Understanding Microbiological Sampling and Testing

Office of Public Health Science Microbiology Division FSIS 2010 Advanced EIAO Methodology Course

Today's Presentation

- Objective- Cover aspects of microbiological sampling and testing that should be considered for food safety programs.
 - Sample collection- methods and plans

- Laboratory testing- test portions and methods

Why Do We Test For Bacteria In Foods?

- Foodborne pathogens
 - Why? Pathogens cause illness!
 - Challenges for pathogen detection:
 - Heterogeneous distribution in a lot or even a sample.
 - Pathogen cells on products are often at low levels and stressed.
- Indicator bacteria
 - Why? Easier to detect and quantify for process control purposes

Sampling

Sampling

- All sampling plans have significant limitations.
 - Therefore, we evaluate relative rigor of the program.
- Best sampling plans provide the opportunity but no guarantee of detection.

- *i.e.*, scattered contamination is difficult to detect.

- Frequent sampling and sampling multiple sites/time points provides a better opportunity for detection.
 - Examples:
 - Multiple samples per day vs. once per month
 - One "grab" sample per lot vs. "n60" per lot
- Does the type of sampling meet the intended need?
 - Destructive vs. non-destructive sampling

E. coli O157:H7 Contamination in a "n60" Sampled Lot (illustration) 1 2 3 4 5 6 7 8 9 10

E. coli O157:H7 Contamination in Ground Beef (illustration)

Time of production, hrs

What is "n60"?

- "n60" = number of samples (n) = 60
 - Multiple representative samples provides best option for detecting scattered contamination.
 - Provides 95% confidence that no more than 5% of food pieces the size of each "n" in the entire lot are contaminated.
- Keys to success
 - Must ensure that sampling is as representative as possible across the lot
 - Large composite "n60" samples typical need a larger test portion.

Common Sampling Problems

- Small sample or sampling method may not be ideal for detection.
 - Examples- small swab device, small carcass or environmental area sampled
- Sanitizer or excessive intervention might interfere with the test.
 - Insufficient drip time prior to carcass rinse procedure.
- Temperature abuse for the sample prior to testing
 - Holding under refrigeration for long periods allows competing bacteria to grow.
 - Freezing can kill some pathogens (e.g., Campylobacter)

Testing

Laboratory Testing

- Two areas of focus
 - The test portion taken from the sample
 - The method used to test that portion
 - Screening methods
 - Confirmatory methods
- Establishments should ensure their lab is aware of FSIS guidance, Directives, and Notices related to testing issues

Establishment Responsibilities For Laboratory Testing

- The establishment is ultimately responsible for the testing they request from private laboratories
- Has the establishment properly conveyed testing needs?
 - *e.g.*, test portion equivalent to FSIS as opposed to the default 25-g in protocols.
- Is the laboratory aware of FSIS expectations?
 - Directives, Notices and guidance (some are pending)
- Establishment should document detailed methodology and validation information for FSIS review.

The "Test Portion"

- Laboratory sample preparation => "test portion"
 - a.k.a., "analytical unit"
 - Definition- the part of the "sample" that is actually tested by the laboratory.
- Test portion determines the theoretical (*i.e.*, best possible) sensitivity of the test
 - *i.e.*, 1 cell/test portion
 - 25-gram- detecting 0.04 cells/gram is possible
 - 325-gram- detecting 0.003 cells/gram is possible

E.Coli O157:H7 Contamination in a N60 Composite Sample *(illustration)*

15 subsamples (25 grams) = 375 grams

Special Considerations for Larger *E. coli* 0157:H7 Test Portions?

- Larger test portions (325-375 grams) are most important for "n60" and other composite samples containing many samples.
- Less important for ground beef final product testing when:
 - Trim and components have already been tested using robust sampling and 325-375-gram test portions, and
 - multiple samples are collected throughout the production day.
- Methods must be adapted, optimized and validated for effective use with 325-375 gram test portions.

Pathogen Detection Methods

- Complete multi-step method below can take at least one week:
 - Sample preparation
 - -1-2 stage culture broth enrichment
 - Screening test
 - Selective plating and purification
 - Confirmation using multiple tests

Enrichment

- Test portion is incubated 8-48 hours in a culture broth
 - Why?
 - Contamination levels are too low for detection without enrichment
 - Must grow to high levels so very small volumes have enough for later detection steps.
 - Different pathogens require a different broths
 - One vs two-stage enrichment
 - resuscitation vs selective growth

Considerations for proper enrichment

- Resuscitation (lag phase) can require 2-3 hours before log-phase growth begins.
 - Some samples support slower growth
- Has enrichment broth been tempered to warm temperature prior to incubation?
 - Particularly critical for large test portions or shorter incubation periods.

Screening Tests

- Usually commercial testing products
- Most validated screening tests are:
 - Immunoassays (ELISA, ELFA, immunochromatographic devices, etc.)
 - Polymerase Chain Reaction (PCR) assays
- Must be validated for performance with a specific broth and incubation period.

Incubation period

- PCR screens may require less growth than immunoassays.
- Shorter incubation periods (<15 hours) may warrant additional scrutiny of laboratory compliance to the validated protocol.
- Has enrichment/screening combination been validated for a larger test portion?
 - Particular concern for large test portions incubated for shorter periods.
 - e.g., 375-gram test portion incubated for 8 hours
- Proposed incubations < 8 hours may warrant OPHS review.

Pathogen Growth During Enrichment

Incubation time, hrs

Role of Enrichment

Considerations for Testing Methods

- Is the method fit for the intended purpose of the analysis?
- Has the method been optimized and experimentally validated for sensitive detection of pathogens?
- Is the laboratory complying to the validated method protocol?

Fitness For Purpose

 Is the method intended for detecting the lowest possible levels of potentially injured pathogen cells in meat/poultry products like the corresponding FSIS method?

Was this demonstrated by the validation study?

Value of Validation

- Determines performance characteristics of the method in comparison to a gold standard method (*i.e.*, usually FSIS or FDA method).
- Independent evaluation provides credibility
- Rigor varies
- Still must consider fitness for purpose and how the method is applied.
 - e.g., some AOAC-validated methods are not consistent with FSIS goals or Compliance Guidelines.

Method Validation

- Recognized independent method validation organizations:
 - Government- FSIS and FDA
 - AOAC International (U.S.A.)
 - AOAC Official Method (OM) validations
 - AOAC-RI "Performance Tested Method" validations
 - AFNOR (France)- *e.g.*, bioMerieux-Vitek tests
 Others (ISO, NMKL, etc.)
- However, past validations conducted by these organizations may not be relevant to larger test portions or other testing scenarios.

Testing Method Specifications

- Common specifications determined through experimental validation studies:
 - How well does the method work for low levels of contamination?
 - e.g., sensitivity, false negative rate, limit of detection (LOD)
 - How specific is the test for the target pathogen?
 - e.g., inclusivity, exclusivity
 - How reliable is the method in different hands?
 - e.g., repeatability, reproducibility
- However, these experiments can produce variable results according to experimental design, product, strains, and other factors.
 - Past sensitivity and LOD measurements cited for FSIS MLG methods are not intended as a standard for other methods.

Sensitivity

- Does the method detect low levels of pathogens?
- False negative rate = critical issue
 - Does the method miss positive samples compared to "gold standard" method?
- Limit of detection (LOD)
 - Expressed as CFU/gram or CFU/test portion
 - Rough estimate of performance
 - Variable based on numerous factors (*e.g.*, product, competing flora, pathogen injury, etc.)
 - Note significant differences (*i.e.*, Do not overinterpret)

Specificity

• Bacteria can mutate and evolve into forms that defy the traditional rules.

- As a result, much diversity within a pathogen species

- False negative potential-
 - Does the test miss some subgroup of the target pathogen?
- False positive potential-
 - Is an unconfirmed result a potential problem?
 - Depends on context (industry vs. FSIS testing)

Method Application

- Can the method accommodate the necessary test portion?
- Does the lab specifically comply to the validated method instructions, or have they altered the method in some way?
- AOAC/AFNOR validations typically apply only to commercial screening methods without regard to any necessary follow-up tests.

Confirmatory Testing

- Non-culture confirmation (*e.g.*,PCR)
- Culture confirmation (e.g., FSIS confirmation)
 - Plating the enrichment on selective and differential agar media
 - Immunomagnetic separation (IMS) necessary prior to plating for *E. coli* O157:H7
 - Suspect colonies = "presumptive positive"
 - Purification and confirmatory identification tests including:
 - Biochemical (e.g., identifies "*E. coli*")
 - Serological (e.g., identifies "O157" and "H7")
 - Genetic (e.g., identifies "*stx*" = Shiga toxin genes)

Most Probable Number (MPN) Enumeration Analysis

- Traditional enrichment-based analyses are performed on three or more dilutions, each typically in triplicate, from a single sample homogenate (*i.e.*, MPN = method format, not a specific method per se).
- Advantages:
 - Better sensitivity (lower LOD) than direct plating
- Disadvantages:
 - Very resource intensive/expensive
 - Test portion \leq 3.3 grams (FSIS method = < 33 grams)
- Application:
 - For quantifying low levels of pathogens (e.g., Salmonella, E. coli O157:H7, L. monocytogenes)

Quantitative Testing

MPN (most probable number)

325 grams + 10 fold buffer = 0.1 grams/mL

Dilute 1:10, 1:100

10 mL (1 gram x 3)

enrich

+++

10 mL 1:100 (0.01 gram x 3) (0.01 gram x 3) (0.01 gram x 3) (0.01 gram x 3)

Example "3-2-1" = Y MPN/g (use MPN table) Total tested: 3.33 grams (33 grams FSIS method) Level of Detection = < 0.3 MPN/gram (0-0-0) = <0.03 MPN/gram FSIS method

Direct Plating Enumeration Methods

- Product is homogenized in diluent and small volume is directly dispensed onto agar media (*i.e.*, sometimes there is a 1-2 h "resuscitation" step, but <u>enrichment</u> is never used prior to plating)
- Advantages:
 - Allows easy inexpensive quantitative analysis
- Disadvantages:
 - Accommodates only a very small test portion
 - Higher limit of detection (*i.e.*, often 100 CFU/g) <u>not</u> suitable for detecting low levels of pathogens.
- Application:
 - Expedient for higher level analytes (*e.g.,* indicators, *Campylobacter, S. aureus, C. perfringens, B. cereus*)

Quantitative Testing: Direct Plating CFU (colony forming unit) 325 grams + 10-fold buffer Dilute 1:10, 1:100 = 0.1 grams/mL 5 cfu/1 mL/0.1 g 1 mL = 50 cfu/g(0.1 gram) No enrichment 1 mL 1:10 (0.01 gram) 1 mL 1:100 (0.001 gram)

Total tested 0.11 grams Level of Detection = <10 cfu/gram (0 cfu from homogenate)

Expectations For *Listeria* Environmental Testing Equivalence

- Compliance Guidelines, May 2006, pp. 42-44
- For optimal sensitivity of detection, method for food contact surface testing must:
 - validated by a recognized body (*e.g.*, AOAC, AFNOR)
 - be enrichment-based
 - enrich the entire sponge/swab sample
 - *i.e.,* aliquot from sponge/swab does not provide opportunity to detect bacteria trapped in the sponge.

Analytes for Industry Food Contact or Environmental Surface Testing

- Production establishment laboratories test for one of the following:
 - Listeria monocytogenes- Use internationally recognized enrichment-based method that biochemically confirms culture as L. monocytogenes.
 - Listeria spp.- Use internationally recognized enrichment-based method that uses ELISA, PCR or other screening technology to provide more rapid but less specific *Listeria* spp. result.
 - *"Listeria*-like" indicator bacteria- Use the first part of an internationally recognized enrichment-based method to find suspect *Listeria* colonies (*e.g.*, darkened colonies on MOX using the FSIS method).

Issues for Industry Labs

- On-site vs. off-site labs- jurisdiction issues
- Overarching concerns for on-site labs
 - Is testing effective?
 - Is testing safe in that facility?
- Evaluate the following:
 - Are personnel qualified?
 - Does the lab have proper equipment and materials for testing and disposal of contaminated media?
 - Do they follow the validated testing protocol?

ISO 17025 Laboratory Accreditation

- ISO 17025 = protocol for establishing and documenting a microbiology laboratory quality program (*i.e.*, "HACCP" for labs)
- Accrediting bodies = A2LA and others
- Accreditation implies robust quality program but does not necessarily indicate methods meet FSIS expectations.

Questions?