Agriculture et Agroalimentaire Canada

Risk Mitigation in Reducing Thermal Processing with Hurdle Technologies: A Challenge Study in the Canning Industry with *Clostridium botulinum*

> Savard, Tony¹; Barrette, Julie¹; Marcotte, Michele¹; Zareifard, Reza¹; Grabowski, Stefan¹; Lecompte, Jean-Yves¹ FRDC, Agriculture and Agri-Food Canada, St-Hyacinthe, QC, Canada

Agriculture and

Agri-Food Canada

ANS de RECHERCHE en AGRICULTURE YEARS of AGRICULTURAL RESEARCH

S'enraciner dans la science • Innover pour l'avenir Rooted in Science • Innovating for the Future

Context

- 200th anniversary of Nicolas Apert's book publication
- Fruits and vegetables intake in Canada : still inferior to recommendations

Fresh vegetables	Canned vegetables
✓Nutritive value	✓Safe
✓Texture, Color, Taste	✓Easy to use
-Stock shortage risk	-Nutritive value
-Microbial contamination	-Texture, Color, Taste
-Time-consuming	

Introduction

- This project has been selected by the Quebec Fruit and Vegetable round table: a committee of federal, provincial governments researchers and vegetables processors suggested innovative ways to improve vegetables offer on the market.
- Canned vegetables are often perceived as overcooked products, mushy or soft, with less nutritional value. We reach the conclusion that a slight acidification combined with reduced thermal process could be a good way to create new markets for canned vegetables as repeatedly suggested many times in literature.
- New theories on thermal processing models and microbial inactivation of spores also appears to justify some research evaluation to meet legislation standards.

Hurdle Technologies

Synegistic Effetcs

Acidification Advantages

- Effect of the acidification:
 - Thermal resistance of bacteria and bacterial spores (D-value): decrease with the pH
 - Acidification inhibit recovery and germination of injured spores
- D-z values in the literature are mainly measured:
 - At pH 7 (maximum resistance)
 - In water or other liquid media (phosphate buffer, tryptone)
- A few data are available on bacterial inactivation kinetics:
 - In the pH 4.6-5.0 range
 - In real food matrix

Aim of the Project

This project was mostly directed to:

- 1. Review of the calculation models used to define the sterilization processes for canned vegetables.
- 2. Evaluate the thermoresistance of pathogen and spoilage microorganisms, and compare the destruction kinetics models.
- Determine the technical feasibility of minimally processed vegetables in cans (pH 4.8 and 5.0, using different acidulant types and concentrations with minimal thermal treatment), including sensory evaluation tests.
- 4. Microbiologically validate the efficiency of processes combining minimal thermal treatments and acidification at the pilot-scale study.

Shell Experimental Design

Shell Experimental Design

Example of uniform shell experimental design with two independent variables: target lethality (F_o) and acid concentration (C). It is a 2 factorial experiment with 5 levels of C (1 central, 2 higher and 2 lower levels); and 3 levels of F_o (1 central, 1 lower and 1 higher level).

	First Set		Second Set			Third Set			
Coded	No of Exp	C(%)	Fo	No of Exp	C (%)	F。	No of Exp	C (%)	Fo
-2	4	1,5	1,4	12	0,01	0,73	17	0,01	2,07
-1	3	2	0,73	13	0,5	1,4	18	0,5	2,74
-1	5	2	2,07	11	0,5	0,01	13	0,5	1,4
0	7	2,5	1,4	14	1	0,73	20	1	2,07
0	8	2,5	1,4	15	1	0,73	21	1	2,07
0	9	2,5	1,4	16	1	0,73	22	1	2,07
1	6	3	2,07	4	1,5	1,4	4	1,5	1,4
1	2	3	0,73	10	1,5	0,01	19	1,5	2,74
2	1	3,5	1,4	3	2	0,73	5	2	2,07

The levels of each variable could be unlimited, replicated experiments are in red.

Sensory Evaluation for Lactic Acid and GDL

9

Microbial Kinetics Design

Stainless Tubes for BioSafety Consideration

Microbiological Methods

- 3 Food matrices Green beans in brine non-acidified (pH ≈ 5.8), acidified with Lactic acid or with GDL (pH ≈ 4.8)
- 3 Groups of microorganisms
- 2 Levels of experimentation in Tubes (Glass/Stainless) and in Cans

	Clostridium sporogenes (surrogate)	Clostridium botulinum (cocktail)	Geobacillus stearothermophilus (spoilage)
Strain	PA 3679 (ATCC #7955)	62-A, PC0101AJ0, 13983B	ATCC #12980
Spore production	RCM, 37°C, anaerobiosis	RCM, 37°C, anaerobiosis	SM, 60°C, aerobiosis
Enumeration	RCM	RCM	TSA

Results for Clostridium Sporogenes PA3679 (Tubes)

D-values at 95°C of *C. sporogenes* PA 3679 in Green Beans, Non acidified and acidified with LA c.a. pH 5.0

Results Clostridium Sporogenes PA3679 (Tubes)

D-values at 105°C of *C. sporogenes* PA 3679 in Green Beans, Non acidified and acidified with LA c.a. pH 5.0

Inactivation kinetics of *C. botulinum* spores mix in green beans puree at 95°C

Inactivation kinetics of *C. botulinum* spores mix in green beans puree at 100°C

Inactivation kinetics of *C. botulinum* spores mix in green beans puree at 105°C

18

Results for Geobacillus stearothermophilus (Tubes) #12980

Recorded D-Values

Clostridium sporogenes

Température (°C)	Fèves						
	Nac	LA		GDL			
		4.8	5.0	4.8	5.0		
95	13.81 ± 2.07 ª	4.47 ± 0.42 ^b	4.79 ± 2.49 ^b	4.03 ± 0.47 ^b	3.71 ± 1.3 ^b		
105	1 ± 0.28 ª	-	0.45 ± 0.15 ª				

Clostridium botulinum cocktail

	Valeurs D moyennes (min) ± écart-type						
Température (°C)	Nac LA GDL						
95	99.87 ± 18.06 ª	31.29 ± 2.79 ^b	23.24 ± 3.19 ^b				
100	5.61 ± 0.37 ª	3.32 ± 0.30 ^b	2.73 ± 0.37 ^b				
102	3.25 ± 0.15 ª	3.12 ± 0.37 ª	3.10 ± 0.85 ª				
105	1.72 ± 0.12 ª	1.6 ± 0.19 ^a	1.68 ± 0.29 a				

Geobacillus stearothermophilus

		Valeur D (min) ± écart-type				
	Condition	NAC	GDL	LA		
		39,66 ± 1,77	21,49 ± 0,89	29,64 ± 2,06		
l Û	110	а	b	с		
e (14,82 ± 0,18				
tu	115	а	6,82 ± 0,14 ^b	8,98 ± 0,47 ^c		
péra	118	8,10 ± 0,11 ª	3,20 ± 0,15 ^b	4,13 ± 0,37 ^c		
emi	121	4,01 ± 0,05 ª	1,64 ± 0,16 ^b	1,82 ± 0,05 ^b		
「	123	2,49 ± 0,26 ª	0,97 ± 0,12 ^b	1,10 ± 0,11 ^b		
	z (°C)	10,81	9,70	9,03		

Bio-Validation in Cans (14 oz)

Temperatures Record

Results for Geobacillus stearothermophilus (Cans) #12980

Destruction Kinetics Models

- Limits of the log-linear model
 - Ease of use, no need of complex computations
 - Many survival curves are not log-linear (concave, convex, biphasic, sigmoid, shoulders, tailing)
 5 T
- Other models were developed
 - Biphasic
 - Multiexponential decay
 - Logistic
 - Weibull
 - Neural networks

(Lopez et al., 1996, G. stearothermophilus spores in water, 120° C)

D-values of *C. botulinum*: Comparison of Experimental Data with Existing Models

C. botulinum	Model: Stumbo, 1973	Experiments	Model: Mafart and Leguerinel, 1998	Model : Gaillard et al., 1998
Temp., degC	D(pH=7), min	LA (pH=4.8), min	D(pH=4.8), min	D(pH=4.8), min
121.1	0.21	0.11	0.089	0.0504
110	2.71	1.5	1.14	0.6504
105	8.6	3.4	3.6	2.064
100	27.1	9.9	11.4	6.504
95	85.5	33	35.8	20.52

Our experimental data show:

- 1) Under acidified conditions (pH=4,8), real D-values are lower than model values with pH=7.
- 2) Under acidified condition, at higher processing temperature (over 107° C) our experimental D-values are higher than that of the literature models, while at lower temperatures they are mixed.

General Conclusions

- 1) Light acidification to pH 4.8-5.0 can allow a reduction of harsh thermal treatments in the canning industry (improved quality keeping safety).
- For risk mitigation in the canning food industry, a validation with C. botulinum should be performed (appropriate thermal resistance) instead of surrogates as C. sporogenes PA 3679 has shown a much lower thermal resistance than the usual one reported in the literature;
- 3) As thermal resistance is dependent of multiples factors : strain, pH, media and acid type, validation should be done with appropriate strains.
- 4) Those results showed that existing models are not fully useful under acidified conditions when they don't respect a linear reduction.
- 5) Research still need to be pursued to get full approval of mild thermal treatment in canned foods with intermediate pH (4.8-5.0) and to explain the behavior of certain strains when the acidification effect is overwhelmed by the temperature effect.

S'enraciner dans la science • Innover pour l'avenir Rooted in Science • Innovating for the Future