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Impacts

• This study presents results of a review on the visualization techniques for

epidemiological data including those for visualization of data uncertainty.

• A collection of GIS charts representing the prevalence of Campylobacter

spp. in raw chicken meat obtained from the German Zoonoses Monitoring

in 2011 is presented, including choropleth, cartogram, graduated symbol,

dot-density, adjacent and coincident maps, which in part are capable of

representing information on uncertainty.

• No single visualization technique outperforms in visualizing prevalence

data or prevalence data together with the associated uncertainty. As a con-

sequence, it is recommended to establish a dialogue between end-users and

epidemiologists in order to determine which technique should be used in

each case. This decision should consider previous knowledge and habits of

end-user as well as the specific objective to be achieved with the visualiza-

tion of data.
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Summary

Within the European activities for the ‘Monitoring and Collection of Information

on Zoonoses’, annually EFSA publishes a European report, including information

related to the prevalence of Campylobacter spp. in Germany. Spatial epidemiology

becomes here a fundamental tool for the generation of these reports, including

the representation of prevalence as an essential element. Until now, choropleth

maps are the default visualization technique applied in epidemiological monitor-

ing and surveillance reports made by EFSA and German authorities. However,

due to its limitations, it seems to be reasonable to explore alternative chart type.

Four maps including choropleth, cartogram, graduated symbols and dot-density

maps were created to visualize real-world sample data on the prevalence of

Campylobacter spp. in raw chicken meat samples in Germany in 2011. In addi-

tion, adjacent and coincident maps were created to visualize also the associated

uncertainty. As an outcome, we found that there is not a single data visualization

technique that encompasses all the necessary features to visualize prevalence data

alone or prevalence data together with their associated uncertainty. All the visual-

ization techniques contemplated in this study demonstrated to have both advan-

tages and disadvantages. To determine which visualization technique should be

used for future reports, we recommend to create a dialogue between end-users

and epidemiologists on the basis of sample data and charts. The final decision

should also consider the knowledge and experience of end-users as well as the

specific objective to be achieved with the charts.
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Introduction

Foodborne diseases are a significant public health burden

with important economic and social effects (Altekruse and

Swerdlow, 1996; WHO, 2002, 2014; Kuchenmuller et al.,

2013). Among the most important causes of foodborne

infections, Campylobacter spp. is the most frequently

reported causative agent in the EU (European Union)

(EFSA, 2014b; EFSA and ECDC, 2014), being the fresh

broiler meat the major source of human campylobacteriosis

(Lin, 2009; EFSA and ECDC, 2014). In Germany, campy-

lobacteriosis is the most common bacterial diarrhoeal dis-

ease in humans since 2007 (RKI, 2008). The Robert Koch

Institute reported in 2011 a total of 71 307 cases, which

corresponds to an incidence of 87.2 cases per 100 000

people (RKI, 2012).

To reduce the emergence of zoonotic infections, the EU

has elaborated the ‘European Union System for the Moni-

toring and Collection of Information on Zoonoses’ based

on Directive 2003/99/EC, intended to identify the sources

of the most common pathogens causing foodborne and

zoonotic diseases (EFSA, 2014a). In Germany, this is

partly achieved by the National Zoonoses Monitoring,

where all the data are collated and published in the

National Zoonoses Report (K€asbohrer et al., 2009; BfR,

2013).

Epidemiological monitoring systems are an imperative

instrument for protecting consumers from this health

threat and maintaining the safety of the food supply (FAO,

2004). This monitoring generally includes a description of

the geographical trends (Berkelman et al., 2009), revealing

important clues that can help the decision-making (WHO,

2008). Spatial epidemiology becomes then a fundamental

tool as it can describe, quantify and explain the geographi-

cal variations of diseases or contaminated items (Pina et al.,

2010). In the last years, spatial epidemiology has experi-

enced a great progress due to the advances in analytical

methods such as GIS (Geographic Information Systems)

and Spatial Analysis (Elliott and Wartenberg, 2004;

Gomez-Rubio et al., 2004; Goodchild and Haining, 2005).

GIS software solutions have evolved significantly in recent

years and even when they are more complex, they are often

easy-to-use products (Malczewski, 2004) with graphical

user interfaces also supporting non-expert users. Currently,

we can find hundreds of GIS tools. Steiniger and Bocher

(2009) and Steiniger and Hunter (2013) carried out an

overview on the current free and open source GIS software

solutions. There are also many other commercial GIS tools

used for epidemiologist purposes as ArcView TM, ArcGIS TM,

MapInfo TM, Maptitude TM, Idrisi TM and Geomedia TM

among others (Malczewski, 2004). ArcGIS is one of the

most consolidated tools in this area. Moreover, it has a

specific website with blog, forums, videos and an online

help library allowing non-expert users to create their own

maps (ESRI, 2015).

One of the most important areas within the spatial epi-

demiology is the mapping of the adverse events (Elliott and

Wartenberg, 2004). Mapping has a long tradition and has

been already used for many epidemiological purposes

related to health (Elliott and Wartenberg, 2004; Rytkonen,

2004) in both human and animals (Norstrom, 2001). How-

ever, currently the use of GIS has greatly facilitated the

mapping, allowing the storage, organization and processing

of spatial data to be shown in the form of maps (Rytkonen,

2004; Goodchild and Haining, 2005; Madrid-Soto and

Ortiz-L�opez, 2005; Crampton, 2010; Rodrigues-Silveira,

2013).

When mapping is performed, one of the key points to be

considered is the selection of the most suitable visualization

technique. This election will determine the interpretability

of the epidemiological data and therefore the decisions that

will be taken based on this interpretation. EFSA (European

Food Safety Authority) is the trendsetting institution in the

identification of the most appropriate techniques for epi-

demiological spatial data visualization and their interpreta-

tion (EFSA, 2009). Which type of chart is chosen by EFSA

strongly depends on the objectives of the respective study

and on the nature of the data to be visualized. Choropleth

maps have been widely used in public health and epidemi-

ology (Cromley and Cromley, 2009); in the EU, it is used

by default in the visualization process of epidemiological

information (EFSA, 2009, 2011). For example, in the EFSA

report on the prevalence of Salmonella in the European

Union in 2008 (EFSA, 2008a,b), prevalence values of differ-

ent Salmonella serovars were represented using simple

choropleth maps. As can be easily seen from those choro-

pleth maps, prevalence values of each serovar have been

presented in different maps, instead of being included in

just one map to facilitate comparisons. Moreover, uncer-

tainties are not included; thus, correct interpretation of

data is hampered. These and other limitations of choro-

pleth maps might finally lead to misinterpretations (Dykes

and Unwin, 1998; Cromley and Cromley, 2009), and it

seems reasonable to explore alternative spatial display for-

mats able to describe the epidemiological events in a more

precise way.

Alternative chart types include cartograms, maps with

graduated symbols or dot-density maps; some of them

overcome the limitations of choropleth maps.

In addition, data used to create epidemiological maps

are usually not exact, that is they always have some level of

uncertainty. Therefore, it is important to visualize data

together with its uncertainty, which would support deci-

sion-making if this is based on spatial data (Kardos et al.,

2004). Several publications addressed this problem, by

extending the classical visualization techniques such that it
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is possible to represent data together with uncertainty

information (visualization of uncertainty) (MacEachren,

1992; Kardos et al., 2004; Viard et al., 2011).

The objective of this study was to explore suitable visual-

ization techniques for epidemiological data including

charts for visualization of data uncertainty.

Materials and Methods

Data

Data from the German Zoonoses Monitoring programme

were used (Table 1). In the sampling plan, the sample size for

each Federal State was proportional to the human population

in the respective region (StatistischesBundesamt, 2014). The

overall aim was to collect at least 385 samples to calculate the

national prevalence with a precision of at least 5%.

The data set contains 430 results of raw chicken meat

samples taken by the competent authorities in the 16 Fed-

eral States in Germany at retail level and analysed in the

official regional investigation centres for the presence of

Campylobacter spp. by ISO 10272-1:2006 method. Data

were collected on national level by the Federal Office for

Consumer Protection and Food Safety (BVL) and trans-

ferred to the Federal Institute for Risk Assessment for fur-

ther analysis. Prevalence was estimated for each Federal

State according to the following equation:

P ¼ X=n

where P is the prevalence of Campylobacter spp., X is the num-

ber of positive samples, and n is the number of total tested

samples in the corresponding state. Prevalence expressed as a

percentage was used to create the dot-density map.

To estimate the uncertainty associated with the preva-

lence, we used the half of the confidence interval (1.96*SE),
by following the approach proposed by Agresti and Coull

(1998) for constructing 95% confidence intervals of bino-

mial proportions:

CI ¼ ~p� 1:96 � SE

SE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p � ð1� ~pÞ=ðnþ 1:962Þ

p

~p ¼ ðX þ 1:962=2Þ=ðnþ 1:962Þ
where CI is the 95% confidence interval, SE is the standard

error, and ~p is the corrected prevalence according to Agresti

and Coull (1998). All data are provided in Table 1.

Maps

The following visualization techniques were compared:

Table 1. Data from the Zoonoses Monitoring completed in Germany on the prevalence of Campylobacter spp. in raw chicken meat collected at retail

(2011)

German Federal States Information Zoonoses Monitoring-2011 Results

Code Name RS

Area

(km²)

Inhabitants

(Number)

Density

(inhabitants/km²)

No

Samplesa
Positive

Samples P P (%) ~p SE 1.96*SE

BB Brandenburg 12 29 654 2 449 193 83 12 0 0.000 0.00 0.121 0.082 0.161

BE Berlin 11 892 3 421 829 3838 28 4 0.143 14.29 0.186 0.069 0.135

BW Baden-W€urttemberg 8 35 751 10 631 278 297 52 22 0.423 42.31 0.428 0.066 0.130

BY Bayern 9 70 550 12 604 244 179 80 28 0.350 35.00 0.357 0.052 0.103

HB Bremen 4 419 657 391 1568 3 1 0.333 33.33 0.427 0.189 0.371

HE Hessen 6 21 115 6 045 425 286 14 2 0.143 14.29 0.220 0.098 0.192

HH Hamburg 2 755 1 746 342 2312 8 4 0.500 50.00 0.500 0.145 0.285

MV Mecklenburg-

Vorpommern

13 23 212 1 596 505 69 8 4 0.500 50.00 0.500 0.145 0.285

NI Niedersachsen 3 47 614 7 790 559 164 34 6 0.176 17.65 0.209 0.066 0.130

NW Nordrhein-Westfalen 5 34 110 17 571 856 515 90 32 0.356 35.56 0.361 0.050 0.097

RP Rheinland-Pfalz 7 19 854 3 994 366 201 30 6 0.200 20.00 0.234 0.073 0.143

SH Schleswig-Holstein 1 15 800 2 815 955 178 11 1 0.091 9.09 0.197 0.103 0.202

SL Saarland 10 2569 990 718 386 4 2 0.500 50.00 0.500 0.179 0.350

SN Sachsen 14 18 420 4 046 385 220 23 12 0.522 52.17 0.519 0.096 0.189

ST Sachsen-Anhalt 15 20 452 2 244 577 110 21 6 0.286 28.57 0.319 0.094 0.183

TH Th€uringen 16 16 173 2 160 840 134 12 10 0.833 83.33 0.752 0.108 0.213

DE Deutschland 357 340 80 767 463 226 430 140 0.335 33.474 0.364 0.101 0.198

RS: Regional code; P: prevalence; P (%): prevalence expressed as a percentage;~p: corrected prevalence according to Agresti and Coull, 1998; SE: stan-

dard error according to Agresti and Coull (1998); 1.96*SE: half of the 95% confidence interval according to Agresti and Coull (1998).
aThe sample size calculation was performed on the national level and was allocated to the regions proportional to the population, so uncertainty is

influenced by this fact.

Global values from Germany have been highlighted in bold.
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1. Choropleth map: A choropleth or area-value map dis-

plays the measured data in connection with the adminis-

trative boundaries (Slocum et al., 2005). Data are

grouped into two or more bins that are coloured using

different colours to illustrate the spatial differences in

the measured magnitude (Brewer and Pickle, 2002).

2. Cartogram: A cartogram or value-by-area map changes

the size of the spatial or enumeration units depending

on the value of the attribute to be visualized (Keim

et al., 2002). There are different types of cartograms, but

all of them present some level of shape and/or topology

distortion (Dent, 1996; Slocum et al., 2005), mainly

depending on whether they have to maintain the con-

nectivity with their adjacent enumeration units or not,

and whether they replace the enumeration units by a

geometrical figure with a size depending on the variable

(Dorling, 1996; Kreveld and Speckmann, 2007).

3. Graduated and proportional symbol maps: Graduated

and proportional symbol maps use symbols of different

sizes to represent the variable of interest (Brewer and

Campbell, 1998). In proportional symbol maps, data are

unclassed and the symbols are proportional to the

numerical values of these data (Gruver and Dutton,

2014). In this study, we present a graduated symbol map

in which data are classified into different classes that are

then correlated with a given size of the symbol.

4. Dot-density map: Dot-density or density point map uses

dots or points placed on a map. Each dot represents a

specific number of epidemiological events (Lavin, 1986).

Unlike the graduated symbol maps, all points are of the

same size. Dot-density map provides very good visual

impression of the relative density with which the data

are presented in space (Berg et al., 2004).

Several approaches for visualizing uncertainty have been

proposed. This include (i) adjacent representations, (ii)

coincident representations and (iii) interactive techniques

(Kardos et al., 2004). In this study, adjacent maps and

coincident maps were applied to visualize prevalence

together with its associated uncertainty. Interactive tech-

niques were not included as they are not applicable in writ-

ten reports.

1. Adjacent maps: The adjacent map consists on the repre-

sentation of two maps, next to each other, one for pri-

mary data and the other for the uncertainty associated

with these data (MacEachren, 1992; MacEachren et al.,

1998; Viard et al., 2011).

2. Coincident map: A coincident map can be considered to

be a special case of bivariate mapping (MacEachren

et al., 1998), as uncertainty is integrated into the same

map as the primary data. In this type of map, the uncer-

tainty is integrated by changing the colour characteris-

tics or by overlapping a new layer with different symbols

or textures (MacEachren et al., 1998; Viard et al., 2011).

a. Combination of texture and colour map: The combi-

nation of texture and colour map is a coincident

technique that uses a colour fill to represent primary

data and an overlapping layer with different textures

to represent the different levels of uncertainty

(MacEachren et al., 1998).

b. Value-by-alpha map: The value-by-alpha map is a

visualization technique in which two variables of

known relation are mapped (Roth et al., 2010). It

can be used as a coincident map to visualize data and

the uncertainty associated, because the latter is

encoded in the same map by modifying the alpha

channel of the colours from primary data map

(Woodruff, 2010).

To facilitate a ‘fair’ comparison between the different

visualization techniques, some visualization parameters

were fixed for all generated maps. (i) Most authors agree

that 5 –7 classes are appropriate (Gilmartin, 1981; Brewer

and Pickle, 2002; Roth et al., 2010) to find a balance

between data generalization (few classes) and readability

(more classes are harder to be properly interpreted) (Gil-

martin and Shelton, 1990; Roth et al., 2010). In our case,

data were classified into five bins. Zero prevalence, when-

ever reported, was included within the lower prevalence

category. For uncertainty visualization maps, the calculated

uncertainty measure was grouped into three bins, as it is

recommended by Roth et al. (2010). (ii) Different opinions

can be found about which method should be used to divide

the data into categories (Jenks, 1967; Jenks and Caspall,

1971; Brewer and Pickle, 2002), as the change in the classifi-

cation method can change also how the map looks and the

message it sends (EFSA, 2009). Two of the most common

classification methods are natural breaks (where classes are

defined aiming to minimize within-class variance and max-

imize between-class variance) (Brewer and Pickle, 2002)

and quantile breaks (where data are divided into pre-de-

fined numbers of classes which contain the same number of

events) (EFSA, 2009). For choropleth, cartogram, gradu-

ated symbol and uncertainty visualization maps, prevalence

data were grouped using cut-points generated using natural

breaks. (iii) It has been also demonstrated that hue affects

the accuracy rates and reaction times when interpreting a

map (Gilmartin and Shelton, 1990). As our maps aim to

show not qualitative but quantitative data, a scheme of

sequential colours with a single-hued was used for choro-

pleth map, cartogram and choropleth maps used as a base-

map to display uncertainty, following the criteria of darker

corresponding to a higher prevalence (McGranaghan,

1993). For the combination of colour and texture map, a

new layer with different textures was overlaid to a choro-

pleth map. Sequential colour multihued was used for

value-by-alpha maps, overlaying on a neutral colour

background (white and black).
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GIS software

ESRI0s ArcGIS 10.2.2 for Desktop (ESRI, 2014) was used to

create the maps in this study. In addition, the open source

software ScapeToad (ChôrosLaboratory, 2014) was used to

create the cartogram. This software uses the Gastner and

Newman (2004) method to density-equalize maps, by

transforming the size and sometimes the shape of enumera-

tion units. Output values generated by ScapeToad were

then converted into a shapefile and imported into ArcGIS

to visualize the cartogram.

The intensity of the colour was automatically assigned by

the software tool. No changes were made in the intensity

value, as we consider that the predefined values allowed a

correct interpretation of the data.

For value-by-alpha maps, multihued colours were varied

in transparency depending on the uncertainty by modifying

their alpha channel from 10–20% (for the highest uncer-

tainty class) to 100% (for the lowest uncertainty class).

Results and Discussion

Prevalence visualization techniques

A general known issue with maps discussed in this study

(except the dot-density maps) is that they give the impres-

sion that all enumeration units belonging to a specific cate-

gory (with the same colour hue or symbol size) have

exactly the same value and that this value change abruptly

at the boundaries. As illustrated in the following case study,

this impression might be misleading.

Choropleth map

Figure 1a shows the choropleth map created for the

Campylobacter spp. prevalence data in the Federal States.

From this map, it is not difficult to extract information

related to prevalence as the different blue hues can be

effortlessly differentiated, and darker blue hues correspond

to a higher prevalence in distinct Federal States.

Choropleth maps are easy to create in most of the GIS

software and are easily understandable by the map readers

(Gruver and Dutton, 2014). Moreover, this type of map

allows interpreting several variables at the same time, for

example by including some other symbols over the base-

map (bivariate map).

However, despite its popularity, its limitations can lead

to an incorrect data interpretation (Roth et al., 2010). Two

main limitations have been extensively described:

1. Enumeration Units Size or Small number problem: Size of

enumeration units can vary greatly. For example, in

Germany, the size of the Federal States and population

living in the regions is highly variable, as shown in

Table 1. When raw data are represented, larger

enumeration units would dominate the perception of

the map, overstating in our case the magnitude of the of

positive samples (Cromley and McLafferty, 2002). There-

fore, the number of positive samples was standardized by

the total number of samples taken in each Federal State.

2. Modifiable Areal Unit Problem (MAUP): Interpretation

of a choropleth map depends on the boundaries of the

enumeration units (Openshaw, 1984; Heywood et al.,

1988). For example, data aggregated by countries might

not be able to display relevant regional differences com-

pared to data aggregated by regions (EFSA, 2009).

Despite these limitations, we appraise that, in case of

prevalence data, choropleth maps work reasonably well.

Cartogram

Figure 1b shows the generated cartogram. In this map, the

size of the Federal States was modified depending on the

prevalence value so that the shape and topology of the orig-

inal geography were distorted. Moreover, to facilitate the

map interpretation, the prevalence values were also dis-

cretized into five classes (same as for Fig. 1a) and then

assigned to the area using the choropleth technique over-

laying the cartogram. As can be observed from Fig. 1b,

areas with a higher prevalence are clearly highlighted. Those

Federal States that have originally small areas but high

prevalence values are now displayed as larger areas. On the

other side, big areas of the original map became nearly

invisible in case where the prevalence is low.

This demonstrates that a cartogram is a suitable technique

for visualization of prevalence information, and it is able to

attract the attention to spatial units with high prevalence rates

which might have been overseen otherwise. However, those

regions with low prevalence rates, like Brandenburg, might

now been overseen, which is not desirable. Furthermore, it

has been described that in some cases, the changes in topol-

ogy and shape are overly large and map readers have prob-

lems to recognize the original enumeration units (Roth et al.,

2010). In our example, the region Brandenburg is hardly rec-

ognizable anymore, and also the fact that the Federal State

Bremen consists of two cities surrounded each by the Federal

State Niedersachsen creates a quite disturbing picture. In

addition, when two enumeration units have the same size but

different shapes, map reader assumes that they have different

sizes (Indiemapper, 2010). Here, we solved this issue colour-

coding the data in parallel.

Cartograms have gained popularity as they overcome

issues related to choropleth maps (Roth et al., 2010). This

type of map can also be used to encode two variables

(bivariate) by adding choropleth-like fills to each enumera-

tion unit in relation to the second variable, or using it as a

basemap for other type of maps such as density point maps

or graduated symbol map.
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Graduated symbols map

Figure 1c shows the created graduated symbol map. In this

case, graduated circles of different sizes were created

depending on the prevalence value where larger circles cor-

respond to higher prevalence. The differences in circle sizes

were adjusted such that it allows effective and correct inter-

pretation of the prevalence data in the map. As can be

observed in the figure, this type of map overcomes the enu-

meration unit problem of choropleth maps, as the size of

the symbol depends just on the prevalence and not on the

size of enumeration unit (Brewer and Campbell, 1998).

Small enumeration units with high prevalence values can

also have a large symbol over them.

Graduated symbol maps are very flexible. They can be

developed from raw data and standardized data, they allow

to display several variables using compound symbols

(Brewer and Campbell, 1998; Nelson, 2000), and they can

be used for data attached to a precise location or data

attached to geographic areas as is in our case (Brewer and

Campbell, 1998).

A known issue is the so-called Ebbinghaus illusion which

can provoke that two identical circles appear to be of differ-

ent sizes depending on the contour that surround them

(Gilmartin, 1981). Other issues related to graduated symbol

map can easily been overcome:

1. By chosen carefully the size of the symbols, it is possible

to avoid symbol overlapping which hinders the correct

Fig. 1. Prevalence visualization maps:

Maps depicting the prevalence of

Campylobacter spp. in raw chicken meat

(National Zoonoses German Report, 2011).

(a) Choropleth map, (b) cartogram, (c)

graduated symbol map and (d) dot-density

map.
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interpretation of the data (Groop and Cole, 1978; Gru-

ver and Dutton, 2014).

2. By classifying data into few classes, differences between

symbol size will be easily noticeable (Brewer and Camp-

bell, 1998), allowing map readers to estimate variable

values properly.

However, as we can see from our graduated symbol map,

Federal States with small areas can be hidden completely by

the symbol that depicts its prevalence, which could hamper

the interpretation of results.

Dot-density map/density point map

Figure 1d shows the dot-density map. Prevalence values

were expressed in unit [%] and were depicted in this map

by the use of little points that were randomly distributed

over the corresponding Federal State. The size and value

of the dots were carefully selected to achieve the best

interpretation of the data. As is recommended by Olson

(1975) and Gruver and Dutton (2014), the legend

includes the value of each dot (one dot= 1% prevalence)

and also an example of the appearance that low, medium

and high density of dots have on the map. As we can see

from Figure 1d, it is difficult to extract numerical preva-

lence values from this type of map. However, Federal

States with higher prevalence can be distinguished easily

by the presence of a higher density of points. Neverthe-

less, even when some authors argue that the visual

impression of the density provided by this type of map is

really useful to interpret the data (Lavin, 1986), one has

to be aware that the density impression still depends on

the size of the enumeration unit, as, for example, small

ones like Bremen or Hamburg are more noticeable than

other enumeration units that have the same number of

dots but higher area.

Dot-density maps have become a popular technique to

visualize density distributions (Berg et al., 2004), because

although in our case our data have been aggregated by enu-

meration units, this is not a prerequisite for this type of

maps, and hence, this is not a limitation to this visualiza-

tion technique. It also allows more than one attribute to be

represented using dots of different colours encoding differ-

ent variables. However, we think that this map is not the

best option to represent prevalence, but rather to represent

the total number of investigated and positive samples at

each Federal State using two dot types.

Combined prevalence and uncertainty visualization

A specific challenge is the graphical representation of

uncertainty associated with prevalence data. In this study,

we aim at providing examples on applicable visualization

techniques applicable for this kind of data.

Although it has been initially anticipated that graphical

representation of uncertainty together with the data in a

map will disturb the reader (McGranaghan, 1993), many

studies have demonstrated that inclusion of uncertainty

could clarify the interpretation of results (Leitner and But-

tenfield, 2000; Aerts et al., 2003; Viard et al., 2011). Partic-

ularly, this applies when data are used in the decision-

making process (Brodlie et al., 2012) and when variation in

results may have a great transcendence (Hengl et al., 2002;

Aerts et al., 2003), such as in the public health domain.

Nonetheless, most epidemiological maps generated to date

do not incorporate uncertainty information. For correct

interpretation of uncertainty values of the selected data-

base, it is important to highlight that the uncertainty values

were not correlated with the size of the enumeration unit.

In our example, uncertainty is mainly affected by the

sample size, which was proportional to the population size,

of the different Federal States.

Adjacent maps

Figure 2a shows two separate choropleth maps represent-

ing on the left side the prevalence of Campylobacter spp.

and on the right side the uncertainty related to this preva-

lence. These maps simplify the visualization of each aspect

for non-experts (Gerharz et al., 2012) but have to be men-

tally overlaid to determine the uncertainty associated with

the prevalence of a specific Federal State (Gruver and Dut-

ton, 2014). Each map has its own legend, defining the

different levels of prevalence and uncertainty, respectively.

Even when this map avoids the visual overload of coinci-

dent maps, it can be clearly seen from Fig. 2a that it is hard

to connect mentally information from both maps, as it

requires a compound comparison in multiple areas

(Harrower, 2003).

Coincident maps

Combination of texture and colour map

Figure 2b shows an example of a coincident representation

depicting uncertainty by the combination of both texture

and colour in the very same map. A choropleth map was

used to represent the prevalence values. Over this, a new

layer with different textures was placed to represent the

associated uncertainty values. Figure 2b demonstrates that

it is possible to combine different textures with colour hue

to depict prevalence and uncertainty in an effective way.

This is in line with observations made by other authors

(MacEachren et al., 1998). With coincident maps, users

cannot ignore the uncertainty information (Evans, 1997;

Edwards and Nelson, 2001; Viard et al., 2011), but the

perception depends on their expertise (Tversky and
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Kahneman, 1974; Gerharz and Pebesma, 2009). Using this

visualization technique, one can interpret both parameters at

a glance, as the textures from the upper layer do not interfere

with interpretation of the underlying choropleth map.

Value-by-alpha map

Figure 3 provides two versions of a value-by-alpha map. As

it is described by Roth et al. (2010), three components had

to be considered in the design of these maps: (i) the

variable of interest (prevalence of Campylobacter spp.), (ii)

the equalizing variable (uncertainty) that is symbolized by

the alpha value and equalizes the map and (iii) the modify-

ing colour or background colour (white for Fig. 3a and

black for Fig. 3b). This colour modifies the original colour

for prevalence, as its alpha value changes depending on the

level of uncertainty.

As a result, Federal States with a high uncertainty are

drawn more transparent, nearly invisible, hinting the back-

ground colour (black or white) and masking the colour

hue of the variable of interest (Roth et al., 2010; Gruver

and Dutton, 2014). On the other hand, Federal States with

low uncertainty are fully opaque and stand out over the

rest. The legend was created by collecting all the possible

combinations of colour and transparency corresponding to

the combinations of prevalence and the uncertainty.

Both maps created with different background colours

prove to be useful for our purpose. However, as other

authors have argued, it seems that black background

Fig. 2. Uncertainty visualization maps I:

(a) Adjacent maps and (b) combination of

colour and texture map, representing the

prevalence of Campylobacter spp. in raw

chicken meat and its uncertainty

(1.96*Standard Error). (National Zoonoses

German Report, 2011).
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perform better than the white one, because it is able to

stand out areas of low uncertainty more clearly (Roth et al.,

2010).

Even when value-by-alpha maps are suitable to display

both prevalence and uncertainty, as we can see from Fig. 3a

and b, they are difficult to interpret for non-experts as col-

our variation depends on the combination of the three

components that we have described previously and the

general rule that ‘darker equals more’ is not applicable

(Schweizer and Goodchild, 1992; Harrower, 2003).

Summary and recommendations

Nowadays visual representations have become indispens-

able tools for epidemiological data presentation and deci-

sion-making. This comprise not only archiving and

communication of results, but also its analysis and explo-

ration, helping to identify trends in the emergence of new

foodborne diseases as, for example campylobacteriosis. This

leads to the need to optimize the use and design of maps in

order to support decision-making by public health policies.

Large discussions about spatial visualization techniques can

be found in the scientific literature. Most scientific papers

do not opt 100% for one visualization technique against

the others, but rather they describe advantages and disad-

vantages and even the percentage of efficiency that a partic-

ular map has over the rest when they are interpreted by a

population of interest. However, many contradictory opin-

ions can be found between authors. There is a common

theme among them criticizing the application of choro-

pleth maps, due to limitations mentioned above. This is

also why many new visualization techniques are proposed

Fig. 3. Uncertainty visualization maps II:

Value-by-alpha maps representing the

prevalence of Campylobacter spp. in raw

chicken meat and its uncertainty

(1.96*Standard Error) (National Zoonoses

German Report, 2011). (a) Value-by-alpha

map with white background and (b) value-

by-alpha map with black background.
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nowadays. As we can take out from our comparison,

choropleth map is the simplest way to depict the prevalence

of Campylobacter spp. However, for deeper studies, more

sophisticated maps as cartogram, graduated symbol and

dot-density maps can be more suitable. If we want to draw

attention to areas of highest prevalence, we can use a car-

togram as long as stakeholders are used to interpret this

type of representation. For inexperienced users, as, for

example, visitors of public websites looking for general

information on foodborne diseases, we recommend to use

a graduated symbol or dot-density maps, which would

highlight the magnitude of the variable without distorting

the shape of the map. If the goal is to present two different

prevalences on the same map in order to compare them,

we recommend to combine a choropleth map and a car-

togram. However, these types of maps are most likely not

appropriate for non-expert users.

With respect to maps displaying uncertainty levels

together with primary data, there is no clear sentiment in

the literature whether adjacent or coincident representa-

tions perform better. From our case study, we conclude

that the combination of colour and texture may be the

most effective coincident technique for unexperienced

users, as it is able to evince uncertainty without hindering

the detection of patterns in the primary data (MacEachren

et al., 1998). New techniques that combine colour and tex-

tures such as the rhombus trustree tessellation map might

also be useful visualization techniques (Kardos et al.,

2004).

In summary, we have to realize that, as Stewart and Ken-

nelly (2010) said, ‘the utility of a map to the map user

depends on a number of factors such as geographic com-

plexity of the phenomenon to be mapped, the decision to

present data as either classed or unclassed, the method by

which data will be symbolized, and the ability of the map

user to interpret the resulting map’. Therefore, there is not

a map that encompasses all the necessities so that there is

not a ‘perfect’ visualization technique to be recommended.

Instead an interactive dialogue between end-users and epi-

demiologist has to be established in order to identify which

technique should be used in the specific setting. This selec-

tion process should also consider the professional back-

ground and experiences of map readers and balance this

with the objectives to be achieved with the map (Gerharz

and Pebesma, 2009). It is recommended to test the usability

of different visualization techniques beforehand to identify

the most effective visualization technique. The data set and

chart collection from this study can serve as a basis for this

type of discussion. In addition, it is also necessary to judge

carefully on the variables to be represented, in order to

avoid the cluttering of information (Leitner and Butten-

field, 2000; Viard et al., 2011). In the public health domain,

it could be useful to combine simple maps with more

sophisticated ones, in order to get a general view and a dee-

per assessment of the epidemiological data (Gerharz and

Pebesma, 2009).
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