates produce
and/or respond to N-acyl homoserine lactone (AHL) QS signals, including strains belonging
to species or genera of Pseudomonas chlororaphis, Pseudomonas putida, Pseudomonas
syringae, Burkholderia, Serratia, Erwinia, and Ralstonia, as well as rhizobial species [9]. AHLs
have also evolved to act as interkingdom signals influencing plant gene expression, the induction
of systemic plant resistance, and affecting plant growth and development [10]. Recently new
types of signals (e.g., pyrones and dialkylresorcinols) produced by Gram-negative bacteria have
been discovered which are recognized by LuxR proteins which are very closely related to the
AHL-responsive LuxR family [11]; it is currently unknown whether these signals are produced by
rhizobacteria. Another class of QS signals in Gram-negative bacteria is the DSF family (diffusible
signal factor, which are cis-2-unsaturated fatty acids); more bacterial species are currently being
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Interkingdom signaling: used here
to describe signaling between plants
and microorganisms via low
molecular weight compounds.
Microbe-associated molecular
patterns (MAMPS): conserved
microbe-specific molecules such as
cell wall components which are
recognized by the innate immune
system of the plant.
Mycorrhizal symbiosis: symbiotic
associations between arbuscular
mycorrhizal and ectomycorrhizal soil
fungi and plant roots.
N-acyl homoserine lactone (AHL):
a QS signaling molecule produced by
proteobacteria.
Plant growth-promoting
rhizobacteria (PGPR) and fungi
(PGPF): bacteria and fungi that
efficiently colonize the rhizosphere
and promote plant growth through
stimulating immune defenses,
influencing the hormonal balance,
warding off pathogens, and
mobilizing nutrients.
Priming: used here to describe the
physiological alert state of a plant
following a stimulus preparing it to
produce a faster and more robust
defense response when exposed to
pathogens, pests, or abiotic stress.
Quorum sensing (QS): a regulatory
system that allows bacteria to
regulate gene expression in response
to cell density.
Rhizobial bacteria: legume root-
nodule bacteria that induce the
formation of special structures
(nodules) on the roots of their host
plants and fix nitrogen.
Rhizomicrobiome: or rhizosphere
microbiome; represents the total
microbial community members
present in the rhizosphere.
Rhizosphere: narrow zone of soil
that is directly influenced by root
secretions and associated soil
microorganisms.
Root exudates: a variety of
molecules released by roots into the
rhizosphere, including acids, sugars,
and polysaccharides.
Volatile organic compounds
(VOCs): organic chemicals that have
a high vapor pressure which allows
them to evaporate and enter the
surrounding air.
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Figure 1. Known Molecules and Events Involved in Intra- and Interspecies Signaling among Microorganisms
and Interkingdom Signaling Between Microorganism and Plants in the Rhizosphere. The rhizosphere is
populated by a diverse community of microorganisms, including rhizobial bacteria, mycorrhizal fungi, plant growth-
promoting bacteria and fungi (PGPR and PGPF), and nematodes, which all undergo interactions with the plant that
are often beneficial. To coordinate their behavior and to control their growth and activity, these microorganisms produce a
diversity of signals, among them quorum-sensing (QS) molecules such as N-acyl homoserine lactones (AHLs), diffusible
signal factor (DSF), and diketopiperazines (DKPs), antibiotics at subinhibitory concentrations, phytohormone-like mole-
cules, volatile organic compounds (VOCs), and, in the case of nematodes, specific pheromones (acarosides). These
communication molecules can also function as interkingdom signals that elicit various effects on plant developmental
processes and on local and systemic immune responses (i.e., ISR, induced systemic resistance; and SAR, systemic
acquired resistance) and involve interactions with plant hormonal signaling via salicylic acid (SA), jasmonic acid (JA), and
ethylene (ET). The plant recruits, shapes, activates and sustains its rhizomicrobiome via the release of root exudates (not
shown) and signaling molecules of which only few are known to date. To recognize its associated rhizomicrobiome, the plant
uses dedicated pattern recognition receptors (PRRs) and presumably other as yet unknown receptors to detect particular
microbe-associated molecular patterns (MAMPs) and likely the signals presented by the microorganisms. Recruitment of
plant-beneficial rhizosphere microorganisms results in the intimate symbioses undergone by mycorrhiza and rhizobia, which
are initiated by the exchange of specific plant signals (strigolactones and flavonoids, respectively) and microbial signals (Myc
and Nod factors, respectively), and other mutualisms such as those involving PGPR, PGPF, and entomopathogenic
nematodes. In addition to hosting beneficial microorganisms as guards, the plant also uses confusion and inhibition
strategies (e.g., QS mimicry and quenching) to ward off harmful microorganisms.
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discovered which produce DSF, including rhizosphere-inhabiting species such as Burkholderia
spp. and Stenotrophomonas maltophilia [12]. Interestingly, bacterial DSF signals have also
been recently determined to elicit innate immunity in plants, hence acting as interkingdom
signals [13]. Many Gram-positive bacterial residents in the rhizosphere use peptides (also
known as pheromones) as QS signaling molecules [14,15]; these signals are likely to play many
regulatory roles both at the intra- and interspecies level. Another potential class of bacterial
signals are antibiotics which have been proposed to function, at low and non-inhibitory
concentrations, as intra- and interspecies signaling molecules [16]. Future work will need to
determine whether antibiotics truly function as signals and whether this has a role in shaping the
microbiome. Many fungal species inhabiting the rhizosphere (mostly ascomycetes) secrete
molecules for communication (in many cases alcohols) which are most often associated with
particular developmental processes [17]. Whether fungi and bacteria undergo interspecies
signaling is a subject of current investigation [18], and this type of molecular communication will
be an important aspect in the process leading to the establishment and stabilization of mixed
rhizosphere microbial communities.

An important characteristic is also the ability of microorganisms to release an array of volatile
organic compounds (VOCs), many of which are still uncharacterized [19,20]. However, the
chemical structures of several VOCs have been reported and they are typically small molecules
(100–500 Da, usually alkenes, alcohols, benzenoids, aldehydes, ketones, terpenes) originating
from a wide range of bacterial and fungal species. Microbial VOCs are believed to play an
important role in long-distance interactions in microbial communities and have been implicated
in microbe–microbe as well as plant–microbe interactions in the rhizosphere [21]. With respect to
microbe–microbe interactions, they can behave as chemical weapons by exhibiting antimicrobial
activity; alternatively they have also been reported to interfere with and thus affect other QS
systems [19,20]. In addition, VOCs can act as intraspecies as well as interspecies signals by
coordinating gene expression and influencing microbial behaviors such as biofilm formation,
virulence, and stress tolerance [19]. Finally, VOCs have also been reported to be regulators of
plant growth and stress resistance, and a few compounds have been studied which affect root
architecture, plant immunity, and expression of plant genes involved in defense and hormonal
signaling pathways [21]. VOCs have therefore been implicated in several signaling mechanisms
and are likely to have an impact on the rhizomicrobiome; however, research is at an early phase
and future work will unravel their likely importance.

In summary, it must be noted that many rhizosphere microorganisms have been shown to
produce and respond to QS signals, and it is likely that most if not all are able to at least respond
to one class of microbial signals. This intense and complex communication among micro-
organisms is likely to play a fundamental role in recruiting and shaping the microbial community in
the rhizosphere. In addition, many of these microbially produced signals can most probably act

Box 1. Rhizosphere Signaling

Rhizosphere signaling can be divided into three categories according to direction of the binary commu-
nication taking place: microbe-to-microbe, microbe-to-plant, and plant-to-microbe. (i) Microbe–microbe
signaling: intra- and interspecies communication via small molecules among microorganisms, which serves to control
and coordinate microbial behaviors in uniform and mixed communities. (ii) Signaling from plants to microorganisms:
plant-produced compounds are detected and affect gene expression, growth, activity, and plant interaction by
microorganisms. (iii) Signaling from microorganisms to plants: compounds produced by microorganisms are detected
and affect gene expression, growth, development, and immune and stress responses in plants.

Major effects/outcomes of rhizosphere interkingdom signaling between plants and microorganisms. This
signaling occurs via low molecular weight signals produced by bacteria or the plant. (i) Recruiting, shaping, and activity
control and maintenance of the rhizosphere microbiome. (ii) Inducing plant immunity and keeping microbial pathogens
away. (iii) Sustaining plant growth, health, nutrition, and stress tolerance. (iv) Modulating below–aboveground (and vice
versa) interactions.
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as interkingdom signals affecting plant gene expression. These microbial signals could therefore
be an important tool to use in the future for tailoring the rhizomicrobiome.

Signaling from Plants to Microorganisms
Plants in the rhizosphere serve as hosts to an overwhelming diversity of commensal, mutualist,
or parasitic microorganisms, signifying that secretion of phytochemicals is crucial for these
plant–microbe interactions [22]. Surprisingly, so far only a few plant signaling molecules affecting
rhizosphere microbiology have been studied and elucidated in detail (Figure 1). Probably the
best-deciphered signaling network between plant and rhizosphere microorganisms is in
legumes with different endosymbiotically growing nitrogen-fixing rhizobial bacteria. Upon
signal exchange between the host plant and the bacterial symbiont, a developmental program
begins which will give rise to a nodule. Rhizobial bacteria then colonize root nodules, fix
atmospheric nitrogen inside, and transport usable forms of nitrogen to plants, thereby facilitating
their growth. The role of plant signals in the establishment of root nodules has been the subject of
extensive investigations during the past 20 years, and results have been regularly reviewed, even
recently [23,24]. Consequently we will not discuss in detail this interkingdom signaling
network. The first signals to be exchanged between the host plant and its rhizobial symbiont
are plant-produced flavonoid compounds (2-phenyl-1,4-benzopyrone derivatives), which
induce bacterial nod genes [25,26]. These genes are then responsible for producing and
secreting lipo-chitooligosaccharides (LCOs), also known as nodulation (Nod) factors, which
are the central signal molecules for initiating nodule formation [27]. These LCOs are then
perceived by the plant via receptor kinases at the root epidermis, thereby activating a well-
characterized signal cascade leading to nodule formation (reviewed in [24,28,29]).

Interestingly, LCO signals are also involved in symbiotic associations of plants and arbuscular
mycorrhizal fungi (AMF or AM), one of the most important rhizosphere mutualisms. Mycorrhizal
symbiosis is very primal: fossil records date it back to at least 400 million years ago with the
appearance of the earliest land plants. This symbiosis is therefore well established and enables
nutrient exchange between the two partners. The fungus increases the capacity of roots to
access nutrients from the soil, especially immobile phosphates, whereas the plant provides
carbohydrates to the fungus. Despite the ecological importance, the molecular and genetic
mechanisms of the signaling underlying this symbiosis are only partially understood. This
chemical dialogue is most probably continuous, to establish long-lasting colonization, but
apparently is not very specific because there is no plant host specificity. This indicates that
either the plant signals are conserved throughout the plant kingdom or possibly that a broad
range of plant compounds are involved. It was already established some time ago that a set of
legume mutants of LCO-induced signaling that are unable to undergo rhizobial interkingdom
communication are also impaired in mycorrhizal symbiosis [30]. This strongly suggested that,
first, mycorrhizal fungi produce similar LCO-type signaling molecules (named Myc-LCOs), as
now recently has been demonstrated [31], and second that most likely during evolution rhizobia
co-opted the mycorrhizal signaling machinery. Importantly, some molecules secreted from plant
roots act as signals for AM fungi [32]; for example, the strigolactone plant hormones are
considered to be one of the primary signals for initiating AMF symbiosis [33,34]. Strigolactones
have been associated with multiple functions because they can act as an ex planta stimulus for
mycorrhizal hyphae [35] and also act as plant hormones interfering with auxin transport [36,37]).
Intriguingly, root-parasitic plants such as Striga spp. and Orobranche spp. hijack strigolactone
signals to detect their host and induce seed germination in vicinity of the roots [33,38]. The
property of mediating multiple functions could be the scenario for several molecules which act as
signals in the rhizosphere and have also a role in planta. Recently, cutin monomers have been
implicated as a specific class of plant signaling factors which play a crucial role for AMF
stimulation. Two loci, RAM1 and RAM2 (‘required for arbuscular mycorrhization’), have been
identified in Medicago truncatula mutants seriously affected in AM symbiosis; they encode a
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GRAS domain transcription factor and a acyl transferase, respectively, involved in the production
of cutin monomers [39,40]. Importantly, these cutin monomer signals also play a role as elicitors
in appressoria formation in aerial fungal pathogens [41]. Strigolactones and cutin monomers are
thus examples of plant signals which are perceived by beneficial as well as pathogenic
organisms.

Rhizobia and AM fungi are examples of close symbiotic relationships between plants and micro-
organisms in the rhizosphere, and the signaling pathways have been thoroughly studied and will
continue to provide data on signals and cascade mechanisms between plants and microorgan-
isms in the rhizosphere. Because many different microorganisms live in the rhizosphere, albeit not
in such close association with plants, questions arise on the role of plant-secreted signals which
affect gene expression of members of the rhizomicrobiome. Many rhizobacteria undergo cell
density-dependent signaling mechanisms known as QS [42]; this occurs via the production and
response to quorum levels of signals. Many plant-associated bacteria require QS for colonization of
the plant-associated environments and regulate a wide range of phenotypes including rhizosphere
competence, virulence, conjugation, secretion of hydrolytic enzymes, and the production of
secondary metabolites (see above) [43,44]. As mentioned above, the most common QS system
in Gram-negative bacteria uses AHLs as signals. The archetypical AHL QS system comprises a
LuxI family synthase synthesizing the AHL, which then interacts at quorum concentrations with the
cognate LuxR family regulator affecting gene expression [8]. Importantly, AHLs have also evolved
to act as interkingdom signals affecting plant gene expression (see below) [10]. Plant-produced
compounds have been reported to interfere with QS acting as agonists or antagonists of bacterial
AHL QS systems [45]. Only a few of these compounds, which are believed to act on the LuxR family
protein, have been identified [46]. However, the significance of this plant interference with AHL QS
is still an open question.

It has been recently discovered that many different plant-associated bacteria possess proteins
very closely related to QS LuxRs which do not bind and respond to AHLs but instead to plant low
molecular weight compound(s) [47]. This is henceforth regarded as a bacterial subfamily of LuxR
proteins which evolved away from binding AHLs and can now respond to plant signals, thus
representing a widespread novel interkingdom signaling circuit. Members of this subfamily have
been recently studied in strains of plant-pathogenic xanthomonads as well as in beneficial
rhizosphere rhizobia and pseudomonads, demonstrating that this interkingdom signaling sys-
tem is involved in regulating traits important for in planta colonization (reviewed in [10,47]). In
rhizosphere pseudomonads, one of these proteins called PsoR is involved in transcriptional
regulation in response to plant compound(s) of various antimicrobial related genes and in
biocontrol [48]. In this common plant–bacteria signaling system, the pivotal step is now to
identify the plant signal(s) which is governing this communication and is likely to be a widespread
low molecular weight plant secondary metabolite(s).

Plants have also evolved the ability to produce and release an array of volatile compounds from
their leaves, flowers, fruits, and roots [49]. These volatiles are estimated to constitute approxi-
mately 1% of plant secondary metabolites (mainly represented by terpenoids, phenylpropa-
noids, and fatty acid and amino acid derivatives) and are believed to cross membranes freely and
to be released into the atmosphere or soil. Their main functions are to defend plants against
herbivores and pathogens or to provide reproductive advantages. In the roots, volatiles can act
as antimicrobial substances or as attractants for enemies of root-feeding herbivores [50]. A well-
studied example of an attractant is the volatile (E)-b-caryophyllene emitted by the roots of maize
in response to feeding by the larvae of the Western corn rootworm (WCR) [50,51]. This volatile is
highly attractive to an entomopathogenic nematode which parasitizes and kills WCR within a few
days. This illustrates very well the signaling role of volatiles in roots and they are likely to be
involved in many other tritrophic interactions.
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In summary, to date several plant molecules including flavonoids, strigolactones, cutin mono-
mers, and volatiles, as well as so far unidentified plant low molecular weight compound(s), which
bind a widespread subfamily of bacterial LuxR proteins, have been recognized as signals which
are sensed by and to which microorganisms respond and regulate gene expression. It is very
likely that many more of the chemical signals generated by the plant play fundamental roles in
shaping and tailoring the rhizomicrobiome.

Signaling from Microorganisms to Plants
Rhizosphere-associated microorganisms do not only perceive and interpret signals produced
by themselves, other microorganisms, or the plant (see above); they are also capable of
influencing their plant host via the release of diverse signaling molecules. Studies have so far
been centered on beneficial microbe–plant interactions, which include induction of plant
defenses against diseases, pests, and abiotic stressors, and promotion of plant growth and
development (Figure 1). Plant-beneficial rhizosphere microorganisms investigated in some detail
are mycorrhiza, rhizobial bacteria, plant growth-promoting rhizobacteria (PGPR) of the
genera Pseudomonas, Bacillus, and Azospirillum, and plant growth-promoting fungi (PGPF)
such as Trichoderma and nonpathogenic fusaria [52–55].

Mycorrhiza, rhizobia, PGPR, and PGPF initially all are recognized as non-self by the plant, which
uses dedicated pattern recognition receptors (PRRs) to detect conserved microbe-specific
molecules, termed microbe-associated molecular patterns (MAMPs) such as lipopolysac-
charides, peptidoglycans, flagellin, and chitin [55–57]. The MAMPs trigger a local basal immune
defense in the roots, which then can translate into systemic defense responses that are
controlled by regulatory networks involving signaling via the plant hormones salicylic acid,
jasmonic acid, ethylene, and others [53,57–59]. The plant defense response, commonly induced
by root-colonizing PGPR and PGPF, is known as induced systemic resistance (ISR) and acts
systemically against various foliar pathogens and even leaf-feeding insects [53]. ISR depends on
the jasmonic acid and ethylene signaling pathways, and is distinct from the systemic acquired
resistance (SAR) which is most commonly induced by pathogens and involves salicylic acid
signaling [59,60]. The innate immune response triggered by rhizosphere beneficial microorgan-
isms is relatively mild and is based on a process called priming which prepares the plant, upon
sensitization by the microbes, to react more efficiently to abiotic and biotic stress such as attack
by leaf pathogens and pests [61,62]. Priming, ISR, and SAR have been the subject of several
excellent recent reviews [53,55,59,61], and the reader is referred to these for in-depth informa-
tion. Beneficial rhizosphere microorganisms counter immune recognitions; the signaling involved
in these immune interactions is little understood and has generated considerable interest in
these microorganisms in recent years, and research in the field is rapidly evolving [53,55].

Rhizosphere microorganisms elicit plant responses not only via MAMPs and effector proteins
but they also do so via diverse signaling molecules. The Nod and Myc factors released by
rhizobia and mycorrhiza (see above), respectively, are prime examples of microbial interkingdom
signaling molecules: they suppress salicylic acid-dependent defense responses and initiate a
common symbiosis signaling pathway [24,55]. Recent studies have provided further insight into
the molecular dialogues taking place between mycorrhizal fungi and the plant. In fact, mycorrhiza
produce small secreted proteins (SSPs) that act as mutualistic effectors promoting mycorrhiza-
tion by altering hormonal signaling pathways in their plant host [7,63]. This is illustrated by the
ectomycorrhizal fungus Laccaria bicolor, which releases the 7 kDa protein MiSSP7 from its
hyphae upon root contact. The mini-protein then enters the host cells, localizes to the nucleus,
and interacts with plant hormone coreceptors to counteract jasmonic acid signaling and
promote symbiosis [64,65]. An SSP mycorrhization effector interfering with hormonal signaling
was also identified in the arbuscular mycorrhizal fungus Rhizophagus intraradices [66]. Recent
research has revealed that PGPR also release various potential signal molecules, which exhibit
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interkingdom signaling properties by influencing plant gene expression, defense responses, and
developmental processes, but their exact mode of action and plant targets remain to be
unraveled. Remarkably, many of these molecules actually function as signal compounds in
intra- and interspecies signaling by these rhizobacteria (see above).

AHL-type QS molecules are so far the best-documented class of PGPR signal compounds
which exhibit effects on plants [10,67]. Early studies report on extensive changes of protein
profiles in roots of Medicago trunculata [68] and on gene expression profiles in roots and shoots
of Arabidopsis thaliana [69] following root treatment with structurally different AHLs. Consider-
able work identified affected functions, including root development, plant defense, stress
response, hormonal balance, and metabolic regulation [69–73]. AHL production by rhizobac-
teria may also incite the plant host to deploy strategies to interfere with these bacterial signals, for
example by producing AHL mimics, by preventing their uptake and transport or by destroying
them [10,67,74]. As mentioned above, other bacterial QS molecules with interkingdom signaling
properties are less well studied; these include the Xanthomonas diffusible signal factor (DSF) and
cyclodipeptides, in other words diketopiperazines (DKPs), released by Pseudomonas aerugi-
nosa, which affect salicylic acid-, absicic acid-, or auxin-responsive gene expression in planta
[13,75,76]. Similar molecules are also produced by PGPR pseudomonads and other soil
bacteria, and these warrant further investigation [10,12].

Antimicrobials produced by rhizosphere pseudomonads are another class of microbial mol-
ecules shown to elicit systemic plant responses. 2,4-Diacetylphloroglucinol (DAPG) present at
sub-inhibitory concentrations on roots or in rhizosphere soil, induced salicylic acid- and
ethylene signaling-dependent ISR against fungal and bacterial leaf pathogens in Arabidopsis
[77,78]. DAPG was also shown to affect root development, and it was suggested that this
occurs via an auxin-dependent signaling pathway [79]. Pyocyanin, a phenazine antibiotic
produced by P. aeruginosa, induces ISR and modulates root development in a similar manner
[80]. Remarkably, phloroglucinols and phenazines function also as intra- and interspecies
signals of pseudomonads [81–84].

As mentioned above, VOCs constitute another class of microbial signaling molecules, and
these are receiving considerable attention also for their effects on plants as growth promoters
or inhibitors [85], and as priming agents or elicitors of systemic plant defense and stress
tolerance [86,87]. 2,3-Butanediol (2,3-BD) released by Bacillus PGPR strains was the first
microbial VOC with demonstrated effects on plants: it was shown to promote the growth of
Arabidopsis [88] and to induce ISR towards phytopathogenic Erwinia via ethylene signaling
pathways in the model plant [89]. 2,3-BD produced by a Pseudomonas chlororaphis PGPR
induces ISR against the same pathogen in tobacco (Nicotiana tabacum) [90]. 2,3-BD pro-
duced by a root-endophytic Enterobacter strain enhances the resistance of maize plants
against a fungal leaf pathogen and, moreover, affects tritrophic interactions with a herbivorous
insect and its parasitoid [91]. Indole, another bacterial signaling VOC produced by various
PGPRs [92], affects root development in Arabidopsis via the auxin signaling pathway [93].
Interestingly, indole released by plants also functions as a potent volatile signal that primes the
producer and neighboring plants against attacks from herbivorous insects [94]. Similarly to
AHLs and antibiotics, VOCs can also have multiple biological roles in intra- and interspecies
interactions of the producer bacteria themselves [19]. Production of bioactive VOCs is
widespread and highly diverse among PGPR and PGPF [92,95,96]. VOC-mediated
microbe–plant interkingdom interactions can thus be expected to be by far more complex
than uncovered so far.

A further class of microbial molecules with interkingdom signaling properties are phytohormone-
like compounds, including auxins, gibberellins, and cytokinins, that are not only produced by
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PGPR and PGPF but also by bacterial and fungal pathogens; they affect growth, organ
development, immune responses, and hormonal signaling in plants (reviewed e.g., in [97–100].

Rhizosphere microbial signaling with plants so far has been investigated predominantly for soil
bacteria and fungi, but the very diverse communities of nematodes and protists present in soil [5]
may also communicate with plants. This has been substantiated by recent work in which
ascaroside pheromones produced by plant-parasitic nematodes were found to stimulate
defense gene expression and resistance to microbial infections in Arabidopsis and other host
plants [101].

Taken together, the findings so far indicate that inter-kingdom communication from micro-
organisms to plants via signaling molecules is common, diverse, and widespread in the
rhizosphere. Remarkably, a majority of the signaling molecules identified so far also have a
role in intra- or interspecies signaling of the producing microorganisms. Depending on the
viewpoint, such molecules can be seen as signals used by the microorganisms to manipulate the
plant or as signals that the plant evolved to respond to so as to detect communicating
microorganisms in its root environment. These signaling molecules affect plant growth and
developmental processes as priming agents and as elicitors of plant defenses, and they affect
plant hormonal signaling. Their effects take place locally in the root and systemically throughout
the plant body, implying the involvement of root–shoot signaling events. Moreover, recent
studies suggest that signals might even travel from one root system to another via common
mycelial networks such as those formed by mycorrhiza, thus allowing interplant signaling
[102,103]. However, how the root perceives the microbial molecules and transmits this input
into the signaling pathways of the plant to produce a specific response is largely unclear. A major
challenge will be to unravel whether these molecules are indeed specific signals, which are
recognized by dedicated plant receptors, or whether they function instead as priming agents
that induce a general (mild) stress response, which can be interpreted by the plant host and
distinguished from responses induced by MAMPS and effectors. Given that the rhizosphere
microbiome is extremely diverse and produces a huge diversity of compounds, a generic
perception of these molecules as priming agents appears more plausible.

Concluding Remarks
Most research activities on signaling in the rhizosphere have concentrated on symbiotic or
pathogenic microbe–plant interactions and are now beginning to be studied in other rhizo-
sphere-colonizing microorganisms. It is now becoming evident that plants actively shape the
community of microorganisms inhabiting their outer surface and subsequent colonization of their
interior [104], but many issues remain unresolved (see Outstanding Questions). We have shown
here that signaling taking place in the rhizosphere can be divided into three main categories, with
important networks between microorganisms and plants (Box 1). The list of examples in this
review is not exhaustive, and in addition many more but currently unknown signals are likely to
exist which play a pivotal role in determining and/or shaping the rhizomicrobiome.

The signaling shared by plants and rhizosphere-dwelling organisms occurring at the plant root–
soil interface will likely be the subject of many studies in the near future. Our understanding will
become clearer through first detecting and quantifying the plant and microbial exudates as well
as their effects on gene transcription and translation. This will be greatly enhanced by recent
advances in analytical chemistry, particularly gas chromatography–mass spectroscopy (GC-
MS), liquid chromatography–mass spectroscopy (LC-MS) and capillary electrophoresis–mass
spectroscopy (CE-MS); all these techniques now allow an untargeted qualitative and quantitative
approach known as metabolomics. The large-scale chemical analysis of the root exudates (the
exudome) can then be combined with transcriptomics to begin to uncover the plant genes
involved in the synthesis of the rhizosphere signaling compounds. In addition, other ‘omic’

Outstanding Questions
Are specific interactions between
plants and members of the rhizomicro-
biome common or limited to few
organisms?

To what extent will the new ‘omics’
technologies contribute to the discov-
ery of signaling molecules and to the
understanding of the molecular mech-
anisms involved in signaling in the
rhizosphere?

How can we apply the knowledge of
rhizosphere signaling to devising novel
ways for promoting plant growth and
health?
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techniques can be involved as well. Metagenomics is a powerful tool that now allows the
composition of communities of bacteria, fungi, protists, and other (micro)organisms to be
determined from total DNA extracts of the rhizosphere. This can then be combined with other
novel techniques such as metatranscriptomics and metaproteomics which can provide insights
into the specific expression and translation of genetic loci in the rhizosphere. Moreover, cutting-
edge techniques such as different imaging mass spectrometry approaches will further allow
direct visualization and quantification of specific chemical (ex)changes in microbe–microbe and
plant–microbe interactions [105,106]. The integration of all these approaches will generate an
amount of new information which was unimaginable a few years ago, and the challenge ahead
will be proper experimental design, interpretation, and appropriate validation of the ‘omics’ data.

Experimental evidence accumulated thus far has established the importance of the root micro-
biome in plant health, and it is now becoming increasingly evident that the plant is able to control
the composition of its microbiome [1,104], to select for specific microbial functions [107], and to
exert genotype-level influences on the beneficial activity of specific microbial associates [108]. A
recent study identified plant immune signaling via salicylic acid as one of the drivers influencing
rhizomicrobiome composition [109]. It is therefore likely that evolutionary selective pressure has
resulted in many specific interactions between plants and microorganisms, and future work will
bring important insights into this field (Box 1). Rhizosphere signaling research will therefore open
new avenues to increase crop productivity and reduce the use of agrochemicals. An example
could be via the alteration of plant metabolic pathways of rhizosphere signals as a way to
manipulate the rhizosphere inhabitants for the benefit of plant health. Select rhizosphere
signaling molecules could also be used directly as chemical cues to foster plant growth and
health or to promote the beneficial rhizomicrobiome [110]. These and other ways of microbial
related solutions can be devised for a more sustainable agriculture to enrich the rhizomicrobiome
for the beneficial members, thereby increasing plant resistance to biotic and abiotic stresses.
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