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Salmonella has been shown to survive in tree nuts over long periods of time. This survival capacity and its vari-
ability are key elements for risk assessment of Salmonella in tree nuts. The aim of this study was to develop a
mathematicalmodel to predict survival of Salmonella in tree nuts at ambient storage temperatures that considers
variability and uncertainty separately and can easily be incorporated into a risk assessment model. Data on
Salmonella survival on raw almonds, pecans, pistachios andwalnuts were collected from the peer reviewed liter-
ature. The Weibull model was chosen as the baseline model and various fixed effect and mixed effect models
were fit to the data. The best model identified through statistical analysis testing was then used to develop a
hierarchical Bayesian model. Salmonella in tree nuts showed slow declines at temperatures ranging from 21 °C
to 24 °C. A high degree of variability in survival was observed across tree nut studies reported in the literature.
Statistical analysis results indicated that the best applicable model was a mixed effect model that included a
fixed and random variation of δ per tree nut (which is the time it takes for the first log10 reduction) and a
fixed variation of ρ per tree nut (parameter which defines the shape of the curve). Higher estimated survival
rates (δ) were obtained for Salmonella on pistachios, followed in decreasing order by pecans, almonds and wal-
nuts. The posterior distributions obtained from Bayesian inference were used to estimate the variability in the
log10 decrease levels in survival for each tree nut, and the uncertainty of these estimates. These modeled uncer-
tainty and variability distributions of the estimates can be used to obtain a complete exposure assessment of
Salmonella in tree nutswhen including time–temperature parameters for storage and consumption data. The sta-
tistical approach presented in this study may be applied to any studies that aim to develop predictive models to
be implemented in a probabilistic exposure assessment or a quantitative microbial risk assessment.

Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Tree nuts have been recognized for their potential contribution to
foodborne illnesses (Frelka and Harris, 2014). Salmonella in particular,
appears to be of concern in tree nuts, as it has been associated with
foodborne outbreaks and recalls. From 2010 to January 2015, there
have been four outbreaks linked to Salmonella in tree nuts in the U.S.,
one in 2014 involving S. Braenderup in almond butter, two in 2013: S.
Stanley in raw cashew “cheese” and S. Senftenberg in roasted pistachios,
and one in 2011 involving S. Enteritidis in pine nuts (Harris et al., 2015).
There have also been numerous recalls indicating reoccurringmicrobial
food safety issues due to Salmonella presence in walnuts, macadamia
nuts, pecans, cashews, almonds, pistachios, pine nuts and hazelnuts
(Palumbo et al., 2015). To assist development of a quantitative
.M. Santillana Farakos).
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ss article under the CC BY-NC-ND lic
assessment of the risk of human salmonellosis associated with the con-
sumption of tree nuts, the U.S. Food and Drug Administration requested
data and models on survival of Salmonella in tree nuts through Federal
Register Notice FDA-2013-N-0747-0001. Available and published
Salmonella survival data were submitted in response to this notice.
This includes raw data from the studies of Abd et al. (2012) (almonds),
Beuchat andMann (2010) (pecans), Blessington et al. (2012) (walnuts),
Blessington et al. (2013a) (almonds and walnuts), Blessington et al.
(2013b) (walnuts), Brar et al. (2015) (pecans), Kimber et al. (2012) (al-
monds and pistachios), and Uesugi et al. (2006) (almonds) (which was
submitted via personal communicationwith the authors). In all of these
studies, Salmonella was shown to be able to survive for weeks, months
and even years. Survival curves tend to show a relatively rapid initial
decline, followed by slow or nomeasurable decline over a much longer
period of time, i.e., long term persistence (Frelka and Harris, 2014).
However, differences in the shape of the survival curves have been
observed depending on the study, the substrate, and/or the environ-
mental conditions under which the experiments take place. Several
ense (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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mathematical models, including the log-linear model (Bigelow and
Esty, 1920), theGeeraerd-tailmodel (Geeraerd et al., 2000), theWeibull
model (Mafart et al., 2002; Peleg and Cole, 1998) and the biphasic linear
model (Cerf, 1977) have been shown to appropriately describe the
survival kinetics of Salmonella in low-aw foods (Santillana Farakos
et al., 2013). Of the aforementioned models, the Weibull model
(Mafart et al., 2002; Peleg and Cole, 1998) has been shown to provide
the best description of Salmonella survival kinetics in low aw foods
(Abd et al., 2012; Ma et al., 2009; Mattick et al., 2001; Santillana
Farakos et al., 2013).

Survival kinetics of Salmonella in low-aw foods should be considered
in quantitative risk assessment. Two survival models have been devel-
oped for use in a quantitative risk assessment of Salmonella in almonds
(Danyluk et al., 2006; Lambertini et al., 2012). Both of these models
assume log-linear declines of Salmonella in almonds and do not incorpo-
rate variability and uncertainty. Survival curves of Salmonella in tree
nuts have been shown to be non-linear (Abd et al., 2012; Beuchat and
Mann, 2010; Blessington et al., 2012; Blessington et al., 2013a; Brar
et al., 2015; Kimber et al., 2012; Uesugi et al., 2006). Moreover, the pre-
cision level of a quantitative risk assessment of Salmonella in tree nuts
may be defined by the ability of the risk model to reflect and evaluate
variability and uncertainty separately (Delignette-Muller et al., 2006;
Nauta, 2000; Pouillot et al., 2003). Uncertainty represents the lack of
perfect knowledge of the system, notably of the parameter value,
while variability represents heterogeneity in the population exposure
or response (Nauta, 2000). Additional Salmonella survival data would
be helpful for a variety of tree nuts (e.g. pistachios where the data are
available only from a single reference) and data are lacking for several
others (e.g. chestnuts, cashews, macadamia nuts, pine nuts and
hazelnuts). There is a great variability in the published literature of
Salmonella survival for the same tree nut tested at similar temperatures.
Survival of Salmonella in low-aw foods has been shown to be affected by
many factors including temperature, aw, food composition, strain, and
the experimental conditions of the study (Santillana Farakos et al.,
2014). Models able to predict the dynamics of Salmonella survival in
tree nuts that consider variability and uncertainty will be useful in
assessing the risk of human salmonellosis from consumption of these
products.

The objective of the current study was to develop a mathematical
model to predict survival of Salmonella in tree nuts at typical storage
temperatures (21–24 °C) that incorporated variability and uncertainty
separately and could be readily incorporated into a quantitative risk as-
sessmentmodel. In this manuscript, we specifically focus on presenting
the methodology to derive such a model.

2. Materials and methods

2.1. Data selection

The peer reviewed literature was searched for data on Salmonella
survival in tree nuts using search engines PubMed, Web of Science
and Google Scholarwith keywords such aswater activity, lowmoisture,
temperature, tree nuts, nuts, almonds, pecans, walnuts, pistachios,
modeling, kinetics, inactivation, and survival. The studies to be included
in the analysis were restricted to those inwhich Salmonella survival was
determined at ambient lab temperature (20 to 25 °C) which is a com-
mon storage temperature for tree nuts.Within these studies, data points
with contamination levels lower than 1 cfu/unit were discarded (as-
suming theminimumamount of Salmonella per unit to be 1 cell). Curves
showing increased cell population numbers with timewere not includ-
ed because, as no growth is expected at the usual aw of these nuts, these
curves represent specific conditions that are not expected to fall in the
process modeled here. These need/will be included in a follow-up risk
assessment however. IndependentWeibull models were fit to each rep-
licate and those representing outliers presumably the result of experi-
mental error were not included. Out of the eight studies for which we
received data, seven studies contained data that met the inclusion
criteria: Abd et al. (2012); Beuchat and Mann (2010); Blessington
et al. (2013a,b), Brar et al. (2015); Kimber et al. (2012) and Uesugi
et al. (2006). Substrates included in the analysis comprise almonds, pe-
cans, pistachios andwalnuts. The recoverymedium in the selected stud-
ies was either tryptic soy or bismuth sulfite based agar with different
supplements. For the purpose of this analysis, the recovery medium
was classified as either TSA if it was tryptic soy based or BSA if it was bis-
muth sulfite based, without taking into account the supplements added
to the agar base. Each survival curve obtained from the seven studies is
represented as a unique replicate for our analysis. A total of 111 repli-
cates were included. The largest number of replicates (74 replicates)
were available for Salmonella survival in almonds, followed in decreas-
ing order by walnuts (24 replicates), pecans (7 replicates) and pista-
chios (6 replicates) (see supplementary data ).

2.2. Modeling strategy

The classic approach (frequentist) to model selection is a tradeoff
between the measure of model fit (e.g. deviance statistic) and themea-
sure of complexity (e.g. number of parameters) (Spiegelhalter et al.,
2002). The use of empirical posterior distributions obtained from a
Monte-CarloMarkov Chain (MCMC)within a Bayesian inference frame-
work has been previously described as being the most appropriate
approach to develop mathematical models that incorporate variability
and uncertainty separately (Delignette-Muller et al., 2006; Pouillot
et al., 2003; Rigaux et al., 2013; Teunis et al., 2010). However, model se-
lection using a Bayesian inference framework is complex and time con-
suming. In this study, we developed a strategy for modeling survival of
Salmonella in tree nuts that combines the strengths of the frequentist
and the Bayesian frameworks. We propose using a frequentist frame-
work (testing bothfixed andmixed effectmodels) tofind thebest appli-
cable model to describe the kinetics of Salmonella survival in tree nuts
and using a Bayesian framework to estimate the distribution of the sur-
vival parameters of the model to be implemented in a risk assessment.

2.3. Choosing the best applicable model

In the extensive data collection and analysis of Salmonella survival in
low-aw foods by Santillana Farakos et al. (2013), the Weibull survival
model (Peleg and Cole, 1998) was shown to be the best applicable
model to describe survival kinetics at temperatures ranging from 21 to
80 °C and aw levels below 0.6. Salmonella in low-aw foods typically
show survival curves with a fast initial linear decline followed by slow
decline with a non-zero asymptotic tail. The model is written as:

log10 Ntð Þ ¼ log10 N0ð Þ− t=δð Þρ ð1Þ

whereN0 is the concentration at time 0,Nt is the concentration at time t,
δ is the time to the first log10 reduction, and ρ is a fitting parameter that
defines the shape of the curve. TheWeibullmodel can describe log10 lin-
ear (ρ=1), concave (ρ b 1) and convex (ρ N 1) curves and assumes the
resistance to stress of the population follows a Weibull distribution
(Coroller et al., 2006; Peleg and Cole, 1998). Although the Weibull
model is of an empirical nature, a link can be made with physiological
effects: ρ b 1 indicates that the remaining cells have the ability to
adapt to the applied stress, whereas ρ N 1 indicates that the remaining
cells become increasingly damaged (Peleg and Cole, 1998; van Boekel,
2002).

TheWeibull survival model (Peleg and Cole, 1998) was thus chosen
for further analyses.

2.3.1. Fixed effect models
Using classical nonlinear least squares regression, fixed effect

modelswere used to determine the level of variability in the parameters
δ and ρ of the Weibull model. The parameters δ and ρ can be the same
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for all curves, can vary by substrate (almond, pecan, pistachio, or
walnut) and/or can vary by replicate (with a total of 111 replicates).
The sequences ofmodels tested are provided in Table 1. Two concurrent
fixed effect models were compared using an F-test (95% confidence
level) when onemodelwas nested in the other one.When the two con-
currentmodelswere not nested, theywere compared on thebasis of the
Bayesian Information Criteria (BIC) (Schwarz, 1978). BIC was chosen as
the model evaluation metric because it has a larger penalty term for
models with a higher number of parameters as compared to the Akaike
Information Criterion (AIC). This allows for better discrimination of
models when testing models with a very high number of parameters.
When no F-test was available, a model with a lower BIC was preferred.
2.3.2. Mixed (random) effect models
When using a frequentist framework, an alternative method to con-

sidering variability is the use of mixed effect models. Mixed effects
models include fixed and random factors. A fixed factor considers the
level of interest constant (e.g. per tree nut or per replicate), while a ran-
dom factor considers the levels under study to be a sample from a pop-
ulation. The use of mixed effect models versus fixed effect models
allows the user to generalize the results to a population of studies that
were not included in the analysis (Jaloustre et al., 2012) as would be
needed in a quantitative risk assessment. In addition to fixed effect
models, various mixed effect models were fit to the data based on the
results obtained from the fixed effect models. These mixed effect
models are shown in Table 1. Models were compared using a
likelihood-ratio test (p b 0.05) if nested. When the models were not
nested, the BIC was used to determine the best applicable model.
Table 1
Type of model, model number, model parameters, parameter variability and model to be
compared with for the various fixed effect and mixed effect models based on theWeibull
survival model (Peleg and Cole, 1998).

Type Model
#

Parameter Level of variabilityc Compare with
model #d

Fixed effect 1 δa, ρb None
2 δ Per substrate 1

ρ None
3 δ None 1

ρ Per substrate
4 δ, ρ Per substrate 1, 2 and 3
5 δ Per replicate 1 and 2

ρ None
6 δ None 1 and 3

ρ Per replicate
7 δ Per replicate 1, 2, 3, 4 and 5

ρ Per substrate
8 δ Per substrate 1, 2, 3, 4 and 6

ρ Per replicate
9 δ, ρ Per replicate 1, 2, 3, 4, 5, 6, 7 and 8

Mixed effect 10 δ Random per replicate 1
ρ None

11 δ Random per replicate,
fixed per substrate

1 and 10

ρ None
12 δ Random per replicate,

fixed per substrate
1 and 11

ρ Fixed per substrate
13 δ Random per replicate,

fixed per substrate
1 and 11

ρ Random per replicate
14 δ, ρ Random per replicate,

fixed per substrate
1, 12 and 13

– not applicable.
a Time (in weeks) to the first log10 reduction.
b Parameter defining the shape of the curve.
c Specifies whether the parameter does not vary, varies by substrate and/or varies by

replicate.
d Model(s) provided in this column are nested in the model of this row.
2.3.3. Hierarchical Bayesian model
The best model identified through systematic evaluation of fits for

each of the proposedmodels (described above) was used in a hierarchi-
cal Bayesian model that included uninformative priors. Prior distribu-
tions reflect previous knowledge on the parameters of interest (Gilks
et al., 1996). An inference step then produces a posterior distribution
by conditioning the prior parameter distributions to observed data
(Gilks et al., 1996). The difference between the prior and posterior
distributions can be interpreted as an update on previous knowledge
provided by observed data (Gilks et al., 1996). A direct calculation of
posterior distributions can be very challenging. The MCMC technique
is a very powerful tool that generates chains of simulated values for
parameters with a sampling algorithm that converges to the posterior
distribution of interest (Gilks et al., 1996). The analyses in this study
were performed in line with that described in previous studies
(Delignette-Muller et al., 2006; Pouillot et al., 2003). Briefly, three
Markov Chains of 100,000 values were used and the first 10,000 values
of each chain were discarded in order to reach convergence of the pos-
terior distribution. One value was recorded every 10 iterations until
10,000 values were recorded for each of the three chains to avoid
inter-chain correlation. Convergence was checked using Gelman and
Rubin's convergence diagnostic with a value under 1.1 used as a sign
of convergence (Gelman and Rubin, 1992).

All frequentist models were developed and fit using R (R Core Team,
Vienna, Austria, 2016). The nls function (package stats) was used to fit
the fixed effect models and the nlme function (package nlme) was
used to fit the mixed effect models. Contrasts were tested considering
multiple comparisons (package multcomp). JAGS, through the rJAGS R
library, was used for the Bayesian model fitting (Plummer, 2013). N0

was considered a nuisance parameter specific to each fit. The media
(TSA and BSA) were considered a factor of influence to the fit through
N0 and captured by the variability in δ for a given substrate. Codes are
available in the supplementary data.

3. Results and discussion

3.1. Survival data

In this analysis, the survival data for Salmonella on almonds, pecans,
pistachios and walnuts at temperatures ranging from 21 to 24 °C as re-
ported by each of the studies included in this analysis are presented in
Figs. 1 through 4, respectively. The kinetics represented by these data
were generally characterized by a relatively fast initial population de-
cline during thefirst fewweeks of storage, followed by long termpersis-
tence with slow or no decline over time. The data in Figs. 1 through 4
represent the set of data from a given reference, regardless of replicate
Fig. 1. Salmonella spp. survival at 21 °C b T b 24 °C on almonds as reported in (■)
Blessington et al. (2013a), (■) Abd et al. (2012), (○) Uesugi et al. (2006) and (●)
Kimber et al. (2012).



Fig. 2. Salmonella spp. survival at 21 °C b T b 24 °C on pecans as reported in (○) Beuchat
and Mann (2010) and (■) (Brar et al., 2015). Fig. 4. Salmonella spp. survival at 21 °C b T b 24 °C on walnuts as reported by (○)

Blessington et al. (2013a) and (■) Blessington et al. (2013b).
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or media. Almonds averaged declines of approximately 1 − log10 CFU
after 12 weeks and 2 − log10 CFU after 48 weeks of storage for storage
at ambient temperature (21–24 °C) and aw levels ranging from 0.4 to
0.5 (Fig. 1). After 48 weeks of storage, no significant further reductions
were observed. In the case of pecans, the data from Beuchat and Mann
(2010) at 21 °C and aw levels ranging from 0.4 to 0.6 showed 1 −
log10 CFU reduction after 10 weeks of storage, followed by slower re-
duction in population levels for the remaining weeks up to a total of
78 weeks. Salmonella survival on pecans by Brar et al. (2015) at 22 °C
and a moisture content of approximately 3% (which is equivalent to a
aw of 0.4 (Beuchat, 1978)) showed slightly different results as compared
to that from Beuchat and Mann (2010). Salmonella populations on pe-
cans took 20 weeks for the first log10 reduction and declined by 2 −
log10 CFU after 52 weeks of storage (Brar et al., 2015). In line with the
results seen on almonds and pecans, Salmonella on pistachios at 24 °C
and aw levels of around 0.4 (Fig. 3) was very persistent, with an average
15weeks of storage time to achieve thefirst log10 reduction followed by
an additional 1− log10 reduction during the remaining weeks up to 52
(Kimber et al., 2012). Similar to the other tree nuts, data from
Blessington et al. (2013a) on survival of Salmonella on walnut kernels
at 23 °C and aw levels ranging from 0.4 to 0.5 (Fig. 4) shows the first
log10 reduction at around 5weeks of storage followed by little or no ad-
ditional decline over time (Blessington et al., 2013a,b). These faster ini-
tial declines observed in the pecan data collected by Beuchat and Mann
(2010) compared to Brar et al. (2015) and in the Salmonella survival on
in-shell walnuts (Blessington et al., 2013b) as compared to walnut ker-
nels (Blessington et al., 2013a) could be attributed to the fact that these
studies did not provide time for a relative humidity equilibration period
after the 24 h post inoculation drying time. Overall, differences of
Fig. 3. Salmonella spp. survival at 21 °C b T b 24 °C on pistachios in log10 cfu/g as reported
by Kimber et al. (2012).
Salmonella resistance between nut typeswere already described for pis-
tachios and almonds (Kimber et al., 2012) or X ray resistance almonds
and walnuts (Jeong et al., 2012). While differences in water activity or
tree nut composition clearly have a role, the exact reason of these differ-
ences is not yet fully described.

Statistical analysis of these data, as described in the Materials and
methods section, shows a high degree of variation in Salmonella survival
numbers at the same time point for the same tree nut at similar temper-
atures as illustrated by the parameter estimates for δ in the fixed and
mixed effects models (Tables 3 and 4). The differences in survival for
the various replicates likely reflect the net differences in the observed
survival arising from the combination of differences in relative humidi-
ty, physical characteristics of the various varieties of tree nuts, strain,
study design, and inoculum preparation method (e.g. growth in broth
versus growth on agar, wet versus dry inoculation). The shape parame-
ter,ρ, showed to be variable per tree nut (Table 3,model 12), but the use
of a distribution of ρ within the same tree nut did not improve the
model significantly (Table 3, model 14).

3.2. Fixed effect models

Given the variability of the dataset, the first step in determining the
best applicable model was to fit the Weibull fixed effect models
(Table 1, models 1 through 9) to the dataset to obtain the variability
levels specific to parameters δ and ρ (Peleg and Cole, 1998). Model fit
statistics for the Weibull fixed effect models are presented in Table 2.
As seen in this table, models fit the data better when some level of var-
iability per tree nut is incorporated in parameters δ and/or ρ. The BIC
scores and F-test results showed that model 2 (δ varying per substrate),
model 3 (ρ varying per substrate) andmodel 4 (δ and ρ varying per sub-
strate) were a significantly better fit to the data when compared to
model 1 (no variability included). Additionally, model 4 provided a sta-
tistically significant better fit when compared to model 3 and model 2.
These results emphasize the importance of a predictivemodel of surviv-
al of Salmonella in tree nuts including variability per tree nut in the pa-
rameter describing the time to the first log10 reduction (δ) and the
parameter which defines the shape of the curve (ρ).

Increased predictive value in themodel is observedwhen there is a δ
value for each replicate rather than just for each tree nut (model 5). This
is reflected in the statistical analysis results of the F-test used comparing
model 2 with model 5 (Table 2). It is noteworthy to mention that
models 5, 6, 7, 8 and 9 in Table 2 have a much higher number of param-
eters compared tomodels 1, 2, 3 and 4. The number of parameters in the
model is taken into account in the calculated BIC values and in the F-test.
Models 5, 6, 7, 8 and 9 in Table 2 showed consistently higher BIC values
compared tomodels 1, 2, 3, and4. The quality offit of themodelwas sig-
nificantly improved when, in addition to having a δ value for each

Image of &INS id=
Image of &INS id=
Image of Fig. 4


Table 2
Statistical analysis results of the various Weibull fixed effect models.

Model Parameter estimate δ ± sea Parameter estimate ρ ± seb BICc F-test results

All Almond Pecan Pistachio Walnut All Almond Pecan Pistachio Walnut

1 6.8 ± 0.36 0.50 ± 0.011 4045 –
2 6.0 ± 0.32 10.0 ± 0.68 13.0 ± 1.6 5.3 ± 0.38 0.51 ± 0.011 3919 Better than model 1

(p b 10−4)
3 6.4 ± 0.33 0.52 ± 0.013 0.44 ± 0.013 0.39 ± 0.022 0.53 ± 0.012 3971 Better than model 1

(p b 10−4)
4 6.0 ± 0.41 12.7 ± 1.4 18.6 ± 3.9 4.4 ± 0.47 0.51 ± 0.015 0.58 ± 0.036 0.66 ± 0.098 0.48 ± 0.016 3929 Better than model 2

(p = 0.006)
Better than model 3
(p b 10−4)

5 Multipled 0.51 ± 0.013 4116 Better than model 2
(p b 10−4)

6 5.1 ± 0.28 Multiple 4330 Better than model 3
(p b 10−4)

7 Multiple 0.53 ± 0.022 0.61 ± 0.033 0.68 ± 0.089 0.42 ± 0.018 4092 Better than model 5
(p b 10−4)

8 4.2 ± 0.33 12.5 ± 1.3 18.3 ± 3.3 3.4 ± 0.47 Multiple 4237 Better than model 6
(p b 10−4)

9 Multiple Multiple 4820 Not Better than
model 7 (p N 0.05)
Better than model 8
(p b 10−4)

– Not applicable.
a Time (in weeks) to the first log10 reduction ± standard error.
b Parameter defining the shape of the curve ± standard error.
c Bayesian Information Criterion.
d 111 replicates each with a different parameter average and standard error (data not shown).
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replicate (model 5), the model included a ρ value that varied for each
tree nut (model 7). Indeed, Table 2 shows model 7 has a lower BIC
score compared to model 5. Adding variability per replicate rather
than per tree nut for parameter ρ (model 9) resulted in a higher BIC
score with no added predictive value to the model. A F-test indicates a
much better fit of model 7 when compared to model 2 (p b 10−15).
All in all, the statistical analysis results of the fits using the fixed effect
models suggested that a model incorporating variability of δ per repli-
cate and a fixed ρ value per tree nut (model 7) is the best applicable
model to describe the survival kinetics of Salmonella on almonds, pe-
cans, pistachios and walnuts.

3.3. Mixed effect models

The fitting results with the mixed effects model tested in this study
are presented in Table 3. Model 12 in Table 3 which considers a random
variation of δ per tree nut (rather than a fixed parameter value for each
tree nut) and afixed value of ρ per tree nut, appears to be thebestmodel
compared to simpler (model 10 and model 11) and a more complex
mixed effect model (model 14). Model 13 which also considers a
Table 3
Statistical analysis results of the various Weibull mixed effect models.

Model Parameter estimate δ ± sea Parameter estimate ρ ±

Almond Pecan Pistachio Walnut Almond Pecan

10 6.2 ± .39 0.48 ± 0.011
Sdd: 2.5 No random variation

11 5.9 ± .39 9.9 ± 1.2 11.4 ± 1.6 5.1 ± 0.57 0.48 ± 0.011
Sd: 2.1 No random variation

12 6.0 ± .48 13.6 ± 1.6 17.6 ± 3.4 3.9 ± 0.63 0.49 ± 0.017 0.59 ± 0
Sd: 2.2 No random variation

13 4.72 ± .35 11.9 ± 1.2 11.6 ± 2.0 3.7 ± 0.49 0.45 ± 0.014
Sd: 1.1 Sd: 0.070

14 4.7 ± .37 12.9 ± 1.3 16.1 ± 3.2 3.4 ± 0.49 0.44 ± 0.017 0.57 ± 0
Sd: 1.2 Sd: 0.056

a Time (in weeks) to the first log10 reduction ± standard error.
b Parameter defining the shape of the curve ± standard error.
c Bayesian Information Criterion.
d Standard deviation of the random effect.
random variation of δ per tree nut and a random variation of ρ has in-
creased predictive potential when compared tomodel 11 but is not bet-
ter than a more complex model like model 14 (Table 3). In fact,
statistical analysis results for significant difference testing in the time
to the first log10 reduction (δ) as estimated for the various tree nuts,
after consideration of the multiple comparisons, showed that there are
significant differences in the δ values when comparing almonds versus
pecans (p b 0.001), almonds versus pistachios (p = 0.003), almonds
versus walnuts (p=0.040), pecans versus walnuts (p b 0.001) and pis-
tachios versuswalnuts (p b 0.001). Therewere no significant differences
in the time to the first log10 reduction when comparing δ values for pe-
cans versus pistachios (p = 0.222). Shape parameter values (ρ) were
significantly different for almonds versus pecans (p b 0.001), almonds
versuswalnuts (p=0.03), pecans versuswalnuts (p b 0.001) and pista-
chios versus walnuts (p = 0.04). There were no significant differences
in the shape parameter values for almonds versus pistachios and pecans
versus pistachios (p N 0.05). These results are in line with the model
testing results that showed increased predictability of the survival
model when parameter δ is allowed to vary by tree nut but the value
of ρ per tree nut is fixed.
seb BICc F-test results

Pistachio Walnut

3729 Better than model 1
(p b 10−4)

3721 Better than model 10
(p b 10−4)

.032 0.65 ± 0.085 0.42 ± 0.018 3714 Better than model 11
(p b 10−4)

3722 Better than model 11
(p b 10−4)

.040 0.61 ± 0.081 0.40 ± 0.023 3729 Not better than model 12 (p N 0.05)
Better than model 13 (p b 10−4)



Table 4
Descriptive statistics of the empirical posterior distributions from the Bayesian inference
model describing Salmonella survival at 21 °C b T b 24 °C in almonds, pecans, pistachios
and walnuts.

Variables Mean SD Quantile

2.5% 25% 50% 75% 97.5%

δaalmond 7.7 0.8 6.0 7.2 7.7 8.2 9.2
δapecan 15.6 2.1 11.4 14.1 15.5 16.9 20.0
δapistachio 20.2 3.7 13.1 17.7 20.1 22.7 27.4
δawalnut 3.2 1.4 0.4 2.2 3.2 4.1 5.8
ρbalmond 0.53 0.02 0.49 0.52 0.53 0.54 0.57
ρbpecan 0.61 0.03 0.55 0.59 0.61 0.63 0.67
ρbpistachio 0.69 0.09 0.53 0.63 0.68 0.75 0.91
ρbwalnut 0.43 0.02 0.40 0.42 0.43 0.44 0.47
σc

δ 0.37 0.01 0.36 0.37 0.37 0.38 0.38
σd 4.05 0.61 3.02 3.62 3.99 4.43 5.36

See Eq. (4) for the specification of the parameters.
a Time (in weeks) to the first log10 reduction.
b Parameter defining the shape of the curve.
c Standard deviation of the variability distribution of δ.
d Standard error of the residual.

46 S.M. Santillana Farakos et al. / International Journal of Food Microbiology 227 (2016) 41–50
The BIC scores for themixed effectmodels were lower than those for
the fixed effect models (Tables 3 and 4, respectively). This is because in
the mixed effect models one parameter is estimated to account for rep-
licate variability versus using a parameter for each of the replicates in a
fixed effect model approach. More specifically, the fixed effect model 7
(Table 1) can be written as Eq. (2). In this fixed effect model (Eq. (2)),
there is no constraint regarding the distribution of the δr.

log10 Ntð Þ ¼ log10 N0;e
� �

− t=δrð Þρs þ ε ð2Þ

where N0, Nt, t, δ, and ρ are defined as above, e represents the experi-
mental trials (e = 1, …,194), r in δ represents the replicate (r =
1,…,111), s represent the substrate and ε is an error term that is as-
sumed to follow a normal distribution ε~Normal(0,σ).

The mixed effect model 12would be written as Eq. (3). Models such
as Eq. (3) are built under two assumptions. The first assumption is the
random effect follows a normal distribution. The second assumption is
the random effect is uncorrelated with the explanatory variable (δs
and/or ps).

log10 Ntð Þ ¼ log10 N0;e
� �

− t= δs þ rδð Þð Þρs þ ε ð3Þ

where N0, Nt, t, δ, ρ, e, and ε are defined as above with s in δs and ps
representing the tree nut, almonds, pecans, pistachios or walnuts, and
with the random effect on rδ following Normal(0,σδ).

The mixed effect model considers only one estimated parameter
(σδ) to account for the variability of δ where the fixed effect model
uses 111 parameters. This explains the observed lower BIC scores in
the mixed effect models.

A strong correlation between δ and ρ parameters is expected in
Weibull inactivation models, (Coroller et al., 2006; van Boekel, 2002).
We obtained strong positive correlation coefficients of 0.70, 0.69, 0.87
and 0.51 between δ and ρ for almond, pecan, pistachio and walnut,
respectively.

3.4. Bayesian inference

Transferring correlation between parameters and parameter uncer-
tainty from frequentist inference processes to a quantitative risk assess-
ment is not direct, while essential (Smith et al., 1992). Bootstrap
sampling can be used (Pouillot and Delignette-Muller, 2010). Another
option is to use Bayesian hierarchical modeling (Delignette-Muller
et al., 2006; Pouillot et al., 2003). The advantage of using Bayesian infer-
ence, as compared to the mixed effect model approach, is that Bayesian
modelingmakes it easier to estimate the uncertainty of each parameter
from the posterior distribution obtained (Jaloustre et al., 2012) and to
incorporate it in a subsequent risk assessment model. In fact, Bayesian
inference has been used in previous meta-analyses when developing
models to be used in risk assessment (Delignette-Muller et al., 2006;
Pouillot et al., 2003). For the purpose of this study, a model analog to
model 12wasdeveloped in a Bayesian framework. Thismodel iswritten
as Eq. (4).

log10 Ne;t
� � � Normal log10 N0;e

� �
− t= δrð Þð Þρs ;σ

� �

δr � Normal δs;σδð Þ; with δrN0
ð4Þ

with the following uninformative priors

log10 N0;e
� � � Normal 6;10ð Þ
ρs � Uniform 0;2ð Þ
δs � Uniform 0;40ð Þ
σ−2 � Uniform 0;10ð Þ
σ−2

δ � Uniform 0;10ð Þ

where N0, Nt, t, δr, δs, ρ, and e defined as above, Normal(a, b) stands for
a normal distribution with mean a and standard deviation b and
Uniform(a,b) stands for a uniform distribution with minimum a and
maximum b.

The residuals from the Bayesian model are estimated from the
empirical mean of the posterior distribution of the expected value asso-
ciated with each observation. The residuals appear to be randomly dis-
tributed around the value zero and do not increase as the log10 survival
count for Salmonella increases (see supplemental material). This obser-
vation suggests a good fit of the model to the data.

The descriptive statistics of the empirical posterior distributions of
the survival parameters for Salmonella survival in tree nuts as obtained
with the Bayesian model are provided in Table 4. Higher estimated
survival rates (δ) in weeks are obtained for Salmonella on pistachios
(20.2 ± 3.7), followed in decreasing order by pecans (15.6 ± 2.1),
almonds (7.7 ± 0.8) and walnuts (3.2 ± 1.4). These estimations for pa-
rameters δ and ρ (parameters which define the shape of the curve) are
slightly different from the estimations given by model 12 (mixed effect
model, Table 3). As seen in Table 4 and compared to Table 3, the esti-
mates from the Bayesian inference model for both δ and ρ are generally
larger, with a larger variation than when using the mixed effect model
approach. These estimates differ because i) in the Bayesian hierarchical
model, the distribution of δr is not only assumed to be normal, as in
mixed effect models, but is actually modeled using a normal distribu-
tion; and ii) the prior distribution (evenwhen chosen as uninformative)
may impact the estimates. As seen by the results in Table 4, the variabil-
ity of the δ parameter (as indicated by the standard deviation) is highest
for pistachios (δpistachios) followed in decreasing order by pecans (δpecans)
and walnuts (δwalnuts), all being considerably higher than for almonds
(δalmonds). This precision reflects the number of replicates available for
each tree nut.

3.5. Implementation of the derived survival model in a risk assessment
model

In Table 5, the log10 decrease in survival for Salmonella (as obtained
through the posterior distributions from the Bayesian inference frame-
work) are presented for each tree nut, including an uncertainty and a
variability dimension. The uncertainty dimension was simulated by
sampling values in the MCMC chain. For a given uncertainty iteration
(e.g. u), one needs to consider δu, sdδu, and pu (δu, sdδu and pu are issued
from the same MCMC iteration to preserve the correlation between
those parameters). The variability dimension was calculated by
selecting a value δ using δu,v ~ Normal(δu, sdδu). The log10 decrease L
(log10 cfu/g) was calculated as (t/u ,v)ρu for any time t. Moreover, in
Fig. 5, the median estimate of the log10 reduction levels are presented
as a function of time for almonds, pecans, pistachios and walnuts. As



Table 5
Log10 decrease values for almonds, pecans, pistachios and walnuts at various storage times between 1 and 52 weeks at temperatures ranging from 21–24 °C including the variability and
uncertainty dimensions.

Substrate Time (weeks) Uncertainty dimension Variability dimension

Mean sd 2.5% 25% 50% 75% 97.5%

Almonds 1 Median −0.40 0.29 −0.89 −0.41 −0.33 −0.29 −0.23
Mean −0.40 0.37 −0.92 −0.42 −0.34 −0.29 −0.23
2.5% −0.49 0.13 −1.36 −0.50 −0.39 −0.33 −0.27
97.5% −0.33 1.03 −0.62 −0.35 −0.29 −0.25 −0.20

4 Median −0.83 0.60 −1.87 −0.86 −0.70 −0.60 −0.49
Mean −0.84 0.77 −1.92 −0.87 −0.70 −0.60 −0.49
2.5% −1.00 0.28 −2.80 −1.01 −0.79 −0.67 −0.55
97.5% −0.72 2.16 −1.32 −0.76 −0.63 −0.54 −0.43

12 Median −1.48 1.08 −3.36 −1.54 −1.25 −1.08 −0.87
Mean −1.50 1.38 −3.44 −1.55 −1.25 −1.08 −0.87
2.5% −1.78 0.50 −5.01 −1.78 −1.37 −1.17 −0.96
97.5% −1.31 3.86 −2.37 −1.39 −1.15 −0.98 −0.78

52 Median −3.23 2.35 −7.33 −3.36 −2.73 −2.34 −1.90
Mean −3.27 3.02 −7.49 −3.39 −2.73 −2.34 −1.90
2.5% −3.85 1.09 −10.87 −3.85 −2.96 −2.52 −2.07
97.5% −2.88 8.50 −5.25 −3.05 −2.53 −2.16 −1.73

Pecans 1 Median −0.20 0.04 −0.29 −0.21 −0.19 −0.17 −0.15
Mean −0.20 0.05 −0.30 −0.22 −0.19 −0.17 −0.15
2.5% −0.28 0.02 −0.51 −0.29 −0.25 −0.23 −0.19
97.5% −0.15 0.18 −0.20 −0.16 −0.14 −0.13 −0.11

4 Median −0.46 0.09 −0.67 −0.49 −0.44 −0.40 −0.34
Mean −0.46 0.13 −0.70 −0.50 −0.44 −0.40 −0.34
2.5% −0.61 0.05 −1.13 −0.64 −0.55 −0.49 −0.42
97.5% −0.36 0.41 −0.49 −0.39 −0.35 −0.32 −0.28

12 Median −0.89 0.18 −1.30 −0.96 −0.86 −0.78 −0.67
Mean −0.90 0.24 −1.37 −0.97 −0.86 −0.78 −0.67
2.5% −1.14 0.10 −2.16 −1.21 −1.03 −0.91 −0.78
97.5% −0.74 0.80 −1.00 −0.80 −0.72 −0.66 −0.57

52 Median −2.18 0.43 −3.18 −2.34 −2.09 −1.90 −1.63
Mean −2.21 0.59 −3.35 −2.37 −2.10 −1.90 −1.63
2.5% −2.70 0.25 −5.15 −2.87 −2.44 −2.16 −1.83
97.5% −1.88 1.91 −2.52 −2.02 −1.83 −1.67 −1.44

Pistachios 1 Median −0.13 0.02 −0.18 −0.14 −0.13 −0.12 −0.10
Mean −0.14 0.03 −0.20 −0.15 −0.13 −0.12 −0.11
2.5% −0.26 0.01 −0.41 −0.28 −0.25 −0.23 −0.20
97.5% −0.05 0.09 −0.07 −0.06 −0.05 −0.05 −0.04

4 Median −0.34 0.05 −0.47 −0.37 −0.33 −0.30 −0.26
Mean −0.35 0.06 −0.49 −0.37 −0.34 −0.31 −0.27
2.5% −0.56 0.02 −0.89 −0.60 −0.53 −0.48 −0.41
97.5% −0.19 0.20 −0.25 −0.20 −0.18 −0.17 −0.14

12 Median −0.72 0.11 −0.98 −0.77 −0.70 −0.65 −0.56
Mean −0.73 0.13 −1.03 −0.78 −0.71 −0.65 −0.56
2.5% −1.01 0.06 −1.66 −1.08 −0.96 −0.87 −0.75
97.5% −0.50 0.38 −0.65 −0.54 −0.49 −0.45 −0.38

52 Median −1.97 0.30 −2.69 −2.11 −1.91 −1.76 −1.53
Mean −1.99 0.36 −2.79 −2.14 −1.93 −1.76 −1.53
2.5% −2.39 0.19 −4.03 −2.57 −2.25 −2.02 −1.74
97.5% −1.69 0.93 −2.16 −1.80 −1.66 −1.53 −1.33

Walnuts 1 Median −0.66 0.50 −1.74 −0.70 −0.54 −0.44 −0.35
Mean −0.66 0.56 −1.74 −0.70 −0.54 −0.44 −0.35
2.5% −0.81 0.28 −2.33 −0.86 −0.63 −0.52 −0.40
97.5% −0.52 1.23 −1.16 −0.55 −0.44 −0.38 −0.30

4 Median −1.20 0.91 −3.14 −1.27 −0.97 −0.80 −0.64
Mean −1.20 1.01 −3.15 −1.27 −0.97 −0.81 −0.64
2.5% −1.45 0.52 −4.24 −1.52 −1.13 −0.91 −0.71
97.5% −0.97 2.25 −2.15 −1.02 −0.82 −0.70 −0.56

12 Median −1.92 1.45 −5.03 −2.02 −1.55 −1.29 −1.02
Mean −1.93 1.62 −5.05 −2.03 −1.56 −1.29 −1.02
2.5% −2.31 0.84 −6.83 −2.44 −1.79 −1.45 −1.13
97.5% −1.57 3.62 −3.47 −1.66 −1.34 −1.14 −0.91

52 Median −3.61 2.72 −9.41 −3.81 −2.92 −2.42 −1.92
Mean −3.62 3.05 −9.49 −3.82 −2.92 −2.42 −1.92
2.5% −4.38 1.57 −13.03 −4.62 −3.37 −2.72 −2.11
97.5% −2.95 6.83 −6.51 −3.12 −2.52 −2.15 −1.72
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seen in Table 6 and Fig. 5, higher estimated survival rates (δ) in weeks
are obtained for Salmonella on pistachios, followed in decreasing order
by pecans, almonds and walnuts. These results are in line with those
seen from the estimates of δ with model 12 (Table 3), which show
that Salmonella in pistachios have the highest resistance, followed in
decreasing order by Salmonella in pecans, almonds and walnuts. The
results shown in Fig. 5 visually indicate that almonds and walnuts
have similar survival kinetics and that these are different from those
found for pistachios and pecans (where almonds and walnuts show a
lower resistance). These results are in line with the results from signifi-
cant different testing in the times to the first log10 reduction (δ) as esti-
mated for the various tree nuts and discussed above.



Fig. 5. Top:median estimate of the log10 reduction as a function of time for pistachios, pecans, almonds andwalnutswhere vertical lines represent 0, 1, 4, 12 and 52weeks. Bottom: second-
order Monte-Carlo output of the log10 reductions at 1, 4, 12 and 52 weeks (from left to right) for pistachios, pecans, almonds and walnuts (from top to bottom), including the upper and
lower values (in light gray) and the 2.5th and 97.5th percentiles representing the uncertainty ranges of the estimated value (in dark gray).
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Also shown in Fig. 5 are the outputs of the second orderMonte-Carlo
simulation of the log10 reduction at 1, 4, 12 and 52 weeks for all tree
nuts, including the upper and lower values (in light gray) and the
2.5th and 97.5th percentiles representing the uncertainty ranges of
the estimated value (in dark gray). These modeled uncertainty and var-
iability distributions of the estimates (as shown in Table 5) can be used
to obtain a complete exposure assessment of Salmonella in tree nuts
when including a time–temperature model and consumption data.

Risk assessments for Salmonella in almonds have used log-linear
inactivation models with a point estimate (−0.25 log10 cfu/month as
reported by Danyluk et al. (2006), which is −0.06 log10 cfu/week) or
a variability distribution of the log10 decrease (Normal(−0.0078388,
0.00178) per day as reported in Lambertini et al. (2012), which is
Normal(−0.055, 0.012) per week). In these studies, the log10 reduc-
tions for 7 trials were pooled and a normal distribution was fitted to
the 7 corresponding log10 linear slopes. Our results suggest that the
log-linearmodel is not the bestmodel to describe such data, as reflected
by the very low (significantly lower than 1) values of ρ (parameter
whichdefines the shape of the curve) thatwere estimated.More refined
approaches using frequentist mixed effect models or Bayesian hierar-
chical models are now recommended for such meta-analyses (Diao
et al., 2014; Jaloustre et al., 2012; Pouillot et al., 2003; Silva et al.,
2015). Our protocol evaluated what would be the best model to de-
scribe Salmonella survival data in tree nuts amongWeibull typemodels.
Othermodels describing bacterial survival and inactivation are available
(Geeraerd et al., 2005) and can be used with this same approach.

Image of Fig. 5
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The data used for this study come from a limited number of publica-
tions and the impact of Salmonella strain, laboratory protocols, experi-
mental conditions beyond temperature and water activity and what
time (after inoculation) the authors considered to be time 0 were not
separately accounted for and varied among studies. A more refined ex-
perimental design, in which similar strains would be used in various
laboratories under defined conditions, would be needed to test for dif-
ferences in results when using data from the different studies and envi-
ronmental conditions. Currently, a confounding effect of the strain and
laboratory conditions is present in the data. The results obtained with
this study apply to the survival of Salmonella spp. in almonds, pecans,
pistachios and walnuts at temperatures ranging from 21 to 24 °C. The
model could be further extended to include other tree nuts and incorpo-
rate a secondary model whenever more data are available for other
temperatures and environmental factors such as aw.

4. Conclusions

In this study, a framework is presented to derive a Salmonella surviv-
al model that can be easily implemented in a risk assessment model for
tree nuts and that is able to separate uncertainty and variability. The
evaluation and separation of uncertainty and variability within risk as-
sessments is a recurring recommendation in national and international
guidelines such as CAC (1999); FAO/WHO (2002) and FAO/WHO
(2003) (Delignette-Muller et al., 2006). However, few predictivemicro-
biology model inference frameworks allow this separation. The meth-
odology presented herein employs a frequentist framework to select
the best model structure followed by a Bayesian framework to obtain
a multivariate posterior distribution that can be directly implemented
in a probabilistic risk assessment model. This systematic approach to
modeling could be used for various types of models, including growth,
inactivation and transfer.
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