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Abstract

Non-O157 Shiga toxin–producing Escherichia coli (STEC) are increasingly recognized as foodborne pathogens
worldwide. Serogroups O26, O111, and O103 cause most known outbreaks related to non-O157 STEC. Pa-
thogenicity islands (PAIs) play a major role in the evolution of STEC pathogenicity. To determine the dis-
tribution of PAIs often associated with highly virulent STECs (OI-122, OI-43/48, OI-57, and high pathogenicity
islands) among STEC O26, O103, and O111, a collection of STEC O26 (n = 45), O103 (n = 29), and O111
(n = 52) from humans and animals were included in this study. Pulsed-field gel electrophoresis (PFGE) with
XbaI digestion was used to characterize the clonal relationship of the strains. In addition, a polymerase chain
reaction–restriction fragment length polymorphism assay was used to determine eae subtypes. Additional
virulence genes on PAIs were identified using specific PCR assays, including OI-122: pagC, sen, efa-1, efa-2,
and nleB; OI-43/48: terC, ureC, iha, and aidA-1; OI-57: nleG2-3, nleG5-2, and nleG6-2; and HPI: fyuA and
irp2. A PFGE dendrogram demonstrated that instead of clustering together with strains from the same O type
(O111:H8), the O111:H11 (n = 14) strains clustered together with strains of the same H type (O26:H11, n = 45).
In addition, O26:H11 and O111:H11 strains carried eae subtype b, whereas O111:H8 strains had eae c2/h. The
O26:H11 and O111:H11 stains contained an incomplete OI-122 lacking pagC and a complete HPI. However, a
complete OI-122 but no HPI was found in the O111:H8 strains. Additionally, aidA-1 of OI-43/48 and nleG6-2
of OI-57 were significantly associated with O26:H11 and O111:H11 strains but were almost missing in
O111:H8 strains ( p < 0.001). This study demonstrated that H11 (O111:H11 and O26:H11) strains were closely
related and may have come from the same ancestor.

Introduction

Shiga toxin–producing Escherichia coli (STEC) are
important foodborne pathogens due to their association

with outbreaks and hemolytic uremic syndrome (Karmali
et al., 2003). E. coli O157:H7 is the most important STEC for
its strong association with severe disease and outbreak.
However, public health concerns of non-O157 STEC con-
tinue to increase, and more than 470 non-O157 serotypes
have been associated with human diseases (Blanco et al.,
2004). Among them, serogroups O26, O103, and O111 ac-
counted for 67% cases of non-O157 STEC infection in the
United States from 2000 to 2010 (Gould et al., 2013).

Pathogenicity islands (PAIs) carry various virulence genes
that are usually absent in nonpathogenic strains (Karmali
et al., 2003). In STEC, locus of enterocyte effacement (LEE)
is the most characterized PAI (Coombes et al., 2008). Besides
LEE, other PAIs such as OI-122 (encoding non-LEE-
effectors and adhesins), OI-43/48 (encoding urease, tellurite
resistance proteins, and adhesins), OI-57 (encoding non-
LEE-effectors), and high pathogenicity island (HPI) (en-
coding an iron uptake system) have been found in STEC
(Karch et al., 1999; Nakano et al., 2001; Taylor et al., 2002;
Karmali et al., 2003; Coombes et al., 2008). In this study, we
reported the PAIs distribution in STEC serogroups O26,
O103, and O111 from animals and humans. In addition, their
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FIG. 1. Pulsed-field gel electrophoresis (PFGE) dendrogram of Shiga toxin–producing Escherichia coli (STEC) O26
(n = 45), O111 (n = 52), and O103 (n = 29) with XbaI digestion. The genetic relatedness of the STEC strains was analyzed by
BioNumerics software (Applied Maths, Austin, TX) using unweighted pair group means with arithmetic averages to
construct a dendrogram with a 1.5% lane optimization and 1.5% band position tolerance. stx1 (Shiga toxin 1), stx2 (Shiga
toxin 2), eae (intimin encoding gene). OI-122: pagC (the phoP-activated gene C), sen (Shigella flexneri enterotoxin 2
similar gene), nleB (encoding a host immune response inhibitor), efa-1 (encoding an adhesin), and efa-2 (encoding an
adhesin); OI-43/48: ureC (urease gene), terC (tellurite-resistant gene), iha (encoding an adhesin), aidA-1 (encoding an
adhesin); OI-57: nleG2-3 (encoding a potential host immune response inhibitor), nleG5-2 (encoding a potential host
immune response inhibitor), nleG 6-2 (encoding a potential host immune response inhibitor); high pathogenicity island
(HPI): fyuA (HPI iron uptake–associated gene) and irp2 (HPI iron uptake–associated gene). For each pathogenicity island
(PAI) virulence gene, black square means positive and white square means negative.
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genetic relatedness was analyzed using pulsed-field gel
electrophoresis (PFGE).

Materials and Methods

stx and eae subtyping

stx gene subtype was determined as described ( Ju et al.,
2012b) using EDL933 (stx1a and stx2a), E32511 (stx2c),
EH250 (stx2d), S1191 (stx2e), B2F1 (stx2dact), and N15018
(stx1c) as positive controls. A polymerase chain reaction
(PCR)–restriction fragment length polymorphism was em-
ployed to identify eae subtypes as described (Tramuta et al.,
2008) using TW07920 (e), RDEC-1 (b), and TW01387 (c2/h)
as positive controls. E. coli K12 was used as a negative
control.

Presence of OI-122, OI-43/48, OI-57, and HPI

PCR assays were used to determine the presence of 14
virulence genes in STEC OI-122 ( pagC, sen, nleB, efa-1, and
efa-2), OI-43/48 (terC, ureC, iha and aidA-1), OI-57 (nle2-3,
nleG6-2, and nleG5-2) and HPI (irp2 and fyuA) as described
(Karch et al., 1999; Nakano et al., 2001; Taylor et al., 2002;
Karmali et al., 2003; Coombes et al., 2008). E. coli O157:H7
EDL933 (OI-122, OI-43/48, and OI-57) and O26:H11 SJ-13
(HPI) were used as positive controls, and E. coli K12 as a
negative control.

PFGE

PFGE was performed according to the PulseNet pro-
tocol (http://www.pulsenetinternational.org/SiteCollection
Documents/pfge/5%201_5%202_5%204_PNetStand_Ecoli_
with_Sflexneri.pdf). The genetic relationship of the STEC
O26, O103, and O111 were analyzed with BioNumerics
software (Applied Maths, Austin, TX) as described ( Ju et al.,
2012b).

Statistical analysis

Chi-square or Fisher’s exact test were used to analysis the
data by using SAS9.2 (SAS Institute, Cary, NC). A p-value
of < 0.05 was considered statistically significant.

Results and Discussion

STEC strains were separated into three major clusters by
PFGE, and those in the same clusters tended to share similar
PAI virulence gene profiles (Fig. 1 and Table 1). Cluster 1
mainly consisted of O111:H8 strains (n = 35) and contained
eae-subtype c2/h. All but one strain in cluster 1 were positive
for all OI-122 marker genes but appeared to lack aidA-1 (OI-
43/48), nleG6-2 (OI-57), fyuA (HPI) and irp2 (HPI). Most
O111:H11 (14/16) and all O26:H11 (45/45) formed cluster 2
and carried eae-subtype b. The O111:H11 and O26:H11
strains appeared to have identical PAIs virulence gene pro-
files. O103:H2 contained eae-subtype e1, and most strains
(24/26) belonged to cluster 3. The O103:H2 strains carried all
OI-122 marker genes except for pagC but none of them
contained fyuA or irp2; all but two O103:H2 were only
positive for nleG2-3 (OI-57).

Previously, we found that one or more PAIs virulence
genes could be absent in STEC O157 ( Ju et al., 2013). In this
study, similar findings have been observed in other STEC,
especially in O103 strains, which indicated that PAIs may be
unstable in STEC. In addition, none of O157 strains carried
HPI, but all H11 strains (O26:H11 and O111:H11) contained
this PAI.

Whittam et al. first reported that strains that carry the same
H antigen (O55:H7 and O157:H7) are closely related
(Whittam et al., 1993). Previously, we reported the close
relatedness of H11 strains (O26:H11 and O111:H11) based
on whole genome-wide sequence study, and proposed that
serotypes O26:H11 and O111:H11 may come from the same
ancestor ( Ju et al., 2012a). In this study, we found that

Table 1. Prevalence of Virulence Genes of Pathogenicity Islands (PAI) OI-122, OI-43/48, OI-57,
and High Pathogenicity Island in Shiga Toxin–Producing Escherichia coli O26, O103, and O111

% Isolates Positive for Virulence Gene

PAI Virulence gene O26:H11 (n = 45) O111:H11 (n = 16) O111:H8 (n = 36) O103: H2 (n = 26) O103:H25 (n = 3)

OI-122
pagC 0 0 100 12 100
sen 100 100 100 100 100

nleB 100 100 100 100 100
efa-1 100 100 100 100 100
efa-2 100 100 100 100 100

OI-43/48
terC 100 100 100 73 100
ureC 100 100 100 73 100
iha 100 100 100 73 0

aid-1 91 94 8 73 100

OI-57
nleG2-3 100 100 100 100 67
nleG6-2 89 94 28 0 0
nleG5-2 100 100 100 8 67

HPI
irp2 100 100 0 0 0
fyuA 100 100 0 0 0
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O26:H11 and O111:H11 contained an HPI and incomplete
OI-122, and appeared to carry all marker genes for OI-43/48
and OI-57 (Fig. 1), which supported the hypothesis that the
two serotypes might share a common ancestor. In addition, a
recent clustered regularly interspaced short palindromic re-
peat (CRISPR) study by Yin et al. also support O26:H11 and
O111:H11 might share a common ancestor (Yin et al., 2013).

Strains from the same O group, however, did not belong to
the same cluster based on PFGE, and had different PAIs
virulence gene profiles. For example, the O111:H11 strains
carried eae-subtype b while O111:H8 contained c2/h;
O111:H11 did not carry pagC but O111:H8 contained the
gene; O111:H11 carried fyuA and irp2 but O111:H8 did not;
14 (88%) O111:H11 but only 3 (8%) O111:H8 contained
aidA-1 ( p < 0.001); and 14 (88%) O111:H11 but only 10
(28%) O111:H8 were positive of nleG5-2 ( p < 0.001). In
addition, O103:H25 and O103:H2 were also separated in
PFGE dendrogram and carried different virulence gene pat-
terns (Fig. 1). Similar findings have been reported by other
investigators. For example, Tarr et al. found that STEC O111
(O111:H9, O111:H21, and O111:H8) were located at three
different linkages within the multilocus sequence typing
(MLST) phylogenetic tree (Tarr et al., 2008). O103 strains
(O103:H2, O103:H11, and O103:H25) were shown to be at
different branches based on the MLST phylogenetic tree, and
had different intimin subtypes (Iguchi et al., 2012).

In conclusion, our findings demonstrated that STEC
O26:H11 and O111:H11 contain highly similar PAI viru-
lence genes profiles, and appeared to be closely related.
However, strains sharing the same O antigens appeared to be
not closely related and had different PAIs virulence gene
profiles, indicating that they may have had derived from
different origins and have different pathogenic potentials.
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