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Mycotoxins, as microbial secondary metabolites, frequently contaminate cereal grains
and pose a serious threat to human and animal health around the globe. Deoxynivalenol
(DON), a commonly detected Fusarium mycotoxin, has drawn utmost attention due to
high exposure levels and contamination frequency in the food chain. Biological control
is emerging as a promising technology for the management of DON contamination.
Functional biological control agents (BCAs), which include antagonistic microbes,
natural fungicides derived from plants and detoxification enzymes, can be used to
control DON contamination at different stages of grain production. In this review, studies
regarding different biological agents for DON control in recent years are summarized
for the first time. Furthermore, this article highlights the significance of BCAs for
controlling DON contamination, as well as the need for more practical and efficient BCAs
concerning food safety.
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INTRODUCTION

Mycotoxins are secondary metabolites produced by fungi and may exert toxic effects on plants,
animals and humans (Goswami and Kistler, 2004; Yu and Keller, 2005). Trichothecenes, a group of
sesquiterpenoid mycotoxins, are commonly found in grains worldwide. B type trichothecenes that
are common contaminants of grains, are characterized by a keto functional group at C-8 in their
molecular structures (Richard, 2007; McCormick et al., 2011; Mohamed Anwar et al., 2014). Some
common B type trichothecenes include deoxynivalenol (DON), 3-acetyldeoxynivalenol (3ADON),
15-acetyldeoxynivalenol (15ADON), nivalenol (NIV) and fusarenon X (FUSX) (Figure 1A)
(Arunachalam and Doohan, 2013). Among them, DON, also known as vomitoxin, is the most
frequently detected and economically important mycotoxin in cereal grains. DON contamination
in cereal grains is a global problem. DON is predominantly produced by Fusarium graminearum
and Fusarium culmorum. These phytopathogens can infect crops in the field and cause a destructive
disease called Fusarium head blight (FHB) or scab (McMullen et al., 2012). As a virulence factor of
these phytopathogens, mycotoxin DON facilitates the spread of Fusarium strains within infected
tissue and contributes to the symptoms of FHB disease (Bai et al., 2002).

FHB caused by Fusarium strains can lead to enormous losses of yield and quality
in cereal grains. Moreover, DON contamination poses a great threat to public health
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FIGURE 1 | Chemical structures of major type B trichothecenes and the detoxification products of DON, and a schematic of BCAs on control of DON
contamination at different stages of grain production. (A) Major B type trichothecenes include DON, 3ADON, 15ADON, NIV and FUSX. Detoxification products
of DON mainly include DOM-1, 3-keto DON, 3-epi DON and D3G. (B) Antagonistic microbes can be applied to crop residuals to inhibit sporulation, or to spikes with
natural fungicides to inhibit the growth and DON production of pathogens. Contaminated grains can be treated with enzymes to detoxification after harvest, and the
enzymes also can be expressed in genetically modified crops to detoxify DON and increase crop resistance to pathogens.
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and food safety (Wagacha and Muthomi, 2008). Consumption
of DON-contaminated food can cause serious gastroenteritis
including diarrhea, nausea, vomition, and abdominal pain in
humans (Pestka, 2010; Sobrova et al., 2010; Pinton et al.,
2012; da Rocha et al., 2014). Thus, DON contamination
control is a crucial issue for mitigating economic losses and
improving food safety in the food chain. Currently, some
effective measures including crop rotation, selection of resistant
wheat lines, fungicides application and biological control
agents (BCAs) have been put into action to control DON
contamination in grain production (Dill-Macky and Jones,
2000; Edwards and Godley, 2010; Wegulo et al., 2015). Of the
measures mentioned above, application of synthetic fungicides
is relatively successful for control of these phytopathogens
and mycotoxin production. However, synthetic fungicides are
not economical for long-term use, as well as causing a series
of undesirable effects on the environment (Mesterhazy et al.,
2011; Schoneberg et al., 2015). Biological control of DON
contamination is emerging as a green approach. Functional
BCAs include antagonistic microbes, natural fungicides derived
from plants which inhibit the development and mycotoxin
production, and enzymes from beneficial organisms for DON
detoxification after production. Until now, several reviews on
managing FHB or mycotoxins detoxification with different
strategies have been published (Yuen and Schoneweis, 2007;
Awad et al., 2010; He et al., 2010; Karlovsky, 2011; McCormick,
2013; Wegulo et al., 2015). Here we are focusing on recent
progresses in various BCAs to achieve DON contamination
control (Table 1), which will be reviewed briefly in the next
section. This will be beneficial to understand the exploration
and application of BCAs in the field of DON contamination
control.

FUNCTIONAL BCAS AGAINST DON
CONTAMINATION

Antagonistic Microbes
Previous results have demonstrated the positive linear
relationship between the occurrence of FHB and DON
contamination (Wegulo et al., 2011; Hernandez Nopsa et al.,
2012; Wegulo, 2012). Therefore, managing FHB plays a key
role in controlling DON contamination (Yuen and Schoneweis,
2007). Selection of available antagonistic microbes that suppress
mycelia growth, sporulation and mycotoxin production of
pathogens is indispensable for the purpose of managing FHB
(Pfliegler et al., 2015), of which antagonistic fungi and bacteria
have gained significant attention in the past.

Major fungal antagonists comprise Trichoderma strains,
Clonostachys rosea, Cladosporium cladosporioides (Schoneberg
et al., 2015), Aureobasidium pullulans (Wachowska and
Głowacka, 2014) and Cryptococcus strains (Schisler et al.,
2011). Trichoderma strains have been widely investigated,
because they grow fast as competitors to significantly
reduce the colony areas of Fusarium strains, and inhibit
the pathogen spread by antibiotic production (Matarese et al.,
2012; Schoneberg et al., 2015). Another important control

mechanism is mycoparasitism mediated by production of
cell wall degrading enzymes including cellulases, chitinase
and glucanases (Vinale et al., 2008; Mukherjee et al., 2013).
On the other hand, during competition between Fusarium
and Trichoderma, DON production, as a negative signal
against antagonism, can repress one chitinase gene (nag1)
expression in a Trichoderma atroviride strain P1 (Lutz et al.,
2003).

Bacterial strains in the genus of Bacillus and Pseudomonas
have also been widely explored as potential BCAs against
FHB in recent years (Yoshida et al., 2012). Most antagonistic
bacterial strains belong to endophytic microbes inhabiting plant
or rhizosphere without leading to diseases or adverse effects
(Dal Bello et al., 2002). Bacillus subtilis SG6 isolated from
wheat anthers showed a remarkable inhibitory effect on mycelial
growth, sporulation and DON production of F. graminearum
(Zhao et al., 2014). Moreover, B. subtilis RC 218 and Brevibacillus
sp. RC 263 isolated from wheat anthers could effectively reduce
the incidence and severity of FHB and DON accumulation
under semi controlled field conditions (Palazzini et al., 2016).
In another study, bacterial strains isolated from peanut shells
exhibited potent inhibition to the growth and DON production
of F. graminearum, and the tested strains with the strongest
inhibitory effect were identified as B. amyloliquefaciens (Shi et al.,
2014). Besides, a Shewanella algae strain YM8 isolated from sea
sediment, which can produce volatile organic compounds, has a
broad spectrum of inhibition activity against nine agronomically
important phytopathogens including F. graminearum (Gong
et al., 2015). This research indicates that marine bacteria can
be a potential source for effective agents to control the growth
and mycotoxin production of pathogens in the field and during
storage.

The above mentioned antagonistic microbes can be applied
to crop residuals to inhibit ascospores and conidia production,
or directly used on spikes to restrict the development and
mycotoxin production of pathogens (Figure 1B) (Xue et al., 2014;
Schoneberg et al., 2015; Wegulo et al., 2015).

Natural Fungicides
In order to decrease the use of synthetic fungicides, a green
alternative strategy with natural fungicides can be used to inhibit
pathogens (da Cruz Cabral et al., 2013). The restriction on
applications of chemical fungicides has increased the demand
of natural fungicides (Terzi et al., 2014). As potential sources of
natural fungicides, metabolites from plants, including phenolic
compounds and essential oils, have been researched for activities
that inhibit pathogen development and mycotoxin production in
recent years (Esper et al., 2014; Pagnussatt et al., 2014).

Phenolic compounds derived from Spirulina strains exerted
efficient antifungal activity against F. graminearum (Pagnussatt
et al., 2013, 2014). Moreover, a recent work has indicated that
chlorogenic acid, a common phenolic acid, can be transformed
by F. graminearum, generating some forms of metabolites which
are even more efficient in limiting mycelial growth and DON
production (Gauthier et al., 2016). This study provides a new
understanding on the role of phenolic compounds in their
antifungal activities.
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TABLE 1 | Functional BCAs of controlling DON contamination mentioned in this review.

Functional BCAs Origin Mechanisms of controlling
DON contamination

Reference

Antagonistic
microbes

Trichoderma strains Isolated from soil or plants Inhibiting sporulation, growth
and/or mycotoxin DON
production of pathogens

Schoneberg et al., 2015

Trichoderma strains Isolated from soil or plants Matarese et al., 2012

Trichoderma atroviride P1 Isolated from soil Lutz et al., 2003

Clonostachys rosea Isolated from cereal crops Schoneberg et al., 2015

Cladosporium cladosporioides Isolated from cereal crops Schoneberg et al., 2015

Aureobasidium pullulans Isolated from winter wheat grains Wachowska and Głowacka,
2014

Cryptococcus strains Unknow Schisler et al., 2011

Pseudomonas strains Isolated from infected spikelets Yoshida et al., 2012

Bacillus subtilis SG6 Isolated from wheat anthers Zhao et al., 2014

Bacillus subtilis RC 218 and
Brevibacillus sp. RC 263

Isolated from wheat anthers Palazzini et al., 2016

Bacillus amyloliquefaciens Isolated from peanut shells Shi et al., 2014

Shewanella algae strain YM8 Isolated from sea sediment Gong et al., 2015

Natural
fungicides

Phenolic compounds Extracts of Spirulina strains Inhibiting growth and/or
mycotoxin DON production of
pathogens

Pagnussatt et al., 2013

Phenolic compounds Extracts of Spirulina strains Pagnussatt et al., 2014

Phenolic acids Extracts of maizes Gauthier et al., 2016

Essential oils Extracts of cinnamon, clove, lemongrass,
oregano and palmarosa

Marín et al., 2004
Velluti et al., 2004

Essential oils Extracts of Ocimum sanctum Kalagatur et al., 2015

Detoxification
enzymes

Unknown enzyme Bacillus licheniformis and Bacillus subtilis
provided by Jiangxi-OAI Joint Research
Institute, Nanchang University, China

Detoxifying DON to less toxic
products

Cheng et al., 2010

Unknown enzyme A strain of Aspergillus NJA1 isolated from
soil

He et al., 2008

Deepoxidase Bacillus sp. LS100 isolated from chicken
digesta

Li et al., 2011

Deepoxidase Bacteria isolated from intestines of
chicken

Young et al., 2007

Deepoxidase A strain of Bacillus isolated from intestinal
track of fish

Guan et al., 2009

Deepoxidase A mixed microbial culture including six
bacterial genera found from soil

Islam et al., 2012

Deepoxidase Fecal microbiota isolated from intestines
of human

Gratz et al., 2013

Oxidase and epimerase Nocardioides sp. strain WSN05-2
isolated from a wheat field

Ikunaga et al., 2011

Oxidase and epimerase Genus of Nocardioides and Devosia
isolated from field soils and wheat leaves

Sato et al., 2012

Oxidase and epimerase Devosia mutans 17-2-E-8 isolated from
an agricultural soil

He et al., 2015

UDP-glucosyltransferase Arabidopsis thaliana Poppenberger et al., 2003

UDP-glucosyltransferase Triticum aestivum L. cv. Wangshuibai Lulin et al., 2010

UDP-glucosyltransferase Barley Schweiger et al., 2010

UDP-glucosyltransferase Arabidopsis thaliana Shin et al., 2012

UDP-glucosyltransferase Barley Li et al., 2015

Essential oils extracted from plants usually contain some
antimicrobial or antioxidant compounds, and they are regarded
as good choices of natural fungicides (Bakkali et al., 2008).
For instance, essential oils extracted from cinnamon, clove,
oregano, palmarosa and lemongrass were selected to test their
anti-mycotoxigenic activity. All these essential oils could prevent
DON accumulation in F. graminearum-infected grains, and the

clove essential oil was the most effective (Marín et al., 2004).
In addition, another study found that environmental factors,
such as water activity and temperature, could influence the anti-
mycotoxigenic activity of essential oils (Velluti et al., 2004).
Recent research shows that Ocimum sanctum essential oil has a
prominent antagonistic activity on the growth of F. graminearum
(Kalagatur et al., 2015). All these studies show that natural
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fungicides that are sourced from functional plant metabolites
have great potentials in controlling DON contamination.

Detoxification Enzymes
As complementary to management of the incidence and severity
of FHB by antagonistic microbes and natural fungicides,
detoxification of DON in contaminated grains could also reduce
food safety risk and economic losses effectively (Awad et al.,
2010; Jard et al., 2011; Karlovsky, 2011; McCormick, 2013).
A number of conventional physical and chemical approaches
have been used to remove DON from contaminated grains, but
the loss of nutritional value or potential safety problems should
not be ignored (He et al., 2010). Therefore, detoxifying DON by
enzymatic reactions can be an attractive approach for controlling
DON contamination.

Enzymatic reactions of DON detoxification may include
deepoxidation, oxidation, epimerization and glycosylation.
The detoxification products from these reactions, such as
DOM-1, 3-keto DON, 3-epi DON and DON-3-glucoside
(D3G), are shown in Figure 1A. In addition, some studies
with unknown detoxification products were also reported. For
example, B. licheniformis and B. subtilis strains were proved to
degrade DON under anaerobic conditions, but the detoxification
products in this transformation remained unknown (Cheng
et al., 2010). A strain of Aspergillus (NJA1) isolated from soil
could convert DON to an unknown product with a molecule
weight of 18.1 kDa (He et al., 2008). In another study, strains
of Rhizopus oryzae and Aspergillus oryzae can degrade DON
in submerged fermentation, but the degradation mechanism
was mainly explained by toxin absorption (Garda-Buffon and
Badiale-Furlong, 2010). Therefore, deepoxidation, oxidation,
epimerization and glycosylation are available enzymatic
detoxification processes.

Deepoxidation
The active epoxide group in DON determines its toxicity for
interrupting protein synthesis. DON can be deepoxidated to
deepoxy DON (DOM-1) which is much less toxic. This process
exhibits a promising detoxification approach in contaminated
grains (Karlovsky, 2011; Li et al., 2011). Bacteria from the
intestines of chicken could convert DON to DOM-1 under
oxygen free conditions (Young et al., 2007). In aerobic conditions,
a Bacillus strain isolated from intestinal track of fish can
also deepoxidate DON in contaminated corn (Guan et al.,
2009). A mixed microbial culture including six bacterial genera
found in soil was capable of converting DON to DOM-
1 under aerobic conditions with a higher transformation
efficiency compared to anaerobic conditions (Islam et al., 2012).
Interestingly, the human fecal microbiota from one volunteer
in an experiment were found to detoxify DON to DOM-
1, although the efficiency was relatively low (Gratz et al.,
2013).

Oxidation and Epimerization
With the aid of bacteria, other detoxification processes converting
DON into low-toxic products, such as oxidation of DON to 3-
keto DON and epimerization of DON to 3-epi DON, have been

reported (McCormick, 2013). For instance, the Gram-positive
genus Nocardioides and the Gram-negative genus Devosia could
achieve the detoxification processes (Ikunaga et al., 2011; Sato
et al., 2012). A recent study reported that a bacterium Devosia
mutans 17-2-E-8 could completely detoxify DON into 3-epi
DON and 3-keto DON, and 3-epi DON was the major product,
meanwhile the authors confirmed that 3-epi DON was much less
toxic than DON by both in vitro and in vivo studies (He et al.,
2015).

Glycosylation
Mycotoxin glycosides known as detoxification products in
plants, are generally termed as masked mycotoxin, since
their conjugate structures may escape routine detection by
conventional analytical methods. Plants have the capacity to
detoxify harmful compounds like mycotoxin by conjugation with
sugars (Berthiller et al., 2007). The first UDP-glucosyltransferase
(DOGT1) that can convert DON to D3G was identified from
Arabidopsis thaliana in 2003 (Poppenberger et al., 2003). It has
been verified that resistant wheat lines are capable of converting
more DON to D3G, so the D3G/DON ratios of different wheat
lines could give a clear indication of their resistance against DON
(Cirlini et al., 2013). Results have illustrated that it is a feasible
way to convert DON to D3G in transgenic cereal crops by a high-
efficiency and stable UDP-glucosyltransferase to against DON
contamination (Lulin et al., 2010; Schweiger et al., 2010; Shin
et al., 2012; Li et al., 2015).

Generally, the detoxification enzymes can be applied after
harvest to manage contaminated cereal grains, or be expressed in
genetically modified crops by transgenic technologies to detoxify
DON in infected grains and increase crop resistance against
pathogens (He et al., 2010). It is expected that these approaches
will be of great significance to reduce DON contamination in
years to come.

CONCLUSION AND PERSPECTIVES

Functional BCAs offer alternative strategies to control DON
contamination in a green and environment-friendly way. As an
emerging technique, biological control including the application
of beneficial organisms and their functional products such as
enzymes or metabolites, has gained more and more attention in
recent years (Vinale et al., 2008). In this review, we summarize
different types of functional BCAs used to achieve control
of DON contamination (Figure 1B). These control strategies
mainly include prevention before harvest and detoxification
after harvest. What is more, for the purpose of controlling
DON contamination, it seems more effective to integrate
all available BCAs flexibly throughout grain production and
storage.

Researches on DON contamination control by BCAs are still
developing and ongoing, since few of them are commercially
available (Wegulo et al., 2015). More in-depth studies should
be conducted in this field. For instance, the stability and
toxicity of detoxified DON should be studied and assessed for
providing food safety assurance. The detoxification mechanisms
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need further investigation as well. With regard to antagonistic
microbes and natural fungicides, laboratory-scale studies are
insufficient, so systematic field tests should be carried out to
establish a comprehensive safety evaluation. In addition, with
the rapid development of molecular biology and transgenic
techniques, there is a need to seek and identify the genes
coding effective and applicable detoxification enzymes in both
microbes and plants. And detoxification genes and related
enzyme products could be modified in a highly efficient, stable
and safe way. With the development of emerging BCAs, there
is no doubt that the application of biological control would
be a promising strategy to control DON contamination in
cereal grains and reduce the risk of food safety in the food
chain.
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