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Mathematical models are essentially needed to quantitatively predict microbial growth in
food products during their production and distribution. Recently we developed a new logistic
model for microbial growth. The model is an extended logistic model, which shows a sigmoid
curve on a semi-log plot. The model could precisely describe and predict bacterial growth at
constant and dynamic temperatures in broth, on nutrient agar plates, and in pouched food.
Prediction results with our model were very similar to those with the Baranyi model, which is
well known worldwide. The model also predicted the amount of metabolites (toxins) that
would be produced by a microorganism. Namely, with the growth model and the kinetics of
staphylococcal enterotoxin A production, the amount of the toxins produced by
Staphylococcus aureus in milk was successfully predicted. Our model could be a tool in the

alert system and the quantitative risk assessment of harmful microbes in food.
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Introduction

Consumers are greatly concerned about food
safety at present. It is of utmost importance to ensure
the microbiological safety of food products during
their production and distribution. When food products
are exposed to abuse (high temperatures) during
these processes, the microbial contaminants would
grow. Once the contaminants grow in a food product,
they would not decrease in number even if the food is
later refrigerated. Moreover, if the contaminants in-
clude pathogens like Salmonella, Staphylococcus
aureus, or Verotoxin-producing Escherichia coli, a
food poisoning outbreak could occur. Even if there
were no pathogens, food spoilage could occur with
the increased number of contaminants. Thus, micro-
bial growth in commercial food products should be
estimated to ensure food safety before consumers
eat them.

The Malthus model, an exponential equation, is the
simplest growth model for the description of a popu-
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lation, but the population estimated with that model
increases to infinity with time. On the other hand, the
logistic model is known to be a useful growth model
for a population (Eqg. 1) (Pielou, 1969).

aN N

7=/’N{1_< Nmax>} (1)

Here N is the population at time ¢, r is the rate con-
stant of growth, and N« is the maximum population.
It describes a sigmoidal curve, which successfully fits
growth patterns of populations such as those of hu-
mans and animals (Pielou, 1969). However, as
shown in Fig. 1, the model cannot describe a
sigmoidal curve on a semi-log plot; it can only de-
scribe a curve without a lag phase on the plot.
Microbial growth often shows a sigmoidal curve on
the plot.

The disadvantage of this model has led to the de-
velopment of new growth models in predictive food
microbiology. A lot of models have been developed to
describe microbial growth so far (McMeekin et al.,
1993). Two of the models, a modified Gompertz
model and the Baranyi model, are known worldwide
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FIG. 1. Logistic curves plotted on the Cartesian and semi-
log planes. Both curves are described by the logistic model
with the same parameter values of r=1, Ny=10, and N
=10° Arrows show the corresponding axes.

(Gibson et al., 1987; Baranyi and Roberts, 1995).
The modified Gompertz model is merely an empirical
model and cannot predict growth at varying tempera-
tures. The Baranyi model shows good performance
as shown below, but there is an essential problem in
its concept of modeling microbial growth. That is, the
model is built on the assumption that the concentra-
tion of a substance or substances critical to microbial
growth (such as RNA molecules or ATP) would in-
crease exponentially in a cell during the whole growth
period (Baranyi and Roberts, 1995). However, no in-
tracellular substances in a cell could increase expo-
nentially to infinity during the growth period and there
is always binary fission in the cell cycle. Furthermore,
the model cannot describe a growth curve without a
lag phase.

Thus, we tried to develop a new mathematical
model and then made a model based on the logistic
model (Fujikawa et al., 2003). It successfully de-
scribed and further predicted microbial growth at vari-
ous patterns of temperature (Fujikawa et al., 2004;
Fujikawa and Morozumi, 2005; Fujikawa et al,
2006b).

Characteristics of the new logistic model.
After small modifications, the new logistic model is
shown as follows (Fujikawa and Morozumi, 2005):
aN N

D =N = (7 (1= ey ()

We introduced N.., which is related to the initial
population, N, in the model. Nmn» and N..x are asymp-
totes. Nmn needs to be almost equal to and a bit
smaller than N,. Here we set N, smaller than N, by
one ppm portion of it, being expressed as (1 - 1/10°)
x No. This reduction rate (1/10°) practically produced
the smallest differences between the calculated and
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FIG. 2. New logistic curves plotted on the Cartesian and
semi-log planes. Both curves are described with the same
parameter values of r=1.3, m=1, n=3.5, N,=10°, and
Nnx=10". Arrows show the corresponding axes.
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FIG. 3. Effect of parameter m on the new logistic curve.
Here r=1.2, n=3. Curves are described with various val-
ues of mfor A5, B 1, C 0.5, and D 0.25.
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FIG. 4. Effect of parameter n on the new logistic curve.
Here r=1.3, m=1. Curves are described with various val-
ues of n for A. 20, B. 3.5, and C. 2.5.

measured cell populations (Fujikawa et al., 2003). m
and n are parameters. We now call Eq. 2 a generic



form of the model.

In the model, the population of a target microbe
monotonously increases from Ny, t0 Nnex With time.
The growth rate by the model (Eq. 2) at the begin-
ning is suppressed by the term of 1-(N../N)”, be-
cause N is almost equal to N.., and thus value of
Nnn/N is almost one. Also the growth rate at the sta-
tionary phase is suppressed by the term of 1-(N/
Naa)™, because N is almost equal to Ny and thus
value of N/Nq.x is almost one. The growth rate in the
log phase is the maximum and almost constant.
These characteristics of the model make it depict a
sigmoidal growth curve. The model describes a
sigmoidal curve on a semi-log plot, as shown below.
Also it can describe a sigmoidal curve on the
Cartesian plane (Fig. 2). This means that the model
can be applied to describe the sigmoidal population
curves of humans and other living things as well.

Parameter m is a curvature parameter. With a
larger m, the curvature of the deceleration phase with
the model is smaller (Fig. 3). Parameter n is a pa-
rameter related to the period of lag, /ag. With a larger
n, the period of lag is shorter (Fig. 4).

Growth at constant temperatures.

The new logistic model was compared with the
modified Gompertz and Baranyi models for £ coli
growth in nutrient broth at constant temperatures. All
the models described growth curves well (Fig. 5)
(Fujikawa et al. 2004). Curves described by the new
logistic model were very similar to those by the
Baranyi model. The Gompertz curves were more vari-
able throughout growth.

For r and /ag, which are the key parameters to
characterize a growth curve, the model gave the best
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FIG. 5. Comparison of models for £. coli growth in broth at
27.6°C. Closed circles are measured values. NLM : New lo-
gistic model, Bar : the Baranyi model, Gom : the modified
Gompertz model.
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FIG. 6. Comparison of models for £. coli growth in broth: A.
rate constant of growth, B. duration of the lag period. @,
New logistic model ; A, the Baranyi model ; ll, the modi-
fied Gompertz model. The straight line is the line of equiva-
lence.

estimates among the models (Fig. 6A, B) (Fujikawa
et al., 2004). These results were also obtained for £
coli growth on the surface of a nutrient agar plate
(Fujikawa and Morozumi, 2005). The Gompertz
model had a tendency to overestimate r and /ag (Fig.
6A, B).

Temperature dependency of r for £. coli growth in
broth was well described with the Arrhenius model
(Fig. 7) (Fujikawa et al. 2004). The regression line in
the figure was expressed as follows.

inr=21.0—6230/T (3)

With this equation, we could estimate value of r at
temperature 7. Values of r at the temperatures stud-
ied were also precisely described with the square
root model (Eqg. 4) (McMeekin et al., 1993).
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FIG. 7. Temperature dependency of the rate constant for £
coli growth in broth. Closed circles are measured values.
The straight line depicts the linear regression line.
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FIG. 8. £ coli growth curves at 34°C under various condi-
tions. Curves show growth in broth, on agar plate surface,
and in a pouched food that is described with the new logis-
tic model. The unit of the viable cell number is expressed
as CFU only, because each unit varies with its environment,
like CFU/g and CFU/ml.

V'r=0.0452 (T—1.93) 4)

On the other hand, growth curves under various at-
mospheric conditions at a given temperature were
very similar to each other. £. coli growth curve in nu-
trient broth was very similar to those on the surface of
a nutrient agar plate and in mashed potatoes in a
pouch (Fig. 8) (Fujikawa et al., 2006a). These re-
sults suggested that regardless of the differences in
physical (atmospheric) conditions, the growth kinet-
ics of bacterial cells (facultative microbes) were
identical at places where the nutrient conditions were
good. Furthermore, it means that a growth model can
describe microbial growth at those places.

Growth prediction at dynamic temperatures.
The temperature of an actual food from its
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FIG. 9. £. coli growth prediction in broth with the new logis-
tic model. Closed circles are measured cell numbers. Thick
and thin lines depict the growth predicted with the model
and the temperature of the broth, respectively.
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FIG. 10. £ co/i growth prediction on a nutrient agar plate
surface with the new logistic model. Closed circles are
measured cell numbers. Thick and gray lines depict growth
predicted with the new logistic model and the Baranyi
model, respectively. A thin periodic line depicts the tem-
perature of the plate.

production to consumption varies with time. To pre-
dict microbial growth at dynamic temperatures with a
mathematical model, the rate constant of growth, r at
time ¢ during the period is needed. Value of r is esti-
mated from temperature 7 at time ¢ with the Arrhenius
model (Eg. 3) and then embedded into the growth
model (Eq. 2). The new logistic model successfully
predicted £. coli growth at dynamic temperatures un-
der various conditions. That is, the model could pre-
cisely predict bacterial growth in broth (Fig. 9), on
the surface of a nutrient agar plate (Fig. 10), and in
mashed potatoes in a pouch (Fig. 11) (Fujikawa et
al., 2004; Fujikawa and Morozumi, 2005; Fujikawa et
al., 2006b). The prediction with the model was very
similar to that with the Baranyi model, as shown in
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FIG. 11. £ coli growth prediction in a pouched food with
the new logistic model. Closed circles are measured cell
numbers. Thick and gray lines depict growths predicted
with the new logistic model and the Baranyi model, respec-
tively. A thin periodic line depicts the temperature of the
plate.
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FIG. 12. S. aureus growth and SEA production in milk at
32°C. @, measured cell numbers; I, measured SEA
amount. Thick and gray lines depict the growth predicted
with the new logistic model and the Baranyi model, respec-
tively. The straight line is the line of linear regression for the
SEA amount. The arrows show the intersection of the re-
gression line of SEA with the horizontal axis corresponding
with a point at the staphylococcal cell number of about 10%°
CFU/ml.

Fig. 10 and 11.

These results showed that the new logistic model
could precisely describe and predict microbial growth
at various patterns of temperature.

Prediction of microbial toxin production.
Staphylococcal enterotoxins are harmful metabo-
lites that cause emesis in humans. There was an
widespread Staphylococcus aureus food poisoning
outbreak among patients who ingested dairy pro-
ducts in Osaka, Japan in 2000. Thus, S. aureus
growth and its enterotoxin production in commercial
milk products were studied with the new logistic
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FIG. 13. Prediction of S. aureus growth and SEA produc-
tion in milk at a dynamic temperatures with the new logistic
model. A. the temperature profile of the milk. B. @, meas-
ured cell numbers; I, measured SEA amount. Curves are
described with the model.

model. S. aureus growth in milk at constant tempera-
tures from 14 to 36.5°C was precisely described with
the model, similar to the £. coli growth studied above.
The amount of staphylococcal enterotoxin A, SEA in
milk initially increased linearly with time from a time
when the cell population reached about 10°° CFU/ml
at these temperatures (Fig.12) (Fujikawa and
Morozumi, 2006). Thus, the toxin production was
supposed to be a zero-order reaction. The rate con-
stant of the reaction was also evaluated at various
temperatures. With parameter values obtained at the
constant temperatures, the model successfully pre-
dicted bacterial growth in milk at varying tempera-
tures. For the toxin level estimation, we postulated
that the rate of toxin production might be regulated
with the temperature after the cell concentration
reached 10°° CFU/ml; the time point when the cell
concentration reached that value was predicted with
the growth model. The toxin production predicted
with this algorithm was about two times greater than
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that measured. With a correction factor in the toxin
estimation, the toxin level in milk was successfully
predicted at varying temperatures (Fig. 13)
(Fujikawa and Morozumi, 2006). These results
showed that this prediction system consisting of the
growth model and the toxin production algorithm
might be a useful tool for modeling the growth of bac-
teria and their metabolite production in foods.

The new logistic model has been found to be a use-
ful tool to analyze and predict microbial growth in
food, as reviewed above. In the near future we would
like to show how the model can be applied to actual
food safety systems.
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