Risk Mitigation Strategies for Control of *E. coli* O157:H7 and STECs

Harshavardhan Thippareddi, Ph.D.

Professor and Extension Food Safety Microbiologist Dept. of Food Science and Technology University of Nebraska, Lincoln, NE 68583

Foro Técnico Regional: *E. coli*: mitigación del riesgo en campo e industria 10 de diciembre de 2013, Montevideo, Uruguay

Nebraska

EXTENSION

Nebraska Lincoln* EXTENSION **Risk Mitigation Strategies:** *E. coli* O157:H7 and STECs

Approaches to food safety

- Sources of contamination
- Antimicrobial Interventions
 - Hide interventions
 - Carcass interventions
 - Post chill intervention
- Ranking of risk mitigation strategies
- Conclusions

Timeline - New & Innovative Interventions

- 1993 E. coli O157:H7 Pacific Northwest
 - Knife trimming and water washing
- 2009 Multiple meat processing interventions
 - Sequential

* EXTENSION

- Hurdle Technologies
- Primary and Secondary
- At all phases of meat processing

FSIS New Technology Information Table

- http://www.fsis.usda.gov/regulations & policies/New Technology Table Feb 06/in dex.asp
- 37/52 filings (table shows listings for last 12 months) were related to poultry processing
- 12/52 associated with beef processing
 - BPI Use of ammonium hydroxide on carcasses and boneless beef trimmings; anhydrous ammonia on ground beef
 - LA (up to 5%) on hot beef carcasses, beef subprimals and trimmings, heads and tongues
 - OmniLytics E. coli O157:H7 and Salmonella phage sprays to live pre-slaughter cattle hides
 - Cargill NaOH as hide-on carcass wash (post-exsanguination)
 - Tyson 2.5% citric acid for head/offal wash
 - Elmhurst Research Water under pressure in special vessel to kill pathogens in food
 - Agriprocessors Low-pressure 20 ppm Na hypochlorite spray on beef primal cuts after Koshering

University of Nebraska–Lincoln

Nebraska Lincoln EXTENSION

Today's Meat Safety Approach

- Integrated food safety concepts and <u>validated</u> technologies incorporated into a <u>HACCP</u> structure
- Based on <u>science</u> (hopefully)

Jebraska Tincoln* EXTENSION

- systematic and <u>verifiable</u> process control
- microbial kill step(s) -- pasteurization
- secondary barriers to prevent microbial proliferation
- sanitation and GMP pre-requisites
- Performance-based regulatory process
- Focused at the processor level, but with growing emphasis at the agricultural production and consumer levels

Strategies to Control *E. coli* 0157:H7

University of Nebraska–Lincoln

Nebraska Lincoln EXTENSION

Post-Harvest Food Safety Breakdowns

Inadequate processing control

Nebraska Lincoln EXTENSION

- Slow carcass chilling (carcass spacing in hotboxes/coolers)
- Ineffective/marginally effective carcass intervention treatment
- Lack of control in cooking/fermentation/drying protocols in RTE meats

Post-Harvest Food Safety Breakdowns

- Recontamination of thermally processed products (repackaging, slicing, casing removal)
- Inadequate chilling of raw meat materials and processed products
- Raw ingredient contamination (meat trimmings, LFTB, spices)
- Poorly designed and/or operated HACCP and sanitation programs

Nebraska Lincoln[®] EXTENSION

Phebus, Thippareddi - unpublished carcass spacing in hotbox study (ca. 1998)

"The primary responsibility for food safety lies with food manufacturers

not with producers, government inspectors, and not with consumers

although they play a very important role."

University of Nebraska–Lincoln

EXTENSION

Nebraska Lincoln* EXTENSION **Risk Mitigation Strategies:** *E. coli* O157:H7 and STECs

Approaches to food safety

Sources of contamination

- Antimicrobial Interventions
 - Hide interventions
 - Carcass interventions
 - Post chill intervention
- Ranking of risk mitigation strategies
- Conclusions

Correlation of enterohemorrhagic *Escherichia coli* 0157 prevalence in feces, hides, and carcasses of beef cattle during processing

Robert O. Elder, James E. Keen, Gregory R. Siragusa, Genevieve A. Barkocy-Gallagher, Mohammad Koohmaraie, and William W. Laegreid*

United States Meat Animal Research Center, United States Department of Agriculture, Agricultural Research Service, Clay Center, NE 68933

Communicated by Harley W. Moon, Iowa State University, Ames, IA, January 19, 2000 (received for review December 2, 1999)

PNAS | March 28, 2000 | vol. 97 | no. 7 | 2999-3003

University of Nebraska–Lincoln

Nebraska Lincoln EXTENSION

Data Summary

Nebraska Lincoln* EXTENSION

			Carcass			
	Fecal	Hide	Preevisceration	Postevisceration	Postprocessing	
Total samples	91/327	38/355	148/341	59/332	6/330	
Percent positive	27.8 (23.0–33.0)	10.7 (7.7–14.4)	43.4 (38.1–48.8)	17.8 (13.8–22.3)	1.8 (0.7–3.9)	
Lots sampled	21/29	11/29	26/30	17/30	5/30	
Percent lots positive	72.4 (52.5–86.6)	37.9 (20.7–57.7)	86.7 (69.3–96.2)	56.7 (37.4–74.5)	16.7 (5.6–34.7)	
Mean positive/lot, %	26.2 (15.9–36.5)	13.0 (3.5–22.5)	43.4 (31.5–55.3)	18.3 (10.3–26.3)	1.9 (0.2–3.7)	
Range, %	0–100	0–89	0–100	0–78	0-22	

Values are number of samples positive for EHEC O157/total samples taken and percent positive (95% confidence interval).

Prevalence – Fecal, Hide & Carcass

Nebraska.

Lincoln[®] EXTENSION

Fig. 1. Spearman rank correlation of EHEC O157 prevalence in all fecal and hide samples (preharvest) versus prevalence of carcasses positive on any sample (postharvest), by lot. Spearman rank correlation coefficient (r_s) = 0.58 (95% confidence interval 0.27–0.78), P = 0.001, n = 29.

University of Nebraska–Lincoln

Prevalence and Level of *Escherichia coli* O157:H7 in Feces and on Hides of Feedlot Steers Fed Diets with or without Wet Distillers Grains with Solubles[†]

J. E. WELLS,* S. D. SHACKELFORD, E. D. BERRY, N. KALCHAYANAND, M. N. GUERINI, V. H. VAREL, T. M. ARTHUR, J. M. BOSILEVAC, H. C. FREETLY, T. L. WHEELER, C. L. FERRELL, AND M. KOOHMARAIE‡

U.S. Department of Agriculture, Agricultural Research Station, U.S. Meat Animal Research Center, Clay Center, Nebraska 68933-0166, USA

MS 08-550: Received 31 October 2008/Accepted 6 March 2009

Journal of Food Protection, Vol. 72, No. 8, 2009, Pages 1624–1633

University of Nebraska–Lincoln

Nebraska

Distillers Grains - Hide Prevalence

	Diet ^a			
Sample	CON	WDGS	SEM	P value
Feces, avg enumerat	ole ^b			
Day 0	6.4	4.0	2.25	0.50
Growing phase	2.0	3.6	0.81	0.19
Finishing phase	0.1	2.7	0.36	0.0001
Feces, avg prevalence	e			
Day 0	6.7	5.0	2.39	0.63
Growing phase	8.8	17.8	2.05	0.009
Finishing phase	1.5	14.9	1.85	0.0001
Hides, avg enumeral	ple ^b			
Day 0	9.8	11.6	6.61	0.88
Growing phase	1.7	7.4	2.67	0.16
Finishing phase	0.0	5.6	1.95	0.051
Hides, avg prevalence	ce			
Day 0	55.3	54.5	6.61	0.86
Growing phase	42.8	58.5	6.04	0.09
Finishing phase	9.2	32.8	3.29	0.0001

Nebraska

EXTENSION

TABLE 2. Percentage of samples with enumerable levels and prevalence of Escherichia coli O157:H7 in feces and on hides of cattle fed diets with and without WDGS

Fecal Prevalence & Numbers

University of Nebraska–Lincoln

Nebraska

Hide Prevalence & Numbers

University of Nebraska–Lincoln

Nebraska

Hide Prevalence & Numbers

University of Nebraska–Lincoln

Nebraska

Habitats for STEC 0157

Nebraska Lincoln EXTENSION

> % positive by site in 139 show list (slaughter-ready) cattle in 4 non-adjacent feedlot pens June 1999, NE

Keen & Elder, JAVMA, 2002

Nebraska Lincoln* EXTENSION **Risk Mitigation Strategies:** *E. coli* O157:H7 and STECs

- Approaches to food safety
- Sources of contamination
- Antimicrobial Interventions
 - Hide interventions
 - Carcass interventions
 - Post chill intervention
- Ranking of risk mitigation strategies
- Conclusions

Antimicrobial Interventions for Slaughter, Fabrication and Grinding

University of Nebraska–Lincoln

Nebraska

* EXTENSION

Antimicrobial Interventions

Slaughter:

EXTENSION

Nebraska

- Chemical dehairing
- Hide washes
- Hot water rinses
- Steam pasteurization
- Steam vacuum
- Chemical rinses
- Lactoferrin

Antimicrobial Interventions

Fabrication:

Nebraska Lincoln EXTENSION

- Organic acid rinses
- Sanova
- Ozone
- Per-acetic acid
- Lauric Arginate
- Lactoferrin

Antimicrobial Interventions

- Trim for Grinding:
 - Organic acid rinses
 - Ozone

Nebraska Lincoln EXTENSION

- Per-acetic acid
- ASC
- Multiple hurdle technology
- High Pressure Processing
- Ground Beef:
 - Irradiation

Nebraska Lincoln[®] EXTENSION **Risk Mitigation Strategies:** *E. coli* O157:H7 and STECs

- Approaches to food safety
- Sources of contamination
- Antimicrobial Interventions
 - Hide interventions
 - Carcass interventions
 - Post chill intervention
- Ranking of risk mitigation strategies
- Conclusions

Beef hide antimicrobial interventions as a means of reducing bacterial contamination

B.E. Baird, L.M. Lucia, G.R. Acuff, K.B. Harris, J.W. Savell *

Department of Animal Science, Texas Agricultural Experiment Station, Texas A&M University, Meat Science Section, 2471 TAMU, College Station, TX 77843-2471, USA

Received 13 September 2005; received in revised form 28 November 2005; accepted 28 November 2005

Meat Science 73 (2006) 245-248

University of Nebraska–Lincoln

Nebraska

Hide Intervention – Clipped Hair

Least squares means for aerobic plate counts (APCs), coliform, and *Escherichia coli* (*E. coli*) counts and log reductions on brisket area of clipped hides before and after treatment with antimicrobial agents

Indicator	Treatment	$Log_{10}CFU/100$ -cm ²			
organism		Before	After	Reduction ^a	
APC	1% CPC	8.2a	4.4c	3.8a	
	2% L-lactic acid	7.5b	5.2b	2.3b	
	3% Hydrogen peroxide	8.7a	6.5a	2.2b	
	SEM ^b	0.22	0.21	0.28	
Coliform	1% CPC	4.6b	1.3b	3.3a	
r -	2% L-lactic acid	3.7c	1.1c	2.6a	
	3% Hydrogen peroxide	5.2a	2.6a	2.6a	
	SEM ^b	0.20	0.27	0.29	
E. coli	1% CPC	4.3b	1.3a	3.0a	
	2% L-lactic acid	3.2c	1.1b	2.1a	
	3% Hydrogen peroxide	5.1a	2.1a	3.0a	
	SEM ^b	0.24	0.29	0.33	

University of Nebraska–Lincoln

Nebraska.

Hide Intervention – Clipping

Least squares means for the interaction of clipping \times antimicrobial agent on coliform reduction

Antimicrobial	Log ₁₀ CFU/100-cm ² reduction ^a			
	Non-clipped	Clipped		
Water	-0.1d	0.5d		
Alcohol	0.2d	1.8c		
1% CPC	5.3a	4.5ab		
10% Povidone-iodine	2.4c	2.5c		
2% L-Lactic acid	2.8c	4.1b		
3% Hydrogen peroxide	2.2c	3.9bc		
SEM ^b	0.43	0.43		

University of Nebraska–Lincoln

Nebraska Lincoln[®] EXTENSION

Chemical Dehairing

Nebraska Tincoln* EXTENSION

- Uses sodium sulfide solution and subsequent neutralization with hydrogen peroxide
- Removes visible dirt and hair from the hide
- Improves microbiological quality of the carcasses and reduces *E. coli* O157:H7 prevalence

Effect of Chemical Dehairing on the Prevalence of *Escherichia coli* O157:H7 and the Levels of Aerobic Bacteria and *Enterobacteriaceae* on Carcasses in a Commercial Beef Processing Plant[†]

XIANGWU NOU,¹* MILDRED RIVERA-BETANCOURT,¹ JOSEPH M. BOSILEVAC,¹ TOMMY L. WHEELER,¹ STEVEN D. SHACKELFORD,¹ BUCKY L. GWARTNEY,² JAMES O. REAGAN,² AND MOHAMMAD KOOHMARAIE¹

¹U.S. Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal Research Center, P.O. Box 166, Spur 18D, Clay Center, Nebraska 68933-0166; and ²National Cattlemen's Beef Association, 9110 East Nichols Avenue, Centennial, Colorado 80112, USA

Journal of Food Protection, Vol. 66, No. 11, 2003, Pages 2005-2009

University of Nebraska–Lincoln

Nebras

Nebraska Lincoln[®] EXTENSION **Chemical Dehairing – Hide Microbiological Status**

Sample type	No. of samples	APC (log CFU/100 cm ²)	EBC (log CFU/100 cm ²)
Hides ^b			
Treatment group	240	8.1 a (0.5)	5.9 a (0.7)
Control group	240	8.0 a (0.4)	5.7 a (0.6)
Difference ^c		0.1	0.2
Carcasses ^d			
Treatment group	240	3.5 в (0.5)	1.4 в (0.7)
Control group	240	5.5 A (0.7)	3.2 A (1.0)
Difference		-2.0	-1.8

Chemical Dehairing – Hide Microbiological Status

University of Nebraska–Lincoln

Jebrask

[•]EXTENSION

Treatment Group 🛛 Control Group

Nebraska Lincoln* EXTENSION **Chemical Dehairing – Hide Microbiological Status**

	N. C	<i>E. coli</i> O157:H7 ^a		
Sample type	No. of samples	No. positive	% positive	
Hides ^b				
Treatment group	240	161	67 A	
Control group	240	212	88 b	
Carcasses ^c				
Treatment group	240	3	1 A	
Control group	240	120	50 в	

Review

Nebraska Lincoln[®] EXTENSION

Antibacterial activity of decontamination treatments for cattle hides and beef carcasses

Marianne Loretz, Roger Stephan, Claudio Zweifel*

Institute for Food Safety and Hygiene, Vetsuisse Faculty University of Zurich, 8057 Zurich, Switzerland

Food Control 22 (2011) 347-359

Hide Interventions - Individual

Agent/Microorganism	Reduction (\log_{10} CFU)	Application	Contamination	Concentration	Temperature (°C)	Application time (min)	References
Water							
Aerobic bacteria	0.6-0.9/100 cm ²	Sponge	Artificial	_	20	NA ^b	Baird et al. (2006)
	0.1-0.5 cm ⁻²	Spraying	Natural	_	50	0.2	Small et al. (2005)
Coliforms	<0.5/100 cm ²	Sponge	Artificial	_	20	NA	Baird et al. (2006)
Escherichia coli	$0.2/100 \text{ cm}^2$	Sponge	Artificial	_	20	NA	Baird et al. (2006)
Salmonella Typhimurium	0.7 cm ⁻²	Spraying	Artificial	_	24	0.1	Mies et al. (2004)
Steam		-					
Aerobic bacteria	$3.0-4.0 \text{ cm}^{-2}$	Steam	Natural	—	80	0.1-0.3	McEvoy et al. (2003)
Lactic acid							
Aerobic bacteria	3.1 cm ⁻²	Spraying	Artificial	10%	55	0.1	Carlson, Geornaras, et al. (2008)
	2.7-4.1/100 cm ²	Sponge	Artificial	2%	55	NA	Baird et al. (2006)
	2.3/100 cm ^{2a}	Sponge	Natural	2%	55	NA	Baird et al. (2006)
	2.1-2.3/100 cm ²	Spraying	Artificial	10%	55	0.1	Carlson, Geornaras, et al. (2008)
	1.6 cm ⁻²	Spraying	Artificial	10%	23	0.1	Carlson, Geornaras, et al. (2008)
Coliforms	2.8-4.1/100 cm ²	Sponge	Artificial	2%	55	NA	Baird et al. (2006)
	2.7/100 cm ²	Spraying	Natural	10%	55	0.1	Carlson, Geornaras, et al. (2008)
	2.6/100 cm ^{2a}	Sponge	Natural	2%	55	NA	Baird et al. (2006)
Escherichia coli	3.3/100 cm ²	Sponge	Artificial	2%	55	NA	Baird et al. (2006)
	2.7/100 cm ²	Spraying	Natural	10%	55	0.1	Carlson, Geornaras, et al. (2008)
	2.1/100 cm ^{2a}	Sponge	Natural	2%	55	NA	Baird et al. (2006)
Escherichia coli O157:H7	4.3 cm ⁻²	Spraying	Artificial	10%	55	0.1	Carlson, Geornaras, et al. (2008)
	2.9 cm ⁻²	Spraying	Artificial	10%	23	0.1	Carlson, Geornaras, et al. (2008)
Salmonella Typhimurium	1.3–5.1 cm ⁻²	Spraying	Artificial	2-6%	24	0.1	Mies et al. (2004)
Cetylpyridinium chloride							
Aerobic bacteria	4.1-4.6/100 cm ²	Sponge	Artificial	1%	20	NA	Baird et al. (2006)
	3.8/100 cm ^{2a}	Sponge	Natural	1%	20	NA	Baird et al. (2006)
Coliforms	4.5-5.3/100 cm ²	Sponge	Artificial	1%	20	NA	Baird et al. (2006)
	3.3/100 cm ^{2a}	Sponge	Natural	1%	20	NA	Baird et al. (2006)
E. coli	4.5/100 cm ²	Sponge	Artificial	1%	20	NA	Baird et al. (2006)
	3.0/100 cm ^{2a}	Sponge	Natural	1%	20	NA	Baird et al. (2006)

University of Nebraska–Lincoln

Nebraska Lincoln EXTENSION

Hide Interventions - Combinations

Combination/Microorganism	Reduction (log ₁₀ CFU)	Contamination	Temperature (°C)		Applica time (r	ation nin)	Referencess
			1st	2nd	1st	2nd	
Acetic acid and water							
Aerobic bacteria	0.9 cm ⁻²	Artificial	55	23	0.1	0.1	Carlson, Geornaras, et al. (2008)
	0.5 cm ⁻²	Artificial	23	23	0.1	0.1	Carlson, Geornaras, et al. (2008)
Escherichia coli O157:H7	2.6 cm ⁻²	Artificial	55	20	0.5	0.5	Carlson, Ruby, et al. (2008)
	2.1 cm ⁻²	Artificial	55	23	0.1	0.1	Carlson, Geornaras, et al. (2008)
	0.6 cm ⁻²	Artificial	23	23	0.1	0.1	Carlson, Geornaras, et al. (2008)
Salmonella spp.	2.0 cm ⁻²	Artificial	55	20	0.5	0.5	Carlson, Ruby, et al. (2008)
Lactic acid and water							
Aerobic bacteria	1.0 cm ⁻²	Artificial	55	23	0.1	0.1	Carlson, Geornaras, et al. (2008)
	0.5 cm ⁻²	Artificial	23	23	0.1	0.1	Carlson, Geornaras, et al. (2008)
Escherichia coli O157:H7	3.4 cm ⁻²	Artificial	55	20	0.5	0.5	Carlson, Ruby, et al. (2008)
	1.8 cm ⁻²	Artificial	55	23	0.1	0.1	Carlson, Geornaras, et al. (2008)
	0.8 cm ⁻²	Artificial	23	23	0.1	0.1	Carlson, Geornaras, et al. (2008)
Salmonella spp.	2.8 cm ⁻²	Artificial	55	20	0.5	0.5	Carlson, Ruby, et al. (2008)
-							
Acrobic bactoria	0.8 cm-2	Artificial	22	22	0.1	0.1	Carlson Coorparas et al. (2008)
Coliforme	1.5/100 am ²	Altificial	23	23	0.1	0.1	Calliouag New et al. (2008)
Comornis Escherichia coli 0157:117	$\frac{1.5}{100}$ cm ⁻²	Artificial	22	20	0.5	0.5	Carlson Publy et al. (2005)
Escherichia con 0157.H7	2.4 cm^{-2}	Artificial	20	20	0.5	0.5	Carlson, Coorparas et al. (2008)
Calmonalla ann	2.4 Cm 2.6 mm ⁻²	Artificial	20	25	0.1	0.1	Carlson, Geomatas, et al., (2008)
Saimonena spp.	2.0 (11	Altificial	25	20	0.5	0.5	Calison, Ruby, et al. (2008)
Sodium hydroxide and lactic acid							
Aerobic bacteria	2.0-2.4/100 cm ²	Natural	23	55	0.1	0.1	Carlson, Geornaras, et al. (2008)
Coliforms	2.1-2.9/100 cm ²	Natural	23	55	0.1	0.1	Carlson, Geornaras, et al. (2008)
Escherichia coli	2.3-3.0/100 cm ²	Natural	23	55	0.1	0.1	Carlson, Geornaras, et al. (2008)
Sodium hydroxide and chlorine							
Aerobic bacteria	2.1/100 cm ^{2a}	Natural	65	35	0.2	NAb	Boslievac, Nou, et al. (2005)
Enterobacteriaceae	$3.4/100 \text{ cm}^{2a}$	Natural	65	35	0.2	NA	Boslievac, Nou, et al. (2005)
Escherichia coli O157:H7	5.0 cm ⁻²	Artificial	23	NA	0.5	0.5	Carlson, Ruby, et al. (2008)
Salmonella spp.	4.4 cm ⁻²	Artificial	23	NA	0.5	0.5	Carlson, Ruby, et al. (2008)

Nebraska

Nebraska Lincoln* EXTENSION **Risk Mitigation Strategies:** *E. coli* O157:H7 and STECs

- Approaches to food safety
- Sources of contamination
- Antimicrobial Interventions
 - Hide interventions
 - Carcass interventions
 - Post chill intervention
- Ranking of risk mitigation strategies
- Conclusions

"Traditional" Interventions - Slaughter

Nebraska Lincoln* EXTENSION

> Thermal Carcass Pasteurization – Hot Water

- Plant specific monitoring and validation/ verification
- Manual versus automated
- Reduce bacterial load by 1 to 3 log₁₀ (Huffman, 2002)

Hot Water Rinses

*EXTENSION

Nebraska

- Hot water temperatures of >165 °F
- Processing water can be recycled
- Reduces general microbial load as well as *E.* coli O157:H7

Hot Water Rinses

	O. Round	Brisket	Flank
<i>E. coli</i> 0157:H7			
Water Wash	2.7	1.7	1.9
WW + Hot Water	4.0	3.9	3.8
Coliforms			
Hides Before	1.6	1.4	2.4
Carcass After	3.8	3.4	4.0

[@] Log CFU/cm² Reductions University of Nebraska–Lincoln

Castillo et al. 1998

Steam Pasteurization

Uses condensing steam

Nebraska

- Immediate discoloration of the meat; but will bloom within 24 h
- Reduces general microbial load as well as *E. coli* O157:H7

Steam Pasteurization

	Brisket*
<i>E. coli</i> O157:H7	
Water Wash	0.75
Steam Pasteurization	3.53
Coliforms	
Steam Pasteurization	1.25

[@] Log CFU/cm² Reductions University of Nebraska–Lincoln

Nutsch et al. 1998

Steam Vacuum

*EXTENSION

Nebraska

- Utilizes either hot water or steam, subsequently will vacuum the extraneous matter
- Can be used to remove fecal matter or ingesta < 1 cm²
- Reduces general microbial load as well as *E. coli* O157:H7

Steam Vacuum

	Mean log reductions
<i>E. coli</i> O157:H7	
Steam Vacuum	3.11
Coliforms	
Steam Vacuum	2.70
SV + Hot Water	5.10

Nutsch et al., 1998 and Castillo et al. 1998 University of Nebraska–Lincoln

Nebraska Lincoln* EXTENSION **Risk Mitigation Strategies:** *E. coli* O157:H7 and STECs

- Approaches to food safety
- Sources of contamination
- Antimicrobial Interventions
 - Hide interventions
 - Carcass interventions
 - Post chill intervention
- Ranking of risk mitigation strategies
- Conclusions

Chemical Rinses

*EXTENSION

Jehnaska

- Chlorine, Organic acids most commonly used
 - Organic acids lactic, acetic, citric
- Improves microbiological quality of carcasses
- Other chemicals include Per-oxy acetic acid, Acidified sodium chlorite, CPC

Antimicrobial Agents: Classification

Direct Food Additives

Jebraska Lincoln[®] EXTENSION

- Sod. or Pot. Lactates, Buffered sodium citrate, sod. Diacetate and Lactoferrin, Irradiation
- Considered ingredients, need to be labeled as such
- Secondary Direct Food Additives
 - Peroxy acids, ASC, Ozone
 - No labeling requirement

Organic Acid Use

Jebraska Lincoln* EXTENSION

- Organic acids, GRAS approved
 - ► Lactic, acetic, citric, ascorbic, etc.
 - Hot Carcasses Processing aid
 - Chilled carcasses & Trim for Ground beef: Direct food additive
- How to use organic acids as processing aid?
 - Provide supporting data

EXTENSION Know How.

- How to use organic acids as processing aid?
 - Supporting data needed:
 - Fresh color of meat is not preserved
 - No extension in shelf life, should exhibit normal spoilage indicators (discoloration)
 - Nutrient composition not affected (protein not denatured; vitamins not enhanced)
 - Sensory characteristics not affected (color & odor)
 - ► No detectable residues of organic acid in meat

Chemical Rinses: CPC

	Days, Vacuum Packaged & Stored at 4°C					
	0	2	7			
<i>E. coli</i> O157:H7						
Untreated	6.4	5.1	5.0			
Water wash	3.9	3.2	2.8			
1% CPC	ND	ND	ND			
Total Counts						
Untreated	6.4	5.9	6.1			
Water wash	4.1	4.0	4.1			
1% CPC	0.6	0.3	0.6			
No antimicrobial effect in ground beef						

University of Nebraska–Lincoln

Cutter et al., 2000

Chemical Rinses: ASC

Carcasses*	WW	pASC	cASC
I. Round	1.8	3.0	3.1
Brisket	2.9	4.1	4.8
Flank	2.0	3.4	5.1

*Log CFU/g Reductions

Castillo et al., 1999

Chemical Rinses: Chl. dioxide and Ozone

Beef Trim	C#	CLO@	O-15@
E. coli	6.51	0.71	0.14
Coliforms	5.89	0.57	0.44
Salmonella	5.70	0.61	0.78

Initial Populations
@ Log CFU/g Reductions
University of Nebraska–Lincoln

Chemical Rinses: Acetic, Gluconic acids & Trisodium Citrate

Beef Trim	C #	A @	G@	TSC [@]
E. coli	6.51	0.9	0.29	0.14
Coliforms	5.89	1.25	0.19	0.05
Salmonella	5.70	1.47	0.10	0.18

Initial Populations@ Log CFU/g Reductions

Nebraska Lincoln* EXTENSION

University of Nebraska–Lincoln

Stivarius et al., 2002

Chemical Rinses: Multiple Hurdles

Beef Trim	C#	AC@	CC@	CT@
Salmonella	5.81	1.98	1.38	1.17

Initial Populations@ Log CFU/g Reductions

University of Nebraska–Lincoln

Pohlman et al., 2002

Irradiation

Jebraska Tincoln[®] EXTENSION

- Approved at 4.5 kGy for refrigerated meat products
- Approved at 7.0 kGy for frozen meat products
 - Organic acids lactic, acetic, citric
- D₁₀ Values:
 - *E. coli* O157:H7 : 0.27 (vac, 0°C), 0.31 (air, -16°C)
 - Salmonella: 0.62 (air, 4°C), 0.76 (air, -16°C)

Inactivation of Low Inoculum Levels of Pathogens

Dose (kGy)	L.monocytogenes	<i>Salmonella</i> Typhimurium	<i>E. coli</i> O157:H7
0	20 -1,600	30 - 380	30 - 45,000
1.1	<10	<10	<10 - 50
2.2	<10	<10	<10
3.3	<10	<10	<10
4.4	<10	<10	<10

University of Nebraska–Lincoln

ABC Research, NCBA

Nebraska Lincoln[®] EXTENSION Summary of Pathogen Inactivation Rates

	D ₁₀ -Values (kGy) in Raw Red Meats		
	NCBA Gr. Beef Study	Literature	
L. monocytogenes	0.72 - 1.25	0.45 - 1.21	
Salmonella spp.	0.69 - 1.18	0.55 - 1.28	
<i>E. coli</i> O157:H7	0.38 - 0.60	0.24 - 0.88	

Nebraska Lincoln* EXTENSION **Risk Mitigation Strategies:** *E. coli* O157:H7 and STECs

- Approaches to food safety
- Sources of contamination
- Antimicrobial Interventions
 - Hide interventions
 - Carcass interventions
 - Post chill intervention
- Ranking of risk mitigation strategies
- Conclusions

Antimicrobial Interventions -Post Chill

Evaluation of peroxyacetic acid as a post-chilling intervention for control of *Escherichia coli* O157:H7 and *Salmonella* Typhimurium on beef carcass surfaces

D.A. King, L.M. Lucia, A. Castillo, G.R. Acuff, K.B. Harris, J.W. Savell *

Department of Animal Science, Texas Agricultural Experiment Station, 2471 TAMU, Texas A&M University, College Station, TX 77843, USA Received 4 May 2004; received in revised form 24 August 2004; accepted 24 August 2004

Meat Science 69 (2005) 401-407

University of Nebraska–Lincoln

Nebraska

EXTENSION

Post-Chill Interventions - PAA

	Fecal material, without added pathogens, applied to carcass surfaces		Fecal material, with rifampicin-resistant pathogens, applied to carcass surfaces	
	E. coli Type I	Coliforms	E. coli O157:H7	S. Typhimurium
Inside inoculated area ^a				
After water wash ^b	2.7b	2.9b	2.9	2.8a
After chilling ^c	3.8a	3.9a	2.7	1.6b
After peroxyacetic acid ^d	3.9a	4.1a	3.1	1.9b
SEM	0.2	0.2	0.4	0.2
Outside inoculated area ^e				
After water wash	1.3	1.5b	1.3	1.2a
After chilling	1.7	2.1a	1.1	0.4b
After peroxyacetic acid	1.8	1.9ab	1.0	0.4b
SEM	0.2	0.2	0.2	0.1

Least-squares means within a column and lacking common letters (a–c) differ (P < 0.05).

^a Sample taken from 400 cm² to which fecal material was applied.

Nebraska

Lincoln[®] EXTENSION

^b Sample taken from hot carcass surfaces after gross fecal removal with manual and automated carcass wash.

^c Sample taken from carcass surfaces following chilling at 4 °C for 48 h.

^d Sample taken from chilled carcass surfaces after application of 200 ppm peroxyacetic acid and 10 min dwell type.

^e Sample taken from outside the 400 cm² area to which fecal material was applied.

Nebraska Lincoln[®] EXTENSION **Risk Mitigation Strategies:** *E. coli* O157:H7 and STECs

- Approaches to food safety
- Sources of contamination
- Antimicrobial Interventions
 - Hide interventions
 - Carcass interventions
 - Post chill intervention
- Ranking of risk mitigation strategies
- Conclusions

A review of quantitative microbial risk assessment in the management of *Escherichia coli* O157:H7 on beef

Geraldine Duffy ^{a,*}, Enda Cummins ^b, Pádraig Nally ^b, Stephen O' Brien ^a, Francis Butler ^a

^a Department of Food Safety, Ashtown Food Research Centre, Teagasc, Ashtown, Dublin 15, Ireland ^b Biosystems Engineering, School of Agriculture, Food Science and Veterinary Medicine, University College Dublin, Earlsfort Terrace, Dublin 2, Ireland

Received 15 March 2006; received in revised form 24 April 2006; accepted 24 April 2006

Meat Science 74 (2006) 76-88

University of Nebraska–Lincoln

Nebraska

Prevalence on beef

Nebraska

Lincoln[®] EXTENSION

Prevalence and numbers of E. coli O157:H7 at various sample points along the beef chain in Ireland

Sample type	Sample numbers	Number positive (%)	Numbers present (Log ₁₀ CFU)	Reference
Bovine hide	1500	109 (7.3)	$0.13-4.24/100 \text{ cm}^2$	O'Brien et al. (2005)
Beef carcasses	132	4 (3.0)	0.70–1.41/g	Carney et al. (2006)
Head meat	100	3 (3.0)	0.70–1.00/g	O'Brien et al. (2005)
Beef trimmings	1351	32 (2.4)	0.70 - 1.61/g	O'Brien et al. (2005)
Retail minced beef/burgers	1533	43 (2.8)	0.52-4.03/g	Cagney et al., 2004

Nebraska Lincoln* EXTENSION **Effectiveness of Risk Mitigation Strategies (Hypothetical)**

Effect of different hypothetical risk mitigation strategies on reducing the probability of illness

Intervention	Model	Predicted reduction in illness (%)
Lowering average retail storage temperature to 8 °C	Cassin et al. (1998)	80
from 10 °C with worst abuse case of 13 °C	Lammerding et al. (1999)	80
Pre-slaughter treatment/screening of cattle to reduce	Cassin et al. (1998)	46
the concentration of pathogen shed in faeces such that all contamination levels above 4 log CFU/g were eliminated	Lammerding et al. (1999)	25
Information campaign targeting consumers to cook	Cassin et al. (1998)	16
burgers resulting in a shift from 18.6% consuming rare or medium rare ground beef to 12% of such consumers	Lammerding et al. (1999)	16
Use of hot water decontamination giving expected 1–4Log ₁₀ reduction in STEC numbers on carcasses	Lammerding et al. (1999)	99.7
Irradiation of de-boned and frozen trimmings with 1 kGy giving an expected reduction of STEC numbers of 1.3–1.8 Log ₁₀	Lammerding et al. (1999)	97
Eliminating or implementing stricter temperature controls for over-weekend chilling such that the maximum proliferation limited to the same as overnight chilling	Lammerding et al. (1999)	20

Nebraska Lincoln[®] EXTENSION **Impact of Parameters on Probability of Illness**

Impact of various parameters along the beef chain on the probability of illness in consumed ground beef servings as determined by different risk assessment models

	Cassin et al. (1998)	Lammerding et al. (1999)	USDA-FSIS (2001) Ebel et al. (2004)	Duffy et al. (2006)
Sensitivity analysis of impact of factors on probability of illness in ascending order of importance	Concentration of pathogen in faeces Host susceptibility Carcass contamination factor	Concentration of pathogen in faeces Host susceptibility Dilution factor	Surface area of carcass contaminated Effectiveness of carcass chilling Max. population of <i>E. coli</i> O157 in ground beef serving	Initial count on bovine hide Cooking temperature Temperature abuse during transport and storage
	Cooking preference	Temperature of cooking	Home storage temperature	Hide to carcass contamination factor
	Retail storage temperature	Temperature of retail display		Hide Prevalence
	Decontamination during primary processing	Mass consumed		Change in numbers at carcass chilling
	Growth during processing	Washing		
↓	Retail storage time	Prevalence in faeces		
•	Prevalence in faeces	Trimming		
	Mass ingested	Weekend chilling		

Nebraska Lincoln[®] EXTENSION **Risk Mitigation Strategies:** *E. coli* O157:H7 and STECs

- Approaches to food safety
- Sources of contamination
- Antimicrobial Interventions
 - Hide interventions
 - Carcass interventions
 - Post chill intervention
- Ranking of risk mitigation strategies
- Conclusions

Conclusions:

Jebraska Tincoln[®] EXTENSION

- Prevalence and load of *E. coli* O157:H7 and STECs in the cattle feces and hides can vary significantly
 - Day to day and
 - Season to season
- Significant differences within slaughter operations indicate practices can play a major role on prevalence of *E. coli* O157:H7
- Interventions need to be applied at various stages of beef slaughter and fabrication to mitigate the risk of *E. coli* O157:H7

