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Introduction

The ability to stick to surfaces and to engage in a multi-

step process leading to the formation of a biofilm is

almost ubiquitous among bacteria. Therefore, biofilm for-

mation has substantial implications in fields ranging from

industrial processes like oil drilling, paper production and

food processing, to health-related fields like medicine and

dentistry. The cellular mechanisms underlying microbial

biofilm formation and behaviour are beginning to be

understood and are targets for novel specific intervention

strategies to control problems caused by biofilm forma-

tion in these different fields and in particular for the

food-processing environments. Food spoilage and deterio-

ration not only results in huge economic losses, food

safety is a major priority in today’s globalizing market

with worldwide transportation and consumption of raw,

fresh and minimally processed foods.

Biofilm formation depends on an interaction between

three main components: the bacterial cells, the attachment

surface and the surrounding medium (Davey and O’Toole

2000; Donlan 2002; Dunne 2002; Stoodley et al. 2002).

This review will focus on the bacterial surface, which is

the interface of the bacterium with its surroundings, and

on the properties of the attachment surface influencing

biofilm formation. Both are discussed in a context of

food-processing environments; therefore, aspects dealing

with biofilm prevention, control and eradication are also

highlighted.

Properties of the bacterial and the abiotic surface
affecting biofilm formation

The bacterial cell surface

Bacterial attachment to surfaces or other cells can be seen

as a physicochemical process determined by Van der

Waals, electrostatic and steric forces acting between the

cells and the attachment surface. A theory to quantita-

tively describe this interaction of charged surfaces through
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Summary

The ability of many bacteria to adhere to surfaces and to form biofilms has

major implications in a variety of industries including the food industry, where

biofilms create a persistent source of contamination. The formation of a bio-

film is determined not only by the nature of the attachment surface, but also

by the characteristics of the bacterial cell and by environmental factors. This

review focuses on the features of the bacterial cell surface such as flagella, sur-

face appendages and polysaccharides that play a role in this process, in particu-

lar for bacteria linked to food-processing environments. In addition, some

aspects of the attachment surface, biofilm control and eradication will be

highlighted.
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a liquid medium, designated the Derjaguin, Verwey,

Landau and Overbeek (DLVO) theory, has been devel-

oped in the 1940s. Later, an extended DLVO theory was

developed, which incorporated besides these long-range

forces also hydrophilic ⁄ hydrophobic and osmotic interac-

tions, resulting in more accurate predictions of bacterial

adhesion [reviewed by Strevett and Chen (2003)]. These

theories are not reviewed here, instead the wide variety of

individual outer cell surface structures and molecules that

are exposed on, or protrude from, the cell surface are

described in detail. These structures shape the physico-

chemical surface properties of bacterial cells, and hence

determine attachment and biofilm formation properties.

However, the presence or absence of a certain structure

on initial attachment or biofilm formation should be

evaluated with care because multiple structures can be

present, each with their own specific effects, and different

structures could have diverse roles depending on the

bacterium and the attachment surface.

Flagella

Many bacteria are motile by virtue of peritrichous or

polar flagella, and motility is generally regarded as a viru-

lence factor facilitating the colonization of host organisms

or target organs by pathogenic bacteria. Flagellar motility

is critical for initial cell-to-surface contact and normal

biofilm formation under stagnant culture conditions for

Escherichia coli (Pratt and Kolter 1998), Listeria monocyto-

genes (Vatanyoopaisarn et al. 2000; Lemon et al. 2007;

Todhanakasem and Young 2008) and Yersinia enterocolitica

(Kim et al. 2008). Although lack of flagella also affected

initial attachment under flow conditions for Y. enterocoli-

tica and L. monocytogenes, further maturation was unaf-

fected for Y. enterocolitica (Kim et al. 2008), and the

formation of high density biofilms was not suppressed

for L. monocytogenes (Todhanakasem and Young 2008).

For Pseudomonas fluorescens, mutants lacking flagella

showed a decreased attachment to a variety of plant

seeds and inert surfaces such as sand (Deflaun et al.

1990, 1994) and a decreased colonization of potato

roots (De Weger et al. 1987). Finally, initial attachment

of L. monocytogenes to stainless steel can also be

affected by flagella per se (Vatanyoopaisarn et al. 2000).

These observations indicate that flagella can affect

adherence and biofilm formation via different mecha-

nisms depending on the type of bacterium. First, motil-

ity can be necessary to reach the surface by allowing

the cell to overcome the repulsive forces between the

cell and the surface. This mechanism is possibly more

important under stagnant than under flow conditions.

In addition, motility can be required to move along

the surface, thereby, facilitating growth and spread of a

developing biofilm. Finally, flagella themselves (as sur-

face appendages) can directly mediate attachment to

surfaces.

Surface appendages

Fimbriae, thread-like structures that protrude from the cell

surface, are classified on the basis of their adhesive, anti-

genic or physical properties, or on the basis of similarities

in the primary amino acid sequence of their major protein

subunits (Low et al. 1996). Type 1 fimbriae, which are rod-

shaped and approximately 7-nm wide and 1-lm long, are

the most common adhesins found in both commensal and

pathogenic E. coli as well as in other Enterobacteriaceae

(Klemm and Krogfelt 1994). Their role in biofilm forma-

tion has been studied exhaustively, demonstrating a critical

role in initial stable cell-to-surface attachment for numer-

ous E. coli strains (Pratt and Kolter 1998; Beloin et al.

2004; Ren et al. 2004) including Shiga toxin-producing

strains (Cookson et al. 2002), in adherence to Teflon and

stainless steel for Salmonella enterica serovar Enteritidis

(Austin et al. 1998), and in promoting biofilm formation

on abiotic surfaces (polystyrene) for Klebsiella pneumoniae

(Schembri et al. 2005).

Besides Type 1 fimbriae, other types of fimbriae have

been shown to affect biofilm formation. For example, Di

Martino et al. (2003) showed that for a Kl. pneumoniae

strain, which produced both Type 1 and Type 3 fimbriae,

the latter constituted the main factor facilitating adher-

ence to both glass and polypropylene, and the formation

of a full-grown biofilm on polystyrene. Type 4 fimbriae

promoted the rapid formation of strongly adherent bio-

films for the opportunistic pathogen Aeromonas caviae

(Bechet and Blondeau 2003), commonly found in water

and foods (Neyts et al. 2000), and affected the binding of

Pseudomonas aeruginosa to stainless steel, polystyrene and

polyvinylchloride (Giltner et al. 2006). Genes involved in

the biogenesis, regulation and secretion of Type 4 fimb-

riae were found to be up-regulated within 6 h of attach-

ment to silicone tubing for Pseudomonas putida (Sauer

and Camper 2001), often associated with spoilage of

fresh milk and vegetables (Ternstrom et al. 1993; Garcia-

Gimeno and Zurera-Cosano 1997). Type 4 fimbriae also

played a role in the colonization and persistence of Vibrio

vulnificus in oysters (Paranjpye et al. 2007). Vibrio vulnifi-

cus is a pathogen associated with human infections caused

by raw oyster consumption (Blake et al. 1979) and an

important cause of reported deaths from food-borne

illness in Florida (Hlady et al. 1993). Furthermore, for

enterohemorrhagic E. coli O157:H7, these structures not

only affected attachment and biofilm formation but have

also been implicated in virulence and transmission

(Xicohtencatl-Cortes et al. 2009).

Curli fimbriae (called thin aggregative fimbriae in

Salmonella) are proteinaceous, coiled filamentous surface
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structures, which are assembled by an extracellular nucle-

ation ⁄ precipitation pathway (Olsen et al. 1989). The effect

of curli on attachment and biofilm formation of E. coli

O157:H7 appears to be variable. In one study, curli

production enhanced the biofilm-forming capacity of a

particular strain to stainless steel (Ryu et al. 2004b),

although initial attachment was unaffected (Ryu and

Beuchat 2005). In another study, different Shiga toxin-

producing and enterohaemorrhagic E. coli strains showed

an enhanced attachment to abiotic surfaces such as poly-

styrene and stainless steel when curli were produced

(Cookson et al. 2002; Pawar et al. 2005). Probably, this

increased attachment is strain dependent as shown in a

study comparing the attachment of curli-producing and

noncurli-producing E. coli O157:H7 strains to lettuce

(Boyer et al. 2007). Interestingly, it cannot be excluded

that the observed differences are not only strain depen-

dent, but are also induced by other (nonevaluated) mech-

anisms or by the occurrence of dissimilar environmental

triggers in the experiments.

In addition to curli, cellulose is also usually associated

with biofilms of various salmonellae, including strains of

the serovar Typhimurium (Solano et al. 2002; Jain and

Chen 2007). The simultaneous production of cellulose and

curli leads to the formation of a highly inert, hydropho-

bic extracellular matrix in which the cells are embedded

(Zogaj et al. 2001). However, other capsular polysaccha-

rides can be present in the extracellular biofilm matrix of

Salmonella strains (de Rezende et al. 2005), and the exact

composition depends upon the environmental conditions

in which the biofilms are formed (Prouty and Gunn

2003). A variety of environmental cues such as nutrients,

oxygen tension, temperature, pH, ethanol and osmolarity

can influence the expression of the transcriptional regula-

tor CsgD, which regulates the production of both cellulose

and curli (Gerstel and Romling 2003). In addition, a study

of 122 Salmonella strains indicated that all had the ability

to adhere to plastic microwell plates and that, generally,

more biofilm was produced in low nutrient conditions, as

can be found in specific food-processing environments,

compared to high nutrient conditions (Stepanovic et al.

2004).

Pili are structurally similar to fimbriae and are involved

in a process of horizontal gene transfer called conjuga-

tion. Mostly, the transferred DNA is a conjugative plas-

mid encoding the formation of the conjugative pilus

itself, and thereby mediates an intimate cell-to-cell con-

tact. This conjugation process can stimulate biofilm devel-

opment, because the conjugative pilus can act as an

adhesion factor allowing nonspecific cell-solid surface or

cell–cell contacts (Ghigo 2001; Reisner et al. 2003). Vice

versa, the high density of bacterial populations in biofilms

can stimulate conjugation and plasmid dispersal (Hausner

and Wuertz 1999; Molin and Tolker-Nielsen 2003) and

can therefore contribute to the spread of resistance

genes, which are often also carried on the plasmid (Bower

and Daeschel 1999). Luo et al. (2005) have demonstrated

that conjugation enhanced the expression of CluA, a

surface-bound clumping protein encoded by the chromo-

somally embedded sex factor, and subsequently facilitated

biofilm formation in Lactococcus lactis. Furthermore,

this enhanced biofilm-forming trait is transmissible by

conjugation.

In addition to proteinaceous organelle-type surface

appendages, some Gram-negative bacteria can produce

autotransporter proteins. These are secretory proteins that

contain in their primary structure all the information

necessary to direct their own secretion across the cyto-

plasmic and outer membrane to the bacterial cell surface.

Adhesive phenotypes such as aggregation and biofilm for-

mation have been attributed to a subfamily of E. coli

autotransporters, including antigen 43 (Ag43) (Danese

et al. 2000a; Kjaergaard et al. 2000), the AIDA adhesin

associated with some diarrheagenic E. coli (Sherlock et al.

2004), and the TibA adhesin ⁄ invasin from enterotoxigenic

E. coli (Sherlock et al. 2005).

Surface polysaccharides

The lipopolysaccharide (LPS) outer layer of Gram-

negative bacteria typically consists of a surface exposed

O-antigen, a core structure and a lipid A moiety that is

embedded in the outer membrane lipid bilayer. The LPS

layer not only affects the bacterium’s susceptibility to dis-

infectants, antibiotics and other toxic molecules (Russell

and Furr 1986), it also plays a role in biofilm formation.

For example, O-antigen mutants of Salmonella enterica

serovar Typhimurium showed reduced capacities to

attach and colonize alfalfa sprouts (Barak et al. 2007).

Alterations in the LPS of Salm. Typhimurium had also

osmolyte-dependent effects on biofilm formation (Anri-

any et al. 2006). For E. coli, truncation of LPS (deep-

rough phenotype) did not affect adhesion per se, but had

a pleiotropic effect on the biosynthesis of Type 1 fimbriae

and flagella, resulting in a reduced adherence (Genevaux

et al. 1999). Alterations in the peptidoglycan structure

exposed at the surface of Gram-positive bacteria can also

have an effect on attachment, as shown by analysis of

L. monocytogenes rough colony variants. The latter, char-

acterized by an impaired cellular localization of several

peptidoglycan-degrading enzymes such as the cell wall

hydrolase A (CwhA), showed enhanced attachment to

stainless steel (Monk et al. 2004).

Many bacteria produce and secrete extracellular poly-

saccharides (EPS). The polysaccharide-containing layers

outside the cell are collectively defined as glycocalyx, but

when the layers are rigid and organized in a tight matrix
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that excludes particles, the term capsule is used. If the lay-

ers do not exclude particles and are more easily deformed

and detached, the term slime is used. These EPS are an

important constituent of the extracellular matrix charac-

teristically produced by many biofilms. The matrix often

contains additional constituents, such as nucleic acids,

proteins, glycoproteins and lipoproteins.

For Kl. pneumoniae, the capsule is considered to be a

dominant virulence factor, and its synthesis blocked Type

1 fimbriae-promoted biofilm formation on abiotic surfaces

(see above), thereby, actually reducing the bacterial adhe-

sion to such surfaces (Schembri et al. 2005). For V. vulnif-

icus, expression of capsular polysaccharides also inhibited

attachment and biofilm formation on abiotic surfaces

(plastic) (Joseph and Wright 2004). The EPS colanic acid

(or M antigen) produced by most E. coli strains as well as

by other species of the Enterobacteriaceae appears to be

important for establishing the complex structure and

depth of E. coli biofilms, but not for initial attachment to

abiotic surfaces (Danese et al. 2000b; Prigent-Combaret

et al. 2000). Overproduction of EPS can even inhibit ini-

tial attachment of E. coli O157:H7 to stainless steel (Ryu

et al. 2004a). The unbranched polysaccharide, b-1,6-poly-

N-acetyl-d-glucosamine (PGA), is involved not only in

adhesion by staphylococci, but also in attachment to abi-

otic surfaces, intercellular adhesion and biofilm formation

of E. coli (Wang et al. 2004). Furthermore, depolymeriza-

tion of PGA led to dispersal of biofilms (Itoh et al. 2005).

Colanic acid, PGA and cellulose production, but not LPS

production, affected binding of E. coli O157:H7 to alfalfa

sprouts as shown by mutational analysis (Matthysse et al.

2008).

These observations indicate contrasting roles for EPS

(and LPS) in biofilm formation of different bacteria. The

particular function of EPS in biofilm formation may

depend on its structure, relative quantity and charge and

on the properties of the abiotic surface and surrounding

environment. Furthermore, EPS play a role not only in

biofilm formation but also in the increased resistance

of biofilm bacteria to biocides as described in section

Implications of biofilm formation.

Factors affecting the bacterial cell surface

The attachment and biofilm-forming capabilities of bacte-

ria depend on multiple factors including the attachment

surface (see below), the presence of other bacteria, the

temperature, the availability of nutrients and pH.

Although the mechanisms underlying these effects are not

always explained, biofilm formation can in some cases be

influenced through alterations of the bacterial cell surface.

For instance, curli expression and attachment to plastic

surfaces by enterotoxin-producing E. coli strains was

found to be higher at 30�C than at 37�C (Szabo et al.

2005). Similarly, expression of thin aggregative fimbriae

in Salm. Typhimurium and of fimbriae in Aeromonas

veronii strains isolated from food was affected by temper-

ature, with a lower temperature (28 and 20�C, respec-

tively) favouring expression (Kirov et al. 1995; Romling

et al. 1998). Production of these outer surface structures

at low(er) temperatures could enhance the attachment to

surfaces and hence facilitate persistence and survival in

food-processing environments. The adhesion of L. mono-

cytogenes to polystyrene after growth at pH 5 was lower

than after growth at pH 7, and this could be attributed to

the down-regulation of flagellin synthesis (Tresse et al.

2006).

The large cell densities existing in biofilms create a local

environment suitable for cell density-dependent bacterial

communication. Bacteria throughout the bacterial king-

dom have evolved the ability to steer the behaviour of

individual cells, populations or communities by using vari-

ous modes of communication. One of the best studied

communication mechanisms in bacteria is quorum sens-

ing, which is based on the production of low-molecular-

mass signalling molecules. When the bacterial cell density

is low, the extracellular concentration of the signals will

also be low and remain undetected. However, as the cell

density increases in a growing (biofilm) population, a crit-

ical signal concentration will be reached, allowing the sig-

nalling molecule to be sensed and enabling the bacteria to

respond. The nature of the signalling molecules is diverse.

While most Gram-negative bacteria use N-acyl-homoser-

ine lactones (AHL) as signalling molecules (Lazdunski

et al. 2004), Gram-positive bacteria commonly use amino

acids and short post-translationally processed peptides

(Sturme et al. 2002). Additional families of bacterial

signalling molecules have been identified such as Autoin-

ducer-2 (AI-2) for both Gram-negative and Gram-positive

bacteria (Schauder and Bassler 2001; Xavier and Bassler

2003).

These communication mechanisms control various func-

tions such as virulence, biofilm development and the pro-

duction of antimicrobial compounds and several other

secondary metabolites. As such, quorum sensing can affect

the establishment of bacteria in a mixed biofilm commu-

nity (Moons et al. 2006), their food spoilage potential

(Ammor et al. 2008; Wevers et al. 2009), or their survival

in particular (food-processing related) stressful environ-

ments (Van Houdt et al. 2006, 2007a). Also, the pro-

duction of surface appendages and motility, putatively

affecting biofilm formation, can be regulated by quorum

sensing (Daniels et al. 2004; Van Houdt et al. 2007b).

Although quorum sensing has been shown to play a

role in biofilm formation for several bacteria, this is not

always the case, and no consistent correlation was found
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between AHL or AI-2 production and biofilm-forming

capacity of 68 Gram-negative strains isolated from an

industrial kitchen (Van Houdt et al. 2004).

The attachment surface and environmental parameters

The properties of the attachment surface are important

factors that affect and determine the biofilm formation

potential together with the bacterial cells. The choice of

material is therefore of great importance in designing

food contact and processing surfaces. Properties such as

surface roughness, cleanability, disinfectability, wettability

(determined by hydrophobicity) and vulnerability to wear

influence the ability of cells to adhere to a particular sur-

face and thus determine the hygienic status of the mate-

rial. In addition, materials in direct contact with foods

have to meet certain specifications and are subject to offi-

cial approval procedures before they can be used. Materi-

als often used in the food industry include plastics,

rubber, glass, cement and stainless steel. The degree of

biofilm formation on different materials for Legionella

pneumophila has been ranked by Rogers et al. (1994) and

by Meyer (2001) with the capacity to support biofilm

growth increasing from glass, stainless steel, polypropyl-

ene, chlorinated PVC, unplasticized PVC, mild steel,

polyethylene, ethylene-propylene to latex.

However, general predictions for the degree of biofilm

formation on a particular material cannot be made

because the biofilm-supporting capacity of any material

also depends on bacteria and on environmental factors.

For instance, temperature and nutrient availability can

influence the ability of L. monocytogenes to adhere to poly-

vinyl chloride, buna-n rubber and stainless steel, because

of altered bacterial surface physicochemical properties like

hydrophobicity ⁄ hydrophilicity and surface charge (Brian-

det et al. 1999; Norwood and Gilmour 1999; Moltz and

Martin 2005).

In food-processing environments, bacterial attachment is

additionally affected by food matrix constituents. Residues

from ready-to-eat meat products such as small amounts

of meat extract, frankfurters or pork fat, initially reduced

biofilm formation of L. monocytogenes, but with time sup-

ported increased biofilm cell numbers and prolonged sur-

vival on a variety of materials including stainless steel,

conveyor belt rubber, and wall and floor materials (Somers

and Wong 2004). Skim milk and milk proteins such as

casein and lactalbumin were found to significantly reduce

the attachment of Staphylococcus aureus, Serratia marces-

cens, Pseudomonas fragi, Salm. Typhimurium, spores and

vegetative cells of thermophilic bacilli, and L. monocytoge-

nes to stainless steel (Helke et al. 1993; Wong 1998; Barnes

et al. 1999; Parkar et al. 2001) and buna-n rubber gaskets

(Helke et al. 1993; Wong 1998). Not only physicochemical,

but also nutritional properties of the food matrix affect

attachment and persistence. For instance, Allan et al.

(2004a,b) showed that survival rates of L. monocytogenes on

several surfaces, including stainless steel, acetal resin, mor-

tar and fibreglass reinforced plastic, were higher in the

presence of biological soil (porcine serum). Finally, the

presence of a mixed microbial community adds additional

complexity to attachment and biofilm formation under cer-

tain conditions. The presence of Staphylococcus xylosus and

Ps. fragi affected the numbers of L. monocytogenes found in

biofilms on stainless steel (Norwood and Gilmour 2001).

Similarly, bacteriocin-producing L. lactis as well as several

endogenous bacterial strains isolated from food-processing

plants influenced the establishment of L. monocytogenes on

stainless steel, suggesting that the ‘house microflora’ can

have a strong suppressing effect on L. monocytogenes estab-

lishment in biofilms in a food-processing environment

(Leriche et al. 1999; Carpentier and Chassaing 2004).

Stainless steels, in particular austenitic grades 304 and

316, are probably the most commonly used food contact

surfaces because of their chemical and mechanical ⁄ physi-

cal stability at various food-processing temperatures,

cleanability and high resistance to corrosion (Zottola and

Sasahara 1994). The grade, which reflects the composition

and to a lesser extent the finish (pickling, bright

annealed), significantly affected the hygienic status of

stainless steel as measured by the number of residual

adhering Bacillus cereus spores after a complete run of

soiling followed by a cleaning-in-place procedure (Jullien

et al. 2003). Grade 316 has nearly the same mechanical

and physical characteristics as 304 but has a higher resis-

tance to corrosion by foods, detergents and disinfectants,

because of the anticorrosive properties of the added

molybdenum. Food contact surfaces are commonly trea-

ted with disinfectants and cleaning agents that contain

peroxides, chloramines or hypochlorites. In particular, the

latter can be very aggressive to stainless steels depending

on the prevailing pH. The liberation of free chlorine can

cause pitting, characterized by local breakdown of the

protective ‘passive’ oxide surface layer and formation of

local deep pits on these free surfaces, thereby facilitating

bacterial adhesion and biofilm formation. Therefore, the

duration and operating temperature of cleaning and dis-

infection treatments should be carefully controlled, and

thorough rinsing with water should always be performed

as a last step (BSSA 2001).

Implications of biofilm formation

Biofilms formed in food-processing environments are of

special importance as they have the potential to act as a

persistent source of microbial contamination that may

lead to food spoilage or transmission of diseases. It is
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generally accepted and well documented that cells within

a biofilm are more resistant to biocides than their plank-

tonic counterparts. Numerous reports indicate that the

antimicrobial efficacy of various aqueous sanitizers is

lower for biofilm-associated than for planktonic Salmo-

nella spp. Nine disinfectants commonly used in the feed

industry and efficient against planktonic Salmonella cells

showed a bactericidal effect that varied considerably for

biofilm-grown cells with products containing 70% ethanol

being most effective (Moretro et al. 2009). Other studies

similarly indicated that compared to planktonic cells, bio-

film Salmonella were more resistant to trisodium phos-

phate (Scher et al. 2005) and to chlorine and iodine

(Joseph et al. 2001). Listeria monocytogenes biofilms were

more resistant to cleaning agents and disinfectants includ-

ing trisodium phosphate, chlorine, ozone, hydrogen per-

oxide, peracetic acid (PAA) and quaternary ammonium

compounds (Frank and Koffi 1990; Lee and Frank 1991;

Somers et al. 1994; Sinde and Carballo 2000; Stopforth

et al. 2002; Somers and Wong 2004; Robbins et al. 2005).

Lactobacillus plantarum ssp. plantarum biofilms showed

increased resistance towards various organic acids, ethanol

and sodium hypochlorite (Kubota et al. 2009).

Which disinfectant is the most effective in a particular

situation depends on numerous factors including the nat-

ure of the attachment surface, temperature, exposure

time, concentration, pH and bacterial resistance (Mafu

et al. 1990; Bremer et al. 2002). Resistance is attributed to

different mechanisms: a slow or incomplete penetration

of the biocide into the biofilm, an altered physiology of

the biofilm cells, expression of an adaptive stress response

by some cells, or differentiation of a small subpopulation

of cells into persister cells.

Biofilm resistance to chlorine is still incompletely

understood, but is at least partly because of hindered

penetration of the biocide into the biofilm (De Beer et al.

1994; Chen and Stewart 1996; Xu et al. 1996). Active

chlorine concentrations as high as 1000 ppm are neces-

sary for a substantial reduction in bacterial numbers in

multispecies biofilms (formed by L. monocytogenes, Ps.

fragi and Staph. xylosus) compared to 10 ppm for plank-

tonic cells (Norwood and Gilmour 2000). Chlorine con-

centrations measured in biofilms of Kl. pneumoniae and

Ps. aeruginosa were typically only 20% or less of the

concentration in the bulk liquid (De Beer et al. 1994).

The slow or incomplete penetration of the biocide into

the biofilm is partly because of diffusion limitation in the

exopolymeric matrix, but primarily because of neutraliza-

tion of the active compound in the outermost regions of

the matrix. The active chlorine species react with organic

matter in the surface layers of the biofilm faster than they

can diffuse into the biofilm interior (Chen and Stewart

1996; Xu et al. 1996). This explains that an exopolysac-

charide-overproducing curli-producing E. coli O157:H7

strain showed an increased resistance to chlorine (Ryu

and Beuchat 2005). Solano et al. (2002) demonstrated

that the biofilm matrix protected Salm. Enteritidis cells to

chlorine as cellulose-deficient mutants were more sensi-

tive to chlorine treatments.

Biofilm cells, especially those buried deep in the bio-

film, exhibit decreased growth rates because of oxygen

and nutrient gradients (Brown et al. 1988). This results in

a quasi-dormant state that in turn causes an increased

resistance to biocides (Gilbert et al. 1990; Evans et al.

1991). Concordant with these observations, older biofilms

appear to be more resistant against various disinfectants

than younger biofilms (Frank and Koffi 1990; Lee and

Frank 1991). The observed differences between planktonic

and biofilm bacteria reflect important physiological altera-

tions taking place subsequent to attachment. There is

increasing evidence that these alterations are caused

by unique gene expression patterns in biofilm bacteria,

which are not observed in planktonic cells (Prigent-

Combaret et al. 1999; Stoodley et al. 2002; Beloin et al.

2004; Ren et al. 2004), and which are at the basis of the

biofilm-specific adaptive response. For instance, higher

numbers of Salm. Enteritidis biofilm cells survived a

lethal benzalkonium chloride treatment compared to

planktonic cells when cells were previously exposed to

sublethal concentrations of the agent (Mangalappalli-Illa-

thu et al. 2008). Salm. Enteritidis isolates that survived

better on surfaces also survived better in acidic conditions

and in the presence of hydrogen peroxide and showed

enhanced tolerance towards heat (Humphrey et al. 1995;

Mangalappalli-Illathu et al. 2008).

Another possible mechanism of biocide resistance is

based on the observation that some of the biofilm cells are

able to sense the biocide challenge and actively respond to

it by deploying protective stress responses more effectively

than planktonic cells (Szomolay et al. 2005). Sanderson

and Stewart (1997) reported that when Ps. aeruginosa bio-

films were repeatedly exposed to monochloramine, the

second dose was less effective than the first. Pseudomonas

aeruginosa biofilms also showed increased catalase (katB)

expression during treatment with hydrogen peroxide at a

concentration sublethal for biofilm cells but lethal for

planktonic cells (Elkins et al. 1999). Other studies reported

that exposure of biofilm cells to antibiotics elicited a

response resulting in increased synthesis of EPS, resulting

in a more proliferous biofilm matrix (Sailer et al. 2003;

Bagge et al. 2004).

Persisters, a small fraction of essentially invulnerable

cells, are phenotypically variant cells that neither grow nor

die in the presence of bactericidal agents, but that are

largely responsible for the recalcitrance of infections caused

by bacterial biofilms [for review see Lewis (2001, 2005,
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2007)]. Persister formation has been attributed to specific

cellular toxins, proteins that block cellular processes like

translation, thus rendering the cell resistant against biocides

that act only against active cells (Lewis 2001, 2005, 2007).

Prevention, control, removal and eradication of
biofilms in the food industry

Prevention and control

Microbial attachment to (food-processing) surfaces is a

rather fast process, and therefore, it is for most applica-

tions not possible to clean and disinfect frequently enough

to avoid attachment. Nevertheless, an adequate frequency

of disinfection should be carefully determined to avoid

biofilm maturation and build-up of absorbed organic

material (product residues), which can influence the

hygienic status of the material and the availability of nutri-

ents. Sharma et al. (2003) recommended to control the

operating time between cleaning and sanitation to prevent

mixed species biofilm formation in pasteurization lines of

commercial and experimental dairy plants. Cleaning and

sanitation of food-processing surfaces with short intervals

was proposed as an effective approach to prevent or limit

sporulation in biofilms formed by vegetative Bacillus

subtilis cells (Lindsay et al. 2005).

Rational equipment design that minimizes laminar

product flow, reduces static product and facilitates clean-

ing and cleaning-in-place processes can result in a

reduced bacterial attachment to the processing equip-

ment. As described in Introduction, the choice of material

herein is crucial in terms of biofilm formation. The hygie-

nic properties of the material can be altered by specific

modifications to render it intrinsically antibacterial and ⁄
or less susceptible to attachment. For example, the depo-

sition of antifouling layers on stainless steel can influence

their hygienic status, as demonstrated by the 81–96%

decrease in L. monocytogenes attachment and biofilm for-

mation on polyethylene glycol-modified stainless steel.

The modified surface properties were obtained by

plasma-enhanced cross-linking of polyethylene glycol on

stainless steel. This promising technique reduced bacterial

deposition in food-processing environments (Dong et al.

2005), with PEG-deposition stable to cleaning and storage

for up to 2 months (Wang et al. 2006). Guerra et al.

(2005) showed that nisin, an antimicrobial peptide also

used as food preservative, adsorbed to stainless steel,

rubber and polyethyleneterephthalate (PET) surfaces, and

upon doing so retained its antibacterial activity and

inhibited the growth of Enterococcus hirae. Moreover,

nisin-coated PET bottles significantly reduced the total

aerobic plate counts in skim milk compared to uncoated

bottles, although it was not clear whether the effect was

because of adsorbed nisin or nisin released in the bulk.

Nevertheless, this PET-based bioactive packaging extended

the shelf-life and consequently could be a promising tech-

nique for extending the shelf-life of various packaged

foods (Guerra et al. 2005). The incorporation of transi-

tion metal catalysts into polymer surfaces promotes the

formation of active oxygen species from peroxides and

persulfates, thereby targeting particularly the cells nearest

to the surface. This localized antibacterial action at the

surface is believed to also affect the adhesion properties

of the biofilm cells (Wood et al. 1996, 1998). The applica-

tion of such surface-active systems is restricted to some

specific food contact materials, and their durability and

application costs need to be carefully considered.

An efficient control programme evidently relies on ade-

quate detection systems for biofilms. Several methods are

commonly used like conventional total viable count, dif-

ferent microscopy and spectroscopy techniques, imped-

ance measurements and ATP determination [reviewed by

Wirtanen et al. (2000); Verran et al. (2002); Janknecht

and Melo (2003)]. Each technique has its advantages and

constraints, and a well-chosen combination of detection

methods guarantees the most efficient detection.

Removal and eradication

Cleaning processes

The primary objective of a cleaning process is the removal

of product residues. Indirectly, removal of these residues

is also a first critical point in the removal, killing and con-

trol of biofilms. Adequate methods that break up and

remove the product deposited on the contact surface as

well as existing biofilm matrix are important for the food-

processing industry (Zottola and Sasahara 1994), because

incomplete removal facilitates the reattachment of bacteria

to the surface and formation of a novel biofilm even if the

bacteria from the previous biofilm were killed (Gibson

et al. 1999). Moreover, disinfectants are less effective when

food particles or dirt is present on the surfaces (Holah

and Thorpe 1990; Sinde and Carballo 2000). The standard

methods used in many food-processing industries, such as

alkali-based and acid-based cleaning, are only adequate

in removing the extracellular polymeric biofilm matrix

when the correct process parameters, i.e. appropriate for-

mulations, concentrations, time, temperature and kinetic

energy (flow) are applied, and suboptimal process parame-

ters will drastically affect the overall outcome (Parkar et al.

2004; Antoniou and Frank 2005). The removal of biofilms

is also significantly facilitated by the application of

mechanical force (like brushing and scrubbing) to the sur-

face during cleaning (Wirtanen et al. 1996). Sadoudi et al.

(1997) demonstrated that pulsed laser beams could be

used as an alternative cleaning method for reduction of
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the microbial load on surfaces. However, although effi-

cient, the removal resulted in the transfer of bacteria to

the air in the form of an aerosol, and additional measures

will therefore be necessary to prevent the spread of sur-

viving bacteria. This is one of the reasons why the use of

high pressure sprays has been replaced by foam or gel

cleaning.

Chemical disinfectants

A wide range of chemical disinfectants is used in the food

industry, which can be divided into different groups

according to their mode of action: (i) oxidising agents

including chlorine-based compounds, hydrogen peroxide,

ozone and PAA, (ii) surface-active compounds including

quaternary ammonium compounds and acid anionic com-

pounds, and (iii) iodophores. The efficiency of disinfec-

tion is influenced by pH, temperature, concentration,

contact time and interfering organic substances like food

particles and dirt (Holah 1992; Mosteller and Bishop

1993). Therefore, cleaning agents like detergents and

enzymes are frequently combined with disinfectants to

synergistically enhance disinfection efficiency (Jacquelin

et al. 1994; Johansen et al. 1997). The increased resistance

of biofilm cells to biocides, which is at least partially

because of interference of the exopolymeric matrix (des-

cribed in section Properties of the bacterial and the abiotic

surface affecting biofilm formation), explains why the

disinfectant most effective to planktonic cells is not neces-

sarily the most active against biofilm cells. Holah et al.

(1990) and Meyer (2001) ranked the efficiency of disinfec-

tants to kill biofilm cells and concluded that the effective-

ness increased from quaternary ammonium compounds

over amphoterics, chlorine, biguanides to peroxy acids.

Fatemi and Frank (1999) reported similarly that peroxy

acid disinfectants were more effective than chlorine for

inactivating multispecies biofilms of Pseudomonas sp. and

L. monocytogenes on stainless steel. This difference in effec-

tiveness was even more pronounced in the presence of an

organic challenge. However, Mosteller and Bishop (1993)

reported no superior efficiency of PAA on Ps. fluorescens,

L. monocytogenes and Y. enterocolitica biofilms on both

rubber and Teflon(R) surfaces; and in a comparative

study, Rossoni and Gaylarde (2000) found sodium hypo-

chlorite to be more effective than PAA in killing or

removing E. coli, Ps. fluorescens and Staph. aureus adhering

to stainless steel. Trachoo and Frank (2002) demonstrated

that chlorine was more effective than PAA and than a

PAA ⁄ peroctanoic acid mixture against Campylobacter jeju-

ni in multispecies biofilms. Moreover, the presence of

the biofilm enhanced attachment of Camp. jejuni and

decreased disinfectant effectiveness. Similarly, Listeria

innocua cells were much more resistant to sodium hypo-

chlorite and PAA in a multispecies biofilm with Ps.

aeruginosa than in a pure-culture biofilm on stainless

steel, Teflon(R) and rubber (Bourion and Cerf 1996).

The application of ozone as an alternative for sanita-

tion has gained interest in the food industry. This tri-

oxygen molecule with strong oxidizing properties (52%

stronger than chlorine) has been shown to be effective

over a much wider spectrum of micro-organisms than

chlorine and other disinfectants and could be used as a

disinfectant for both planktonic and biofilm bacteria.

However, more information needs to be collected regard-

ing the efficacy of ozone on food pathogens adherent to

different material surfaces and concerning the effects of

process parameters, e.g. temperature, pH, contact time, to

further substantiate that ozone is an efficient disinfectant

[reviewed by Guzel-Seydim et al. (2004)].

Finally, it deserves mention that much research and

many new developments are currently ongoing in the

field of biofilm disinfection, including the development of

molecules that interfere with quorom sensing (Girennavar

et al. 2008; Steenackers et al. 2008; Pan and Ren 2009),

and naturally occurring biocides with either a wide action

spectrum (Lebert et al. 2007; Chorianopoulos et al. 2008)

or a more specific action against particular pathogenic

and spoilage bacteria (Ammor et al. 2004; Lebert et al.

2007). It can be anticipated that a case-by-case evaluation

of these novel approaches will be necessary because their

efficacy, similar to that of established methods, will be

affected by process parameters and the prevailing

microbial population to be eradicated.

All these studies indicate that the statement: ‘the disin-

fectant most effective to planktonic cells is not necessarily

the most active against the biofilm cells’ illustrated above,

needs to be extended to ‘furthermore the most active dis-

infectant against pure culture biofilm is not necessarily

the most active against multispecies biofilms in challeng-

ing (food-processing) environments’. Nevertheless, active

chlorine is probably the most widely used compound

because chlorine-based compounds are easy to prepare

and apply, and are generally the most cost-efficient.

Physical methods

Physical treatments have been studied as alternatives for

the use of chemical disinfectants in the food industry in

particular for the sanitation of surfaces. Niemira and

Solomon (2005) showed that ionizing radiation was

equally or more effective against Salmonella spp. biofilm

cells than against planktonic cells and could therefore

be a useful sanitization treatment on a variety of foods

and contact surfaces. A relatively recent technique called

atmospheric plasma inactivation makes use of reactive

oxygen species and radicals generated by high voltage

atmospheric pressure glow discharges to inactivate micro-

organisms. The technique appears to be effective against
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both biofilm and planktonic micro-organisms (Vleugels

et al. 2004). Oulahal-Lagsir et al. (2003) used a combined

treatment of ultrasound and enzyme preparations for

effectively removing E. coli biofilms on stainless steel

sheets in milk. Ultrasound can also be used to increase the

efficacy of biocides such as ozone (Bott and Tianqing

2004; Baumann et al. 2009). Another technique for enhan-

cing the efficiency of biocides and antibiotics is the use of

electric fields. This so-called bioelectric effect is based on

an improved penetration of the active compound through

the biofilm, thereby reducing the concentrations needed

to eradicate biofilm bacteria to levels very close to those

effective against planktonic bacteria (Costerton et al.

1994). The applicability of these combined disinfection

systems should be comprehensively and systematically

examined, considering also their economic costs and regu-

latory aspects.

Concluding remarks

Bacterial biofilms are ubiquitous in nature, and the food

industry does not escape from the problems they can

cause. In particular, biofilms formed on food-processing

equipment and other food contact surfaces act as a persis-

tent source of contamination threatening the microbio-

logical quality and safety of food products, and resulting

in food-borne disease and economic losses. Biofilm pre-

vention and control is therefore a priority in the food

industry, and this industry should be stimulated to:

� Develop and plan cleaning and disinfection pro-

grammes, which can prevent and ⁄ or eradicate biofilms

and monitor their efficacy.

� Include the biofilm-supporting properties of food con-

tact materials, in addition to their thermal, mechanical

and chemical resistance, as an element of the hygienic

design of equipment and utensils.

� Identify biofilm-prone areas in existing process lines

and systematically monitor organic and microbial load

in these areas.

� Invest in research on the efficacy of cleaning agents and

disinfectants, the factors involved in attachment and

biofilm formation, the decreased sensitivity of biofilm

bacteria to disinfectants, and on developing novel bio-

film prevention or control strategies.
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