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Review
The human gut contains a highly diverse microbial com-
munity that is essentially an open ecosystem, despite
being deeply embedded within the human body. Food-
associated fermentative bacteria, including probiotics,
are major sources of ingested bacteria that may tempo-
rarily complement resident microbial communities, thus
forming part of our transient microbiome. Here, we
review data on the fate and activity of ingested bacteria
and, in particular, lactobacilli and bifidobacteria in the
gastrointestinal (GI) tract and their impact on the com-
position and metabolism of the gut microbiome with a
focus on data from clinical studies. In addition, we
discuss the mechanisms involved and the potential im-
pact on the host’s health.

Human gut microbiota
The gut microbiome comprises a diverse and abundant
(1014 cells) microbial community consisting of bacteria,
archaea, and eukaryotes that live in an intimate relation-
ship with the host [1]. There has been a dramatic increase
in interest regarding the composition and function of the
gut microbiome over the past 20 years, largely driven by
the rapid improvement and wide availability of sequenc-
ing-based analysis techniques. Today, a large body of evi-
dence indicates that the gut microbiome plays a key role in
shaping host physiology and the maintenance of gut and
immune homeostasis. Furthermore, the gut microbiome
broadly influences host physiology, both locally in the gut
and remotely at other organs such as the brain and liver
[2,3]. Conversely, the host immune system and secreted
molecules, such as mucus, shape the gut microbiome, and
recent advances in postgenomic and high-throughput tech-
niques have elucidated a myriad of molecular and cellular
mechanisms involved [4,5]. Hence, the gut microbiome is
increasingly recognized as an intervention target with
important potential in the management of health and
disease [6].
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Though deeply embedded in, and closely associated
with, the human body, the GI tract essentially comprises
an open ecosystem. Host genetics plays a role in shaping
gut microbiota, but its influence appears to be limited
compared to that of environmental factors [7–10], the
strongest of these being diet, medication, and age [11–
13]. The microbial communities in the GI tract are contin-
ually exposed to allochthonous bacteria primarily originat-
ing from dietary intake. Despite the resistance of the
resident communities to colonization by ingested organ-
isms, many food-ingested bacteria are capable of transient
integration into the gut microbiota where they may impact
the composition and activity of the resident gut communi-
ties. Hence, they can be regarded as part of our ‘transient
microbiome’ that is both highly dynamic and individual-
ized. Its composition at any time is the result of recent
exposure, the gut ecosystem conditions, diet, and the fit-
ness of the ingested organisms.

In this review we discuss what is known about the
impact of food-derived bacteria on gut microbial communi-
ties with a focus primarily on bifidobacteria, lactic acid
bacteria (LAB), and propionibacteria; due to their applica-
tion in fermented foods, and as probiotics, they are quan-
titatively the most important ingested bacteria.
Specifically, due to their use as probiotics, many research
groups have initiated studies in order to examine how
organisms in these taxa impact the gut microbiota and
the host’s health. Hence, they serve as valuable models for
studying the fate of environmental bacteria in the gut
microbiome [14]. Here, studies on food-borne pathogens
are excluded as these have been reviewed elsewhere and
are often associated with pathological host responses that
indirectly but strongly impact the gut microbiome and
therefore fall outside the scope of this review [15].

Gut microbiome community structure: core, variable,
and transient communities
Following birth, microbial colonization of the gut involves
exogenous bacteria that originate either from the mother’s
microbiota (mainly from the intestine and vagina) or from
other environmental sources. Early colonizers consist
mainly of facultative anaerobes that create a favorable niche
for more strictly anaerobic bacteria that subsequently
dominate the microbiota within a few weeks [16–20]. During
the first 3 years of life, radical dietary changes related
to weaning, antibiotic use, and modifications in host
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physiology all contribute to the highly dynamic nature of the
gut microbiota [21]. The absence of a stable microbiota
configuration contributes to a high susceptibility to gut
infections [22]. Around 2–3 years of age, the gut microbial
communities have developed a richness and diversity that is
characteristic of a healthy adult gut. Further information
about the composition, diversity, and function of the gut
microbiome can be found in other recent reviews [1,23].

Diet is also a major determinant that shapes the gut
microbiome in adults (for reviews, see [24–27]). Healthy,
adult-gut communities respond to dietary challenge but
typically revert to a stable configuration. High bacterial
richness and functional redundancy in gene function con-
tribute to community resilience. In line with these obser-
vations, ingested bacteria typically integrate transiently
into resident communities. Interestingly, commensal com-
munity configurations in the elderly appear to be more
susceptible to environmental challenges. Together with
decreased efficacy of the aging immune system, a more
vulnerable microbiota configuration may increase the
chances of gut pathogenic infections [1,28].

Initial comparative studies revealed large interpersonal
differences in the composition of the gut microbiota. Some
bacterial species are present in the vast majority of the
human population across continents, and these account for
approximately one-half of the number of species identified
in a given individual [29,30]. Recently, it was shown that
some gut species are either abundant or nearly absent in
most individuals. This bimodal distribution is not affected
by short-term diet interventions, and this ecological con-
cept has been referred to as tipping elements, essentially
alternative stable states [31]. Additionally, each individual
harbors a similar number of species that are rare and
which therefore vary greatly among the population; this
is referred to as a ‘variable microbiome’. Many of these
species appear to be true commensals that stably colonize
the intestine [32]. In a recent study, David et al. elegantly
demonstrated that some of the species in the variable
microbiome can be traced back to dietary constituents
[13,33,34]. Several of these were LAB and were re-isolated
from fecal samples. Fecal transcripts of food-ingested bac-
teria made up more than 1% of the fecal transcriptome in
some conditions. Taken together, these data indicate that
the human gut microbiome is comprised of a core and a
variable commensal community that is likely specific and
retained in each individual over prolonged periods. This
community is amended with a transient community
depending on recent diet and environmental exposure.

Most of the data discussed above derive from studies on
fecal material, which is believed to be representative of the
colonic microbial populations. Much less is known about
the microbiome of the small intestine, due mainly to the
fact that it is accessible only with invasive sampling. The
small intestine is the primary site of food digestion, nutri-
ent absorption, and metabolic signaling. Additionally, the
presence of Peyer’s patches and Paneth cells contributes to
interaction between the luminal microbiota and the host
immune system [35]. The small intestine is populated by
distinct microbial communities that are less diverse, com-
pared to colonic communities, and are dominated by Veil-
lonella, Streptococcus, Lactobacillus, and Clostridium
clusters [36–38]. It is noteworthy to mention, in the context
of this review, that these communities are highly special-
ized in the utilization of simple dietary carbohydrates,
much like food-fermenting bacteria (see below) – which
may therefore compete for the same niche in the small
intestine. Microbial population densities in the small in-
testine are much lower than in the colon, ranging from 104

cells per gram in the duodenum to 108 cells per gram in the
terminal ileum. Hence, the consumption of a dose of 1010

ingested bacterial cells is predicted to induce a dramatic
population shift that temporarily overcrowds resident com-
munities and which is likely to impact the host’s immune
and neuroendocrine functions [35] (Box 1).

Major groups of ingested bacteria that can complement
the gut microbiome
Fermented foods and beverages are estimated to make up
approximately one-third of the human diet and are the
major sources of those environmental bacteria that enter
the GI tract [39]. Food fermentations are ancient processes
that date back to the introduction of agriculture and ani-
mal husbandry, approximately 10 000 years ago, when
they were used as a means of conserving foods [40]. A short
description of the major bacteria derived from food, and the
history of their discovery, is given in Box 2. Artisanal
fermentation methodologies, based on serial inoculation
in a process known as back-slopping, have been increas-
ingly replaced by highly controlled, reproducible, and safe
industrial processes using fermenting strains that are
specifically selected for technologic, organoleptic or
health-beneficial properties [41,42]. LAB are most widely
applied and used to produce fermented plant- and animal-
derived foods (milk and meat) but are also frequently found
on (decaying) plant materials [43]. LAB are also found in
the GI tract, and the Lactobacillus/Enterococcus group
typically constitutes around 1% of the fecal bacterial pop-
ulation [44]. Some Lactobacillus species, notably Lactoba-
cillus gasseri and Lactobacillus reuteri, are thought to be
true GI commensals while other species, such as Lactoba-
cillus plantarum, Lactobacillus rhamnosus, and Lactoba-
cillus paracasei, appear to be transient passengers [45,46].

Metabolism in LAB is optimized for the conversion of
simple carbohydrates to primarily lactic acid and, in some
cases, a mixture of acids. Growth is characterized by high
carbon fluxes, rapid acidification, and low growth yield
([47] and references therein). Species such as Lactobacillus
delbrueckii and Streptococcus thermophilus are highly
adapted to the fermentation of dairy substrates and they
display remnants of genome decay indicating advanced
specialization towards the utilization of lactose and the
utilization of dairy proteins as amino acid sources. LAB
that frequently inhabit niches rich in plant-derived carbo-
hydrates can utilize building blocks of complex plant poly-
mers such as (hemi-) cellulose and xylans [48,49]. These
enzyme systems may also contribute to fitness in the gut
environment where plant polymers serve as an important
growth substrate, which may explain the frequent detec-
tion of such species in fecal samples.

Bifidobacteria are Gram-positive bacteria with a high
GC content; they belong to the Actinobacteria phylum and
are the dominant members of the microbiota of breast-fed
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Box 1. Ingested bacteria-mediated microbiome alteration along the GI tract

Information about changes in the composition of the gastrointestinal

(GI) microbiome upon ingestion of bacteria is often derived from fecal

samples. Typically, this reveals small changes, of the order of 1% or

less, which may mask large shifts occurring in the upper GI tract.

Table I shows the taxonomic composition of the microbiome in the

stomach, ileum, and feces, the total number of resident bacteria, and

the predicted population shifts taking into account the volume and

population densities along the GI tract. In this example we assumed a

typical food-microbial exposure of 1010 cells, 10% survival, and no

active replication – resulting in a dose of 109 cells.

The results indicate that major changes occur in the stomach and

small intestine. These are important not only quantitatively, they may

also dramatically alter the relative abundance of major phyla. This is

likely to impact metabolic capacities, microbe–host crosstalk, and host

physiology, and it should provide an important area for future

research.

Table I. Bacterial community along the human GI tract

Taxonomy (phylum level) Resident bacteria

(number/ml or g)

Transit timea Relative abundance of

ingested bacteria compared

to resident bacteriab

Stomachc

102–104 15 min–3 h 100 to 10 000-fold

Small intestine (ileum)d

106–108 2–5 h 0.01 to 1-fold

Colon (feces)e

1010–1011 12–24 h 0.0001 to 0.00001-fold

Firmicutes Bacteroidetes Proteobacteria Ac�nobacteria Other
aFrom [133].

bFor several well-studied ingested bacteria the impact may be underestimated as survival rates may be higher (see text) and growth may occur in the lower GI tract.

Calculations assumed an average ileal volume of 0.5 l and a colonic volume of 2 l [134].

cData from [135].

dData from [136].

eData from [137].
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babies. The successful colonization of the infant gut by
bifidobacteria is due to the ability of some species to utilize
human milk oligosaccharides [50]. The bifidobacterial pop-
ulation in adults typically accounts for more than 1% of
total gut bacteria and is dominated by other species that
harbor an extensive repertoire of enzymes dedicated to the
degradation of host-derived glycans and dietary carbohy-
drates [44,51]. Bifidobacteria convert carbohydrates to
organic acids via the ‘bifid-shunt’, yielding acetic acid
and lactic acid. Finally, Bifidobacterium animalis subsp.
lactis is frequently used as a probiotic. It exhibits an
unusually high oxygen tolerance and is capable of growing
in dairy substrates. It is less frequently recovered than
other species of Bifidobacterium (e.g., longum, bifidum,
adolescentis) in human fecal samples [52], and its presence
is directly correlated with recent ingestion [53]. Hence, B.
animalis is a typical constituent of the transient micro-
biome.

The propionibacteria, forming another genus in the
Actinobacteria, are commonly ingested microbes as they
are used to produce Swiss-type cheeses. Their main
356
fermentation products are propionate, acetate, succinate,
and CO2 [54].

For all the species described above, a few key traits are
important for survival in the GI tract. These include factors
contributing to adhesion to the host (e.g., pili, adhesins,
and other binding proteins) as well as efflux systems and
hydrolases that confer bile-salt tolerance ([55] and refer-
ence therein).

Fate and activity of ingested strains
The abundance of orally ingested strains from fermented
foods and probiotics ranges between 108 and 1012 CFU per
day. After consumption, ingested bacteria enter a hostile
environment where subsequent passage through the stom-
ach and duodenum exposes them to highly stressful phys-
icochemical and biological conditions. Typical stressors in
the stomach are the low pH (<3) and high levels of pepsin,
which are detrimental to most ingested bacteria, leading to
cell inactivation and death. Upon entry into the small
intestine, pH values rise to >6 but cells are exposed to
bile, pancreatin, and lipase. Here, recovery, and even



Box 2. Bacteria hunting: early discoveries and isolation of

common probiotic, intestinal, and dietary bacteria

Ever since the initial discovery of the microbial world, in 1674, by

Antonie van Leeuwenhoek in Delft, The Netherlands, food and

intestinal microbes have been an important focus of pioneering

microbiologists. Lactococcus lactis (formerly named Bacterium

lactis) was isolated from milk in England by Joseph Lister in 1873

[138]. This discovery was soon followed by isolation of the first

Bifidobacterium (originally Bacillus bifidus), which was obtained, in

1900, from the feces of breast-fed infants by the French pediatrician

Henry Tissier (H. Tissier, thesis, University of Paris, 1900). The

universal model organism, Escherichia coli (formerly Bacterium coli

commune), was first described by Theodor Escherich in 1885 and

isolated from the feces of newborns in Germany [139]. Escherichia

coli Nissle 1917, a strain marketed as a probiotic, was isolated

during the first world war by a German, Alfred Nissle, from the feces

of an army officer [140]. Lactobacillus acidophilus (Bacillus acid-

ophilus) was isolated by the Austrian pediatrician Ernst Moro in

1900 from the stool of an infant [141]. Propionibacterium species

(originally named Bacterium acidi-propionici or Bacillus acidi-

propionici) were isolated in 1906 from Emmental Swiss cheese by

von Freudenreich and Orla-Jensen [142].
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growth, of some strains may occur, which can continue in
the colon.

Most studies in humans rely on fecal quantification of
ingested strains, also referred to as ‘persistence’. Essen-
tially, this reflects the dose of ingested strains, the extent of
cell death (mainly in the upper GI tract), and subsequent
replication of surviving cells. Recovery of bacteria in fecal
samples, either measured by cultivation or molecular
approaches, consistently shows variable recovery between
individuals. In most cases, ingested strains are still
detected after a few days but rarely after 1 week [56,57].
Figure 1 illustrates this concept and depicts the variable
and transient integration of B. animalis subsp. lactis
CNCM I-2494 in stool from healthy females who consumed
it as part of a fermented milk product [53].

Very few studies have been performed with the aim of
determining the fate of ingested strains in the upper GI tract
of humans. A mix of 19 Lactobacillus strains (108 of each per
day) given to 13 healthy volunteers for 10 days increased
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Figure 1. Intra- and inter-individual variability in the recovery of ingested

Bifidobacterium animalis subsp. lactis CNCM I-2494 in fecal samples from

14 healthy female twins who consumed a fermented-milk product over a period

of 7 weeks [53]. Green: preconsumption period; pink: consumption period; and

blue: postconsumption period. The gray line represents the detection limit

threshold. Colors indicate samples taken from the same individual. Adapted

from [53].
total Lactobacillus counts in both jejunual and rectal biop-
sies, and strains could still be detected 11 days after discon-
tinuation of consumption [58]. In vitro models have been
successfully used to mimic passage through the GI tract,
aiming to reveal the impact of GI stresses on both survival
and activity of bacterial strains. In some cases, these results
are supported by validation in human subjects [59]. A recent
study investigated survival and persistence in the GI tract of
42 L. plantarum strains in an in vitro system and in human
subjects; it was found that survival involved a high strain
specificity [60]. Strain-specific persistence profiles in the GI
tract, as defined by recovery in feces, were highly consistent
across humans, and the qualitative ranking of persistence in
human subjects and in in vitro systems was highly correlat-
ed. It should be stressed that some of the aforementioned
studies relied on quantification of bacteria by cultivation.
Because bacteria may enter into a viable-but-non-culturable
(VBNC) state after stress exposure, quantification of sur-
vival and fecal persistence may be underestimated in some
cases [61].

Few human studies have attempted to investigate the
activity and physiologic response of ingested strains in the
GI tract. McNulty and coworkers demonstrated that B.
animalis subsp. lactis strain CNCM I-2494, in humanized
mice, strongly upregulates genes required for the utiliza-
tion of xylo-oligosaccharides, which are important building
blocks of dietary hemicellulose [53]. Similarly, using com-
parative transcriptome analysis, L. plantarum 299 v was
shown to specifically adapt its metabolic capacity in the
human intestine for carbohydrate acquisition and expres-
sion of exopolysaccharide (EPS) and proteinaceous cell-
surface compounds [62]. Interestingly, these adaptive
responses converged in both mice and humans.

In conclusion, robustness is highly variable among spe-
cies, with strains of B. animalis, L. casei, L. rhamnosus and
L. plantarum ranking among the most robust. As much as
50% of the orally ingested cells of these strains can survive
gastric passage [63]. Additionally, there is a high strain-to-
strain variation within species, and animal experiments
have shown that survival is influenced further by the co-
ingested matrix, gastric pH, and length of exposure. Final-
ly, some ingested strains have been shown to be metaboli-
cally active in the ileum and colon [64,65].

Human trials
Once ingested strains have entered the gut ecosystem, the
question arises as to whether and how these transiting
bacteria impact resident communities. Here, we catalog
the major findings of clinical studies on probiotics and
fermented foods with respect to their impact on the micro-
biota (Table 1, and see Table S1 in the supplementary
material online), identify whether common trends occur,
and interpret these findings in the context of preclinical
studies that have revealed potential mechanisms of inter-
action between ingested bacteria and commensals.

Several challenges exist in drawing conclusions based
on clinical studies of probiotic effects. First, clinical studies
have been highly heterogeneous, with wide taxonomic
diversity, and heterogeneity in dosage and duration of
consumption of the organisms administered. Second, the
matrix in which the probiotic was delivered has been
357



Table 1. Overview of clinical studies that used next-generation sequencing approaches or metabolomics to study the impact of ingested bacteria on the human gut microbiota

Tested strain Cohort description

(status, gender, age)

Type of study

design and

country of

investigation

Test and control

groups

Intake (duration

form, daily dose)

Gut microbiota

analysis approach

Observed results in test groups

(composition, metabolites,

enzymes)

Refs

16S rRNA-based approaches

Lactobacillus rhamnosus GG Healthy subjects (Ma, Fb)

23–55 years

RDBPCc, Finland Test: n = 9

Control: n = 13

3 weeks;

MPd;

1010 CFU

16S phylogenetic

microarray

No significant impact of gut

microbiota composition and

stability

[67]

Infants

6 months

Open, USA Test: n = 16 Birth until 6 months;

form unknown;

109 CFU

16S phylogenetic

microarray

No difference in gut microbiota [74]

Lactobacillus paracasei Zhang Healthy subjects (M, F)

24–68 years

Open, China Test: n = 24 28 days;

chewable tablet;

1010 CFU

16S sequencing Difference in the composition and

diversity of intestinal microbiota

compared to baseline;

positive correlation of L. paracasei

Zhang with Prevotella, Lactobacillus.,

Faecalibacterium, Propionibacterium,

and Bifidobacterium;

negative correlation of L. paracasei

Zhang with Clostridium,

Phascolarctobacterium, Serratia,

Enterococcus, Shigella, and

Shewanella.

[143]

Lactobacillus reuteri

DSM17938

Cystic fibrosis

patients (M, F)

8–44 years

RDBPC-COe, Spain Test: n = 24 6 months;

chewable tablet;

108 CFU

16S sequencing Decreased total bacterial load;

decreased g-Proteobacteria

[66]

Colicky breast-fed infants

(M, F) 10–60 days old

RDBPC, Italy Test: n = 15

Placebo: n = 14

21 days;

freeze-dried;

108 CFU

16S sequencing No change to the overall composition

of the microbiota

[68]

L. reuteri NCIMB 30242 Hypercholesterolemic

(M, F)

20–75 years

Randomized, UK Test: n = 10 4 weeks;

capsule;

3 x 109 to 1.8 x

1010 CFU

16S sequencing Trend to increase Firmicutes/

Bacteroidetes ratio

[122]

L. paracasei DG Healthy subjects (M, F)

23–55 years

RDBPC-CO, Italy Group A: n = 14

Group B: n = 16

4 weeks;

capsule;

2.4 x 1010 CFU

16S sequencing Increase in Proteobacteria and

Coprococcus;

decrease in Blautia

[144]

Bifidobacterium animalis

subsp. lactis CNCM I-2494

Healthy subjects (F)

18–55 years

RDBPC, USA MP: n = 12

Control: n = 11

No product: n = 13

4 weeks;

MP;

2.5 x 1010 CFU

16S sequencing No change in overall structure [69]

Healthy subjects (F)

21–32 years

Open, USA Test: n = 14 7 weeks;

MP;

2.5 x 1010 CFU

16S sequencing No change in dominant microbiota [53]

Bifidobacterium breve M-16V +

Bifidobacterium longum BB536

Mothers, 4 weeks before

delivery, and infants,

from birth to 6 months

Open, Japan Test: n = 49

Control: n = 15

Mothers: 4 weeks;

infants: birth to

6 months;

capsule;

5 x 109 CFU

each strain

16S sequencing Decrease of Proteobacteria in

mothers;

for infants at 4 months there was

an increase in Bacteroidetes

[76]

Six commercially available

probiotics containing either

Bifidobacterium or

Lactobacillus strains

18 healthy adults (M, F)

19–33 years

Open, Japan Six groups (three

individuals/group)

8 weeks;

MP;

108–1010 CFU

16S sequencing No significant changes in the overall

structure of gut microbiota; changes

in some operational taxonomic units

[77]
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Table 1 (Continued )

Tested strain Cohort description

(status, gender, age)

Type of study

design and

country of

investigation

Test and control

groups

Intake (duration

form, daily dose)

Gut microbiota

analysis approach

Observed results in test groups

(composition, metabolites,

enzymes)

Refs

VSL#3f IBSg subjects (M, F)

31–60 years

Open, Hong-Kong Test: n = 10 4 weeks;

lyophilized;

1.8 x 1012 CFU

16S sequencing Decrease in Bacteroides [78]

Lactobacillus acidophilus NCFM or

Bifidobacterium lactis Bi-07

Children with atopic

dermatitis

7–24 months

RPCh, Denmark Test: Lactobacillus

acidophilus: n = 3

Test: B. lactis: n = 3

8 weeks;

freeze-dried

capsule;

1010 CFU

16S sequencing No change in composition and

diversity of the main bacterial

populations in feces; trends in

increased Faecalibacterium and

Bifidobacterium

[70]

Bifidobacterium longum Bar33 +

Lactobacillus helveticus Bar13

32 healthy subjects (M, F)

71–88 years

RDBPC, Italy Test: n = 16

Placebo: n = 16

1 month;

lyophilized biscuit;

109 CFU each strain

16S phylogenetic

microarray

No increase in Clostridium cluster

XI, Clostridium difficile, Clostridium

perfringens, Enterococcus faecium,

or Campylobacter

[71]

Lactobacillus rhamnosus GG,

Lactobacillus rhamnosus

Lc705, Propionibacterium

freudenreichii subsp.

shermanii JS and

Bifidobacterium animalis

subsp. lactis

Bb12

IBS subjects (M, F)

20–65 years

RDBPC, Finland Test: n = 12

Control: n = 8

5 months;

MP;

1.2 x 109 CFU each

16S phylogenetic

microarray

Stabilization of the microbiota [72]

Metagenomics

Bifidobacterium animalis subsp.

lactis CNCM I-2494

Healthy subjects (F)

21–32 years

Open, USA Test: n = 14 7 weeks;

MP;

2.5 x 1010 CFU

Shotgun

sequencing

No change in microbiota [53]

IBS subjects (F)

20–69 years

RDBPC, UK Test: n = 13

Placebo: n = 15

4 weeks;

MP;

2.5 x 1010 CFU

Quantitative

metagenomics

Increase in species capable of

butyrate production: decrease

in Bilophila

[19]

Metatranscriptomics

B. animalis subsp. lactis

CNCM I-2494

Seven pairs of healthy

twins (F)

21–32 years

Open, USA Test: n = 14 7 weeks;

MP;

2.5 x 1010 CFU

RNA sequencing Increase in expression of genes

involved in polysaccharide

degradation by resident microbes

[53]

Metabolomics

Lactobacillus sp.

HY7801

Bifidobacterium longum HY8004

Lactobacillus brevis HY7401

74 IBS subjects (M, F)

21–55 years

RDBPC, Korea Test: n = 37

Control: n = 36

8 weeks;

MP;

1.2 x 1010 CFU

Nuclear magnetic

resonance

No difference in fecal metabolites;

normalization of serum glucose

and tyrosine in probiotic compared

to healthy individuals

[73]

aM, male.

bF, female.

cRDBPC, randomized, double-blind, placebo-controlled clinical trial.

dMP, milk-product matrix.

eRDBPC-CO, randomized, double-blind, placebo-controlled, crossover clinical trial.

fConsists of Bifidobacterium breve, Bifidobacterium infantis, Bifidobacterium longum, Lactobacillus acidophilus, Lactobacillus delbrueckii subsp. bulgaricus, Lactobacillus plantarum, Lactobacillus paracasei, and Streptococcus

thermophilus.

gIBS, irritable-bowel syndrome.

hRPC, randomized, placebo-controlled clinical trial.
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variable, with bacteria administered either in a dairy
matrix or as a powder or capsule. Third, the reference
samples for analysis of gut microbiota have varied; while
many studies have used a placebo control to determine the
effect of an ingested microbe on microbiota composition
[66–73], other studies have used a baseline sample for
comparison [53,74–78]. Fourth, most studies have been
conducted in the adult population. Finally, the evolution of
analytic techniques is apparent, as early studies examined
changes in the gut microbiota by cultivation, fluorescent
in situ hybridization, and/or quantitative PCR, giving a
less-complete overview of gut microbiota composition
(Table S1).

Several recent studies have used high-resolution next-
generation sequencing approaches (Table 1). It is apparent
that there is no major alteration in the dominant fecal gut
microbiota. However, some studies report an interesting
global impact on the gut microbiota or changes in specific
bacterial groups. For example, Kajander et al. report a
stabilization of the microbiota in an irritable bowel syn-
drome (IBS) cohort, as deduced from an increased similar-
ity index at three time points during the intervention after
consumption of multispecies (five strains) probiotic sup-
plementation [72]. In another study, IBS patients were
given a fermented milk product containing B. animalis
subsp. lactis CNCM I-2494 [19]. Using quantitative meta-
genomics, the fermented milk was reported to reduce the
pathobiont Bilophila wadsworthia, a d-proteobacterium
that is increasingly correlated with impaired health. It
also increased the butyrate-producing potential of com-
mensal communities [19], which corroborates previous
studies in the TRUC mouse model of colitis using the same
fermented milk product; this demonstrates that carbohy-
drate-metabolizing potential and short-chain fatty acid
(SCFA) production are stimulated by this product [79].

Stimulation of known butyrate producers belonging to
the Clostridium cluster IV (Ruminococcaceae) and Clos-
tridium cluster XIV (Lachnospiraceae) has also been ob-
served in other studies, suggesting that it may be a
common result of supplementation with LAB or bifidobac-
teria [75,80,81]. In addition, the inhibition and decrease in
abundance of members of the Proteobacteria, either facul-
tative anaerobes (Enterobacteriaceae) or strict anaerobes
(Bilophila, Desulfovibrio, and others), is reported in recent
metagenomic surveys [19] as well as in older studies
[58,66,82,83].

As the composition of the microbiota in infants and
young children is distinct, relatively unstable, and less
diverse than that of adults, bacteria that are ingested
either during the prenatal period or in the first weeks
after birth may have a large impact on the gut microbiota.
While an increase in the overall richness of the microbiota
has been correlated with improvement in metabolic pa-
rameters in adults [84], breast-fed babies typically harbor
a low overall diversity of microbiota but a high abundance
of Bifidobacterium. Clinical trials with probiotics in this
population have been focused mostly on stimulating the
development of a microbiota like that in breast-fed infants
in formula-fed infants, or focused on decreasing specific
symptoms, such as allergy or colic. In this respect, a
desirable outcome of probiotic supplementation would be
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an increase in the number and diversity of Bifidobacterium
spp. and/or a decrease in the number of potential patho-
gens. Probiotic supplementation with LGG in infants, and
even short-term prenatal consumption of LGG by mothers,
has been shown to increase endogenous Bifidobacterium
colonization in infants [85,86].

While adult and infant microbiota have received most
attention, modulation of microbiota from elderly subjects
has also gained interest in the last decade owing to large
and well-characterized cohorts [28]. Ingested bacteria have
been suggested to revert an age-related increase in patho-
gens [71].

Mechanisms by which ingested bacteria impact
resident communities
Ingested bacteria can impact resident communities via at
least three different mechanisms: through trophic inter-
actions, a direct alteration in fitness, or an indirect alter-
ation in fitness through altered production of host-derived
molecules (Figure 2).

Many ingested bacteria have the ability to rapidly me-
tabolize simple carbohydrates to lactic acid, acetic acid, or
propionic acid. These bacteria may influence and integrate
into trophic networks of dietary carbohydrate degradation,
thereby altering metabolic outputs. In vitro models of GI
fermentation that mimic the complexity of the colonic
ecosystem allow the analysis of the impact of ingested
bacteria on microbial interaction networks to be carried
out independently of host inputs. The more advanced
models may include beads coated with mucins [87], muco-
sal biofilms [88], or the addition of polymer beads [89] to
better simulate the GI tract and avoid rapid washout.
These models may also allow sampling at different colonic
compartments (ascending, transverse, and descending co-
lon) that are otherwise poorly accessible (for reviews see
[90,91]). A number of studies report increased production
of SCFA, which in some cases coincides with an increase in
LAB and/or bifidobacteria (Table S2). For instance, admin-
istration of Enterococcus faecium CRL 183 increased bifi-
dobacteria and SCFA levels, whereas Lactobacillus
acidophilus CRL 1014 increased Bifidobacterium and Lac-
tobacillus as well as acetate in the simulator of human
intestinal microbial ecosystem (SHIME) in vitro GI model
[92]. Similarly, the stimulation of butyrate production by a
fermented milk product containing B. animalis subsp.
lactis CNCM I-2494 [19] might be due to the fact that
bacteria producing lactic and acetic acids stimulate SCFA
production through increased cross-feeding with commen-
sal SCFA producers [93]. Co-culture experiments have
shown that supplementation with Bifidobacterium can
directly stimulate butyrate producers that utilize acetate
or lactate [93,94]. In addition to direct mechanisms, effects
on trophic networks may also include more upstream
conversion steps catalyzed by resident communities. For
example, in a clinical study, consumption of a fermented
milk product containing B. animalis subsp. lactis CNCM I-
2494 increased the expression of genes involved in metab-
olism of complex plant polysaccharides, an effect that was
confined to the period of fermented milk consumption [53].

The trophic impact may not be restricted to the metab-
olism of dietary carbohydrates – it may also be extended to
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EPS, produced by ingested bacteria, that may potentially
serve as a growth substrate for resident commensals (for a
recent review, see [95]). For example, a cell-surface-associ-
ated EPS from Bifidobacterium breve UCC2003 was dem-
onstrated to suppress the murine pathogen Citrobacter
rodentium [96]. In another study, purified EPS from Ped-
iococcus parvulus 2.6 reduced microbial diversity signifi-
cantly [97].

A second mechanism by which ingested bacteria can
impact the host microbiome is by direct stimulatory or
inhibitory effects that alter the presence of certain mem-
bers of resident gut communities. Essentially, modifica-
tions of the physicochemical conditions in the gut
environment can change the fitness of its microbial inha-
bitants. Substrate competition may decrease levels of spe-
cific resident bacteria. As an example, B. breve UCC2003
can use sialic acids [98], and, as a result, it may outcompete
opportunist pathogens such as Salmonella enterica serovar
Typhimurium or Clostridium difficile [99]. Competitive
exclusion can also occur through physical displacement
of commensals or pathogens from adherence sites [100],
which is the case for mannose adhesion [101]. Conversely,
some ingested bacteria produce vitamins, such as vitamin
B12, which is a growth-limiting factor for Bacteroides
thetaiotaomicron [102]. Other studies have identified me-
tabolites, such as precursors of menaquinone (vitamin K)
produced by Propionibacterium freudenreichii ET-3, that
stimulate some strains of bifidobacteria in vitro [103]. Stim-
ulation of bifidobacteria is commonly observed after inges-
tion of propionibacteria [104] or lactobacilli [75,105,106],
potentially through vitamins or undocumented mecha-
nisms.

LAB, in particular, have been extensively studied
for their ability to produce bacteriocins, which can be
361



Review Trends in Microbiology June 2015, Vol. 23, No. 6
broad-range and contribute to major shifts in community
composition, as demonstrated by in vitro studies with gut
simulators [107]. Hence, some groups have successfully
selected bacteriocins, aiming to control pathogens such as
C. difficile. A comparative analysis of the bacteriocin-pro-
ducing Lactobacillus salivarius UCC 118 and a bacteriocin-
knockout mutant revealed a bacteriocin-dependent modu-
lation of gut microbiota at the genus level in mice and pigs
[108].

Due to the high acidification activity of ingested LAB,
these organisms may decrease local pH, which might favor
certain taxa such as butyrate producers [109] or acetogens
[110].

A third mechanism by which ingested bacteria alter
resident communities is indirect, involving a host response
to ingested bacteria that, in turn, modifies the composition
or activity of the microbiota. This has been reviewed
extensively by others [111–113] and is therefore discussed
only briefly here. The intestinal epithelium is protected
from luminal bacteria, pathogens and antigens by several
host-produced components. Among them, secretory IgA
(sIgA), mucus, and antimicrobial peptides are the first line
of defense in protecting the intestinal epithelium from
microbial invasion. sIgA secreted by B cells can coat the
luminal microbiota [114] and maintain homeostasis in
the mucosal barrier. A study in healthy humans, using
fluorescent probes, indicated that 24–74% of fecal bacteria
are coated with sIgA [115]. Consumption of some probiotics
was shown to increase fecal sIgA in humans
[82,116,117]. Mucins are the major glycoproteins of the
mucus layer which forms the physical barrier between
intestinal cells and the lumen. The thin and firm inner
mucus layer is mostly devoid of bacteria, whereas the loose
and thick outer layer is colonized by bacteria [118]. In vitro
studies using cell lines have shown that some probiotics
can increase mucin synthesis (for a review see [113]).
Administration of the probiotic mixture VSL#3 in rats
increased the luminal mucin content [119]. Moreover,
mucins can be nutrients for intestinal bacteria because
they are composed of amino acids and oligosaccharides.
Some intestinal bacteria possess the glycosyl hydrolases
necessary for the degradation of mucin oligosaccharides,
which can be further metabolized by resident microbiota.
Notably, Bifidobacterium bifidum PRL2010 can grow on
gastric mucin as a sole carbon source, and genome analysis
has revealed that this bacterium can use host mucins
[120]. Antimicrobial peptides (including defensins) are
mostly produced by Paneth cells in the small intestine.
Notably, consumption of Escherichia coli Nissle 1917 or
Bifidobacterium lactis Bb12 by healthy individuals led to
enhanced fecal human b-defensins [117,121]. Bile salts are
also key determinants of the fitness landscape. Numerous
ingested LAB and bifidobacteria express bile-salt hydro-
lases which, through deconjugation, can potentially modify
bile-salt profiles in the gut lumen – but surprisingly, only a
few studies have described the impact of bile-salt-hydro-
lase-expressing ingested bacteria on community structure
[122].

Other mechanisms, such as stimulation of the immune
response and barrier integrity, have been extensively
reviewed elsewhere [123,124].
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Concluding remarks and future outlook
Here, we have reviewed data from clinical studies that
describe the impact of ingested bacteria on the resident
microbiota. There is compelling evidence that some
ingested bacteria can reach the small intestine and colon
alive and metabolically active. Here, they make up an
important part of our transient microbiome which, in turn,
is part of the variable microbiome that is repeatedly iden-
tified in comparative microbiome studies.

Microbiota analysis in most clinical studies on adults
has focused on composition profiling on fecal samples.
Despite the large heterogeneity in design and analysis
tools, it is evident that the impact of interventions is
relatively small when compared to dietary or antibiotic
interventions. Multiple studies have reported an impact on
the resident microbiota, and especially an increase in
SCFA production potential and a decrease in members
of the Proteobacteria, in particular, species of the Enter-
obacteriaceae. Moreover, in early life and preterm infants,
the development of the gut microbiota seems to have a
large impact on host health [125]. Although very few
studies have attempted to analyze the impact on micro-
biota functionality, the available studies have revealed
elevated expression of genes encoding carbohydrate utili-
zation enzymes and an increase in SCFA production po-
tential [19,53]. Future studies using these techniques on
larger cohorts should be used to validate such findings. In
addition, the impact on communities in the small intestine
has been largely ignored, though ingested bacteria will
cause major population shifts that are likely to be highly
relevant for host physiology. Dedicated studies combining
a controlled intervention in healthy adults or ileostomy
patients with concomitant microbiota profiling should be
highly instrumental in this respect [35].

Most studies were designed for examining a clinical
endpoint where microbiota analysis was added as a sec-
ondary endpoint and, in many cases, only post-
hoc. Considering the high diversity and high interpersonal
and temporal variation in the composition of the micro-
biota, future studies should preferably be designed specifi-
cally for analyzing an impact on the microbiota
[53]. Specific points of attention should be the control of
environmental factors (in particular, diet), sampling at
multiple time points, and the use of sufficient power to
enable meaningful statistical analysis of the compositional
analysis involving such large numbers of microbial species
and strains. In addition, stratification of individuals based
on their baseline microbiota may be helpful to elucidate
generic and specific modulation by ingested microbes.

Ultimately, a key question is whether the impact of
ingested bacteria reaches beyond pure ecology of the gut
microbiome and impacts host health (Box 3). The clinical
efficacy of ingested bacteria in decreasing the risk of nec-
rotizing enterocolitis in preterm babies by preventing a
bloom of pathogens is an obvious example of the latter
[125]. In this context, the finding that some probiotics
stimulate butyrate production and decrease Proteobac-
teria is encouraging. A decrease in butyrate producers
and a bloom of Proteobacteria is frequently associated
with a state of impaired health or even disease [126].
This includes bowel disorders such as IBS [127] and



Box 3. Outstanding questions

� How can lactobacilli, bifidobacteria and other food-associated

bacteria be selected for their ability to target modulation of the

microbiome?

� What level of microbiome modulation is expected, and necessary,

to impact the host’s health?

� Is there a need for ‘personalized’ or ‘stratified’ probiotics taking

into account the variability of the microbiome across the human

population?

� Can baseline variation in the microbiome explain responders and

non-responders in clinical studies with ingested bacteria?

� What will be the role of specific gut commensals and ‘synthetic

microbiomes’ as next-generation probiotics and therapeutic

microbes?
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inflammatory bowel disease [128] as well as metabolic
diseases such as type 2 diabetes [129,130]. Clearly,
ingested bacteria that target the restoration of butyrate
production, and prevent Proteobacteria blooms, provide an
interesting area for future research. The identification of
other microbial metabolites, such as trimethylamine,
which has been associated with an increased risk of car-
diovascular disease [131], and amino-acid-derived metab-
olites [132], hold promise as additional intervention
targets to improve the host’s health. Rationalizing strain
selection and subsequent clinical validation by monitoring
such key marker metabolites may enable the development
of a new generation of ingested bacteria that target micro-
biome functions important in the prevention and manage-
ment of major health concerns.
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