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Abstract

Listeria monocytogenes is an important foodborne pathogen commonly isolated from food processing envi-
ronments and food products. This organism can multiply at refrigeration temperatures, form biofilms on
different materials and under various conditions, resist a range of environmental stresses, and contaminate food
products by cross-contamination. L. monocytogenes is recognized as the causative agent of listeriosis, a serious
disease that affects mainly individuals from high-risk groups, such as pregnant women, newborns, the elderly,
and immunocompromised individuals. Listeriosis can be considered a disease that has emerged along with
changing eating habits and large-scale industrial food processing. This disease causes losses of billions of
dollars every year with recalls of contaminated foods and patient medical treatment expenses. In addition to the
immune status of the host and the infecting dose, the virulence potential of each strain is crucial for the
development of disease symptoms. While many isolates are naturally virulent, other isolates are avirulent and
unable to cause disease; this may vary according to the presence of molecular determinants associated with
virulence. In the last decade, the characterization of genetic profiles through the use of molecular methods has
helped track and demonstrate the genetic diversity among L. monocytogenes isolates obtained from various
sources. The purposes of this review were to summarize the main methods used for isolation, identification, and
typing of L. monocytogenes and also describe its most relevant virulence characteristics.

Introduction

L isteria monocytogenes is the causative agent of lis-
teriosis, a serious zoonotic disease resulting from the

ingestion of food containing this microorganism. The disease
can lead to clinical manifestations, such as gastroenteritis,
sepsis, encephalitis, meningitis, and abortion (McLauchlin
et al., 2004). In the United States, where there is an efficient
network for monitoring diseases associated with food con-
sumption, the Centers for Disease Control and Prevention
(CDC) estimates an annual occurrence of 1660 to 1700 cases
of invasive listeriosis, resulting in more than 1500 hospital-
izations and 16% of mortality rate (Scallan et al., 2011).

Some groups have a higher risk to develop the disease,
such as newborns, pregnant women, the elderly, transplant
patients, those with immunodeficiency, including patients
with human immunodeficiency virus, and those diagnosed
with cancer. Although listeriosis is relatively rare, it is con-
sidered a serious disease. L. monocytogenes is responsible for
19% of total deaths associated with the consumption of
contaminated food in the United States (Scallan et al., 2011).

Many factors make this foodborne pathogen a public
health concern. These include changes in industrial processes
highlighted as relevant for L. monocytogenes, such as the use
of refrigeration systems, large-scale industrial food proces-
sing, and changes in eating habits of the population toward
consumption of ready-to-eat (RTE) products ( Jay et al.,
2005; Swaminathan and Gerner-Smidt, 2007). Several stud-
ies have been published, mainly in industrialized countries, to
understand the mechanisms of L. monocytogenes persistence
in the food processing environment, its contamination routes,
and its potential to cause disease in the host.

In the last few decades, phenotypic and genotypic studies
have led to new insights into the genetic evolution and vir-
ulence potential of Listeria spp. This characterization has
been possible due to the development of accurate techniques
for typing of this pathogen. In this study, we present an up-
dated description of the main methods described for isolation
and identification of L. monocytogenes, the use of typing
methods for surveillance and outbreak tracking, and also the
most pathogenic features and its importance for each step of
the virulence cycle.
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Isolation Methods and Species Identification

To date, 17 species and 6 subspecies have been described
for the genus Listeria (www.bacterio.net/listeria.html), and
many of them are widely distributed in the food processing
environment. Only two were described as pathogenic: Lis-
teria ivanovii, which has epidemiological importance re-
stricted to ruminants, and L. monocytogenes, which can infect
a variety of animal species, including humans (Ryser and
Marth, 2007; Swaminathan and Gerner-Smidt, 2007).

Conventional microbiological methods are indispensable
for the isolation and identification of Listeria spp. from
environmental sources, as well as from food products and
clinical samples. Standard methods for isolation from dif-
ferent sources have been described by the International Or-
ganization for Standardization (ISO), the U.S. Food and Drug
Administration (FDA), International Dairy Federation (IDF),
U.S. Department of Agriculture—Food Safety and Inspec-
tion Service (USDA-FSIS), and Health Protection Branch
(HPB) (Ryser and Marth, 2007).

For all methods, samples are preincubated in basal medium
for the recovery of injured cells, followed by enrichment in
selective/differential supplemented broths, such as Buffered
Listeria Enrichment Broth, Half-Fraser Broth (HFB), and
Fraser Broth. After the primary selective enrichment, the
obtained cultures are streaked on selective agars; the most
common culture media used in this step are the PALCAM
Agar Base (Listeria spp. develop small brown/black colonies
surrounded by black halos due to esculin hydrolysis), Listeria

Selective Agar (Oxford, with the same characteristic colonies
observed as in PALCAM), and the selective Chromogenic
Listeria Agar (ALOA, in which Listeria spp. develop blue/
green colonies, and L. monocytogenes presents an additional
feature: an opaque white halo due to its lecithinase activity).

Alternative enrichment broths and culture media can also
be considered, and indications may vary in accordance with
the adopted protocol (Table 1) (Farber et al., 1994; AOAC,
1996, 2000; Scotter et al., 2001a, b; Hitchins and Jinneman,
2011; USDA, 2013). After isolation, when incubated in
trypticase soy agar, pure cultures appear as nonpigmented
and translucent and present bluish color when viewed under
oblique lighting ( Jay et al., 2005).

The biochemical species identification is possible by the
catalase reaction, carbohydrate fermentation profile, hemo-
lytic activity, and other complementary tests, such as Gram
staining and motility test at 25�C. Commercial kits, as the API
Listeria test kit (bioMérieux, Marcy-l¢Etoile, France), have
been designed for the genus Listeria, allowing easy bio-
chemical differentiation in a microtube format, which targets
the presence or absence of arylamidase (DIM test), hydrolysis
of esculin, presence of a-mannosidase, and acid production
from d-arabitol, d-xylose, l-rhamnose, a-methyl-d-glucoside,
d-ribose, glucose-1-phosphate, and d-tagatose (Bille et al.,
1992; Allerberger, 2003; Jadhav et al., 2012; Weller et al.,
2015).

To improve the assessment of hemolysis, and ensuring a
more reliable differentiation between the hemolytic species
L. monocytogenes, L. ivanovii, and Listeria seeligeri, various

Table 1. Standard Protocols for Isolating Listeria monocytogenes from Different Sources

Protocol Source
Pre-enrichment

(conditions)
Enrichment
(conditions)

Selective/differential
agar (conditions) Reference

AOAC/IDF ES and food BLEB, acriflavine
and nalidixic
acid (48 h at
30�C)

OXA (up to 48 h at
35�C)

AOAC (1996),
AOAC (2000)

ISO 11290
Part 1

Cheese, minced
beef, dried egg
powder

HFB (24 h at
30�C)

FB (48 h at 37�C) OXA, PALCAM (up to
48 h at 30�C or 37�C,
respectively)

Scotter et al.
(2001a)

ISO 11290
Part 2

Cheese, meat,
dried egg
powder

BLEB or HFB
(24 h at 35�C)

FB or ONE (24 h
at 35�C)

OXA, PALCAM/
ALOA (up to 48 h at
35�C)

Scotter et al.
(2001b)

FDA/BAM Food BLEB (24 h at
30�C)

BLEB (48 h at
30�C)

OXA, MOX, PAL-
CAM, LPM/BCM,
ALOA, CHROMagar
Listeria, or Rapid¢
L. mono medium
(up to 48 h at 35�C)

Hitchins and
Jinneman
(2011)

USDA-FSIS ES, red meat,
poultry, egg
products

UVM (20–26 h at
30�C)

MOPS-BLEB,
FB (18–24 h at
35�C)

MOX (up to 48 h at
35�C)

USDA (2013)

HPB ES and food UVM (24 and
48 h at 30�C)

FB (24–48 h at
35�C)

LPM or PAL (up to
48 h at 30�C)

Farber et al.
(1994)

ALOA, Agar Listeria Ottaviani and Agosti Medium; AOAC, Official Methods of Analysis; BAM, Bacteriological Analytical Manual;
BCM, Biosynth Chromogenic Medium; BLEB, Buffered Listeria Enrichment Broth; ES, environmental samples; FB, Fraser Broth; FDA,
Food and Drug Administration; HFB, Half-Fraser Broth; HPB, Health Protection Branch; IDF, International Dairy Federation; ISO,
International Organization for Standardization; LiCl, lithium chloride; LPM, Lithium Chloride–Phenylethanol–Moxalactam Medium; mFB,
modified Fraser Broth; MOPS-BLEB, Morpholine-Propanesulfonic Acid–Buffered Listeria Enrichment Broth; MOX, Modified Oxford
Listeria Selective Agar; ONE, Oxoid Novel Enrichment Broth; OXA, Oxford Medium; PALCAM, PALCAM Listeria Selective Agar;
USDA-FSIS, U.S. Department of Agriculture—Food Safety and Inspection Service; UVM, Modified University of Vermont Broth.
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authors recommend the use of the CAMP (Christie, Atkins,
and Munch-Petersen) test (Seeliger and Jones, 1986). The
CAMP test detects synergistic hemolysin activity of Listeria
spp., with the beta-toxin of Staphylococcus aureus and the
exofactor of Rhodococcus equi, on a sheep blood agar plate.
L. monocytogenes has a positive reaction with S. aureus but
a negative one with R. equi, and L. ivanovii displays the
reverse results. Even more so, L. seeligeri can show a weak
positive reaction with S. aureus. Therefore, skill is necessary
to perform and interpret these results (Allerberger, 2003).

L. monocytogenes can be identified by immune-based
techniques, such as enzyme-linked immunosorbent assays
(ELISAs) and immunomagnetic separation, but these meth-
ods have a minimum detection limit of 105 cells/mL for
bacterial detection from environmental samples by antigen–
antibody reaction.

It is important to point out that in recent years, several new
species of Listeria have been described, and many of them
have their own characteristics, distinct from other species.
Considering this, molecular-based methods, using specific
primers, and genetic sequencing are required to properly
perform phylogenetic position analysis and species attribu-
tion (Liu, 2006; Weller et al., 2015). The polymerase chain
reaction (PCR) has been widely used for Listeria identifica-
tion. Many primers were designed for differentiation of
Listeria spp., and the most common targets to detect
L. monocytogenes include the virulence-associated genes hly,
actA, plcA, plcB, inlA, inlB, inlC, and inlJ (Liu, 2006). The
PCR procedure has proved to be a rapid and sensitive method
for the routine analysis of different types of food (Aznar and
Alarcón, 2003).

According to Kaclıková et al. (2003), L. monocytogenes can
be identified by PCR equivalent to ISO 11290-1 or ISO 10560
in terms of detection limit (100 colony-forming units [CFUs]/
25 or 10 g) and with 100% relative accuracy in cheese, smoked
fish, and RTE meat products. Currently, several multiplex
PCR protocols are being used for the rapid detection of Listeria
spp. and potentially pathogenic L. monocytogenes from dif-
ferent sources. Rawool et al. (2007) developed a multiplex
PCR to detect the four virulence-associated genes plcA, hlyA,
actA, and iap in enrichment milk samples using previously
described primers. Liu et al. (2007) standardized a multiplex
PCR to detect the inlA, inlC, and inlJ genes that also provide
identification regarding virulence potential.

Ryu et al. (2013) developed a multiplex PCR for the rapid
and simultaneous detection of six Listeria spp. (L. grayi, L.
innocua, L. ivanovii, L. monocytogenes, L. seeligeri, and L.
welshimeri) from meat processed foods. The authors sug-
gested that this method can be useful for the detection of
Listeria spp. in contaminated foods and clinical samples.
Recently, Liu et al. (2015) developed a new multiplex PCR
method, which is able to discriminate among L. mono-
cytogenes, L. innocua, L. seeligeri, L. welshimeri, L. ivanovii,
and L. grayi in deli meats. This method allowed accurate
detection of Listeria spp., but pre-enrichment procedures are
important to increase sensitivity.

Furthermore, real-time PCR-based methods have been de-
veloped for the rapid identification and quantification of Lis-
teria spp. from a variety of sources (Le Monnier et al., 2011;
Barbau-Piednoir et al., 2013; Gianfranceschi et al., 2014;
Quero et al., 2014). Real-time PCR was designed for the di-
agnosis of meningoencephalitis caused by L. monocytogenes

using the hly gene target, and it provided reproducible results
over a wide range of concentrations (Le Monnier et al., 2011).

Recently in Europe, a study was conducted at 12 laborato-
ries in 6 countries using real-time PCR-based methods for
L. monocytogenes detection in soft cheese, and the results were
compared with those of the ISO 11290-1 standard method. The
observed limit of detection after pre-enrichment in HFB by
real-time PCR was down to 10 CFUs per 25 g of sample. The
excellent agreement observed among the laboratories sug-
gests an option soon to be implemented by the authorities and
the food industry (Gianfranceschi et al., 2014). However, the
equipment necessary for this analysis is still not available in
many laboratories. Mass spectrometry–based methods for
identification and typing of Listeria spp. were already de-
scribed and allow differentiation of pathogenic strains and
even clonal lineages (Barbuddhe et al., 2008).

In addition, sequencing of the 16S rRNA gene, 23S rRNA
gene, or iap gene has been used by many authors for accurate
phylogenetic analysis and species identification (Liu, 2006).
Genetic sequencing has become more popular in the last
decade, and currently, there are several public and private
companies providing these services at relatively low cost.

L. monocytogenes typing

Typing methods are useful for tracking the origins of the
pathogen and to characterize its virulence potential. The typing
can be performed by phenotypic and molecular methods, and
several methods have been described in last decades for epi-
demiological investigations and genetic characterization
(Boerlin and Piffaretti, 1991; Brosch et al., 1994; Schönberg
et al., 1996; Wernars et al., 1996; Salcedo et al., 2003; Dou-
mith et al., 2004). In addition to the epidemiological data, the
combination of different typing methods provides a proper
characterization of isolates obtained from different sources.

L. monocytogenes strains are grouped into four phyloge-
netic lineages, which can be differentiated by conventional
and molecular techniques. The serotypes 1/2b, 3b, 3c, and 4b
constitute the lineage I; serotypes 1/2a, 1/2c, and 3a consti-
tute the lineage II, and rarely, serotypes 4a, 4c, and atypical
4b form the lineage III. Recently, a new lineage was de-
scribed (lineage IV), which is also represented by serotypes
4a, 4c, and atypical 4b but rarely found (Table 2) (Ward et al.,
2008; Orsi et al., 2011).

One of the first phenotypic techniques used to type L.
monocytogenes was serotyping (Seeliger and Höhne, 1979).
Based on the expression of surface proteins, namely somatic
antigens (O factor) and flagellar antigens (H factor), 13 L.
monocytogenes serotypes have been described (1/2a, 1/2b,
1/2c, 3a, 3b, 3c, 4a, 4ab, 4b, 4c, 4d, 4e, and 7) (Allerberger,
2003; Seeliger and Höhne, 1979). Serotypes 1/2a, 1/2b, and 4b
are involved in 95% of all listeriosis cases, with serotype 4b
responsible for higher hospitalization rates and deaths (Swa-
minathan and Gerner-Smidt, 2007; Cartwright et al., 2013).

The conventional agglutination method (Seeliger and
Höhne, 1979; Seeliger and Jones, 1986) is the reference
protocol for serotyping L. monocytogenes isolates obtained
from clinical and food samples; however, it is time con-
suming and expensive. Palumbo et al. (2003) developed an
ELISA-based assay serotyping L. monocytogenes; however,
it was also time consuming, and it was still dependent on
producing high-quality antisera.
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Due to practical reasons, molecular methodologies have
been widely used for the rapid screening of L. monocytogenes
strains based on serogroup divisions. These methods provide
rapid and low-cost results, but the exact identification of the
serotype is not possible since these protocols propose a ser-
ogroup categorization that includes different serotypes, usu-
ally the most prevalent serotype and other nonfrequent
serotypes (Borucki and Call, 2003; Doumith et al., 2004;
Zhang and Knabel, 2005; Kérouanton et al., 2010; Vitullo
et al., 2013).

Serogrouping proposed by Doumith et al. (2004) differ-
entiates L. monocytogenes into four molecular serogroups:
IIa corresponded to serotypes 1/2a and 3a; IIc to 1/2c and 3c;
IIb to 1/2b, 3b, and 7; and IVb to 4b, 4d, and 4e (Doumith
et al., 2005). This is now the main protocol considered for
serogrouping isolates obtained from food and clinical sam-
ples. However, various similar PCR-based methods have
been described in the last decade (Zhang and Knabel, 2005;
Chen and Knabel, 2007; Kérouanton et al., 2010; Vitullo
et al., 2013), and all of them propose a similar serogroup
categorization.

Recently, Nho et al. (2015) developed a new multiplex
PCR to differentiate serotypes 1/2a, 1/2c, 3a, and 3c, but few
isolates have been tested. The great advantage of these
methods is to obtain fast results at low cost; however, some
isolates from serotypes 1/2a and 4b may present atypical
profiles, as described before (Kérouanton et al., 2010; Le-
clercq et al., 2011; den Bakker et al., 2014). This problem is
related to the target genes in the protocol, which are not
serotype-specific surface antigens (Kérouanton et al., 2010;
Huang et al., 2011; Leclercq et al., 2011; Lee et al., 2012;
Camargo et al., 2016).

Phage typing is an alternative method for clustering L.
monocytogenes, and it has also helped link listeriosis as a
foodborne disease (Fleming et al., 1985). A number of phage
sets have been developed, and typable strains vary from 52%

to 78%, according to the number of phages used in these
investigations and the susceptibility of each strain (Audurier
and Martin, 1989; Van Der Mee-Marquet et al., 1997).

A significant number of Listeria strains are untypable by
this technique, limiting its scope in L. monocytogenes typing.
In contrast, in recent years, its application has been further
explored, how being considered as a biocontrol tool with
foods (Chibeu et al., 2013; Oliveira et al., 2014), diagnostics
(Hagens et al., 2011; Tolba et al., 2012), in immobilization
and detection (Habann et al., 2014), and as an antimicrobial
(Schmelcher et al., 2012). According to Hagens and Loessner
(2014), phages that are specific for Listeria provide numerous
novel tools for various interesting approaches.

Although phenotypic methods have been useful for typing
L. monocytogenes, currently, molecular methods appear to be
more reliable and sensitive, and these tools are widely used
worldwide. Molecular typing methods can be based on the
use of restriction enzymes. Ribotyping method is based on
the restriction fragment length polymorphisms (RFLPs) as-
sociated with the ribosomal operons, and it was used by
Wiedmann et al. (1997) for lineage-specific differentiation of
L. monocytogenes isolates and to also assess their pathogenic
potential. Ribotyping has been successfully used to type L.
monocytogenes from various sources, offering the best dis-
criminatory power when associated with serotyping (Kabuki
et al., 2004; De Cesare et al., 2007; Sant’Ana et al., 2012).

According to Wiedmann (2002), the use of enzymes EcoRI
and PvuII by two distinct restriction reactions provides better
strain discrimination. However, it cannot efficiently differ-
entiate strains from serotypes 1/2b and 4b, thus limiting its
use for epidemiological investigations ( Jadhav et al., 2012).
Its discriminatory power is similar to multilocus enzyme
electrophoresis (MLEE). MLEE divides the L. mono-
cytogenes into two primary subgroups: one represented by
serotypes 1/2b, 4a, and 4b and another by serotypes 1/2a and
1/2c. The bacterial isolates are differentiated according to the

Table 2. Information Regarding Environmental Distribution, Genetic Characteristics,

and Associated Lineages of Listeria monocytogenes Isolates

Lineage
Initial

identification Serotypes Genetic characteristics Distribution

I Piffaretti et al.
(1989)

1/2b, 3b, 3c, 4b Lowest diversity among the
lineages; lowest levels of
recombination among the
lineages

Commonly isolated from
various sources;
overrepresented among
humans

II Piffaretti et al.
(1989)

1/2a, 1/2c, 3a Most diverse, highest
recombination levels

Overrepresented among food
and food-related as well as
natural environments;
serotype 1/2a is becoming
common in humans

III Rasmussen et al.
(1995)

4a, 4b atypical, 4c Very diverse; recombination
levels between those for
lineages I and II

Most isolates obtained from
ruminants

IV Described by
Roberts et al.
(2006); first
reported as
lineage IV by
Ward et al. (2008)

4a, 4b atypical, 4c Few isolates analyzed to date Most isolates obtained from
ruminants

Source: Orsi et al. (2011), adapted from Piffaretti et al. (1989), Rasmussen et al. (1995), Roberts et al. (2006), Ragon et al. (2008), and
Ward et al. (2008).
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electrophoretic mobility variation of a large number of met-
abolic enzymes. However, this method is labor intensive,
suffers from interlaboratory nonreproducibility, and presents
less discriminatory power compared with other molecular
methods (Boerlin and Piffaretti, 1991; Ryser and Marth,
2007).

Pulsed-field gel electrophoresis (PFGE) is widely used for
genetic characterization of microorganisms, and the method
standardized for L. monocytogenes uses a combination of two
restriction enzymes: ApaI and AscI (Graves and Swami-
nathan, 2001). This method is based on RFLPs of bacterial
DNA, resulting for L. monocytogenes fragments ranging
from 30 to 600 kb, which appears in 6–25 bands in agarose
gel electrophoresis (Graves and Swaminathan, 2001; Liu,
2006; Jadhav et al., 2012). PFGE is widely used and con-
sidered the gold standard to track L. monocytogenes from
food processing facilities, foods, and clinical samples. The
CDC and Association of Public Health Laboratories have
created a network for tracking L. monocytogenes in epide-
miological studies and foodborne outbreaks using PFGE as a
standardized method for subtyping this pathogen.

The European Center for Disease Prevention and Control
(ECDC) also uses the PFGE as a standard procedure for
typing L. monocytogenes isolates. PFGE is more discrimi-
natory than serotyping and other methods based on restriction
enzymes, and it shows the possibility that cultures belonging
to the same serotype have different genetic profiles (Graves
and Swaminathan, 2001; Gudmundsdóttir et al., 2005; Fugett
et al., 2007; Galvão et al., 2012; Hächler et al., 2013). The
analysis of genetic band profiles is done by a computer
software, which enables a quick and easy comparison of the
data and may involve the profiles of isolates obtained from
food, with profiles of strains involved in outbreaks. This
method is useful for epidemiological studies, implementation
of corrective actions, and monitoring of critical control
points. Major disadvantages of PFGE are the time required to
complete the procedure (minimum 24 h), high costs of re-
striction endonucleases, and specialized equipment for
electrophoresis.

Several PCR-based methods also have been used as an
alternative for typing L. monocytogenes strains, such as
molecular serogrouping (previously described), random
amplified polymorphic DNA (RAPD), amplified fragment
length polymorphism (AFLP), PCR-RFLP, repetitive ele-
ment PCR (REP-PCR), fluorescence amplified fragment
length polymorphism (fAFLP), and multilocus variable-
number of tandem-repeat analysis (MLVA). In addition,
DNA sequencing–based subtyping techniques, as multilocus
sequence typing (MLST), multivirulence-locus sequence
typing (MVLST), and single-nucleotide polymorphism
(SNP) analysis, have been demonstrated (Liu, 2006; Jadhav
et al., 2012).

The RAPD method allows a single arbitrarily selected
primer, generally 10 bp in length, to anneal with comple-
mentary sequences on the target DNA, creating a genetic
profile (Lawrence et al., 1993). This protocol has been used
for fast typing of L. monocytogenes from foods and can
provide valuable information about possible persistence of
strains, also indicating potential sources of cross-
contamination when used combined with serotyping (Vogel
et al., 2001; Aurora et al., 2009). In addition, according to
Hadjilouka et al. (2014), the combination of REP-PCR with

any primer used in the RAPD analysis can provide an opti-
mum discrimination of strains, but alone, the technique does
not have high discriminatory power.

In the AFLP method, the total DNA is subject to digestion
by two restriction enzymes, fragments are amplified using
PCR, and the products are subjected to gel electrophoresis.
The described protocols were based on different restriction
enzymes, being BamHI and EcoRI for AFLP I and HindIII
and HhaI for AFLP II. According to Parisi et al. (2010),
AFLP and MLST methods produced similar results in terms
of discriminating power in L. monocytogenes from food and
environment, generating 62 and 66 types from isolates used
in the study, respectively. The authors suggest that these two
methods can be associated to provide high-resolution results.
Lomonaco et al. (2011) compared AFLP and PFGE methods.
Both protocols grouped L. monocytogenes strains into two
main clusters, and the results showed a similar discriminatory
power. According to the authors, AFLP can be successfully
used to type L. monocytogenes strains obtained from foods
and food processing facilities where PFGE is not available;
however, it is also expensive and time consuming.

PCR-RFLP consists of PCR amplification of L. mono-
cytogenes housekeeping or virulence genes, followed by di-
gestion with selected restriction enzymes (HhaI, SacI, or
HinfI) and separation by gel electrophoresis. The distinct
band patterns allow differentiation among L. monocytogenes
subtypes (Wiedmann et al., 1997). As advantages, this
method requires only a small amount of starting DNA and
may be used in epidemiological investigations to track L.
monocytogenes (Liu, 2006). Strydom et al. (2013) subjected
L. monocytogenes isolates to PCR-RFLP and PFGE, and the
results indicated that both molecular subtyping methods were
sensitive and specific enough to assess the genetic diversity.

REP-PCR targets dispersed repetitive sequence elements,
such as repetitive extragenic palindromes of 35–40 bp, which
are found in the extragenic regions of the genome in direct or
reverse orientation. The repetitive extragenic palindromes
sequences represent useful single primer set binding sites for
PCR amplification, and different locations of these sequences
in the genome produce variable fragment sizes. According to
Harvey et al. (2004), PFGE presented greater discriminatory
power for typing L. monocytogenes isolates from foods than
REP-PCR and multilocus enzyme electrophoresis, although
the three methods were able to differentiate closely related L.
monocytogenes strains. Hadjilouka et al. (2014) subjected
121 strains from food products to RAPD and REP-PCR, and
the last method provided better differentiation among iso-
lates. Apparently, REP-PCR possesses a discriminatory
power similar to PFGE and ribotyping; as REP-PCR is faster
and cheaper than these typing techniques, it can be consid-
ered as an important alternative for typing L. monocytogenes.

fAFLP is a variant of AFLP, done using fluorescent PCR
primers. fAFLP is done by a modified protocol previously
described for typing Campylobacter. By this protocol, Lis-
teria genomic DNA is digested using the enzyme pair HindIII
and HhaI. Roussel et al. (2013) showed that 109 L. mono-
cytogenes isolates from human clinical cases, foods, and food
processing environments as well as animal cases, reference
strains, and isolates associated with outbreaks and sporadic
cases were divided by fAFLP and PFGE into three clearly
distinguishable lineages, and both methods showed equal
discriminatory power. The authors suggested that fAFLP is a

CHARACTERIZING LISTERIA MONOCYTOGENES 409



good alternative to PFGE for L. monocytogenes typing, and it
can be used for investigations of listeriosis outbreaks and
tracking contamination sources in food processing environ-
ments.

MLVA focuses on the study of the variability of the
number of tandem repeats (VNTRs) at specific loci of bac-
terial genomes. VNTRs are short segments of DNA that have
variable copy numbers, and the difference in copy numbers at
specific loci is used to measure relationships among strains.
The primers are designed from the flanking regions of
VNTRs. The PCR products may be separated on agarose gels
(according to sizing of individual fragments, the copy num-
bers are detected) and/or subjected to DNA sequencing sys-
tems (Murphy et al., 2007; Sperry et al., 2008).

Chenal-Francisque et al. (2013) evaluated 18 VNTRs loci
and combined the 11 best ones into 2 multiplex PCR assays.
The authors suggest that this protocol is useful for the char-
acterization of L. monocytogenes strains and that it represents
an attractive first-line screening method to epidemiological
investigations and listeriosis surveillance. Furthermore, it is
of low cost and easy to perform and provides rapid results
(around 8 h), with portable (numerical) results. However, this
method exhibits lower discriminatory power than PFGE
based on ApaI and AscI restriction enzymes, as observed by
Sperry et al. (2008).

According to Lindstedt et al. (2008), MLVA was slightly
more discriminatory than PFGE for isolates from Norway,
consisting of 28 MLVA profiles and 24 PFGE profiles. The
opposite was observed for isolates from Sweden, producing
42 MLVA profiles and 43 PFGE profiles; however, only AscI
enzyme was used for PFGE in this study. In addition, Chen
et al. (2011) reported the MLVA application for typing L.
monocytogenes directly in food samples. This method suc-
cessfully typed strains from cheese, roast beef, egg salad, and
vegetable samples after a 48-h enrichment, generating ac-
curate, reproducible, and high-quality results from artificially
contaminated food samples.

Many of the techniques described above have been widely
used in phenotypic and genotypic studies and led to new
insights into ecology, epidemiology, virulence potential, and
genetic evolution. In the last decade, PCR-based sequencing
methods have become available for many laboratories, pro-
viding several advantages, including electronic portability of
nucleotide sequences, which allows for quick comparisons
between laboratories.

One of the first PCR-based sequencing techniques described
for typing pathogenic microorganisms was MLST (Maiden
et al., 1998). Using this technique, it is possible to evaluate the
DNA sequence variations of housekeeping genes and compare
the sequences with their original profiles. For each gene, dif-
ferent sequences found are assigned as alleles, and these pro-
vide a profile that defines unambiguously the type of sequence
of each isolate. Changes in the nucleotide housekeeping genes
occur relatively slowly, making this method suitable for epi-
demiological investigations (Enright and Spratt, 1999; Cooper
and Feil, 2004).

L. monocytogenes typing by MLST was first demonstrated
by Salcedo et al. (2003). Nowadays, a protocol adapted by
Ragon et al. (2008) has become widely used to characterize
L. monocytogenes isolates, targeting seven housekeeping
genes: acbZ (ABC transporter), bglA (beta-glucosidase), cat
(catalase), dapE (succinyl diaminopimelate desuccinylase),

dat (d-amino acid aminotransferase), ldh (lactate dehydro-
genase), and lhkA (histidine kinase).

In addition, Zhang et al. (2004) developed an MVLST
method that exhibits higher discriminatory power than ribo-
typing, PFGE, and MLST. This method is based on the se-
quencing of three virulence genes ( prfA, inlB, and inlC) and
three virulence-associated genes (dal, lisR, and clpP), and it
can improve the discriminatory power of MLST while also
providing information about virulence potential of L. mono-
cytogenes strains. In addition, the inclusion of the two viru-
lence genes (inlA and actA) was proposed by Chen et al.
(2007) to complement the six previous genes used in the
analysis. Recently, various studies have used MLST and
MVLST combined and demonstrated success for epidemio-
logical investigations and also genetic/virulence evolution
(Knabel et al., 2012; Cantinelli et al., 2013; Martı́n et al.,
2014; Yin et al., 2015).

Another approach is to type L. monocytogenes by assessing
SNPs at multiple locations on the genome. Unnerstad et al.
(2001) categorized 106 L. monocytogenes on the basis of
SNPs in the inlB gene, and strains were clustered into four
groups (serogroups 1/2a and 1/2c were clustered in one
group, 1/2b and 3b in another group, and serotype 4b strains
in two groups). Ducey et al. (2007) designed multilocus
genotyping (MLGT) by sequencing 23,251 bp of DNA from
22 genes distributed across 7 genomic regions to efficiently
target SNP variation and type L. monocytogenes isolates from
lineage I. This protocol also provides information about a
specific virulence-attenuated subtype with a characteristic
truncation mutation in inlA. Considering this, MLGT repre-
sents a significant new tool for pathogen surveillance, risk
assessment, outbreak detection, and epidemiological inves-
tigations (Ducey et al., 2007; Ward et al., 2008).

Since the genomes of L. monocytogenes and L. innocua
were published by Glaser et al. (2001), various studies have
been focused on comparative genomics to understand the
genetic relationships among L. monocytogenes lineages and
molecular mechanisms associated with virulence potential
(Nelson et al., 2004; Gilmour et al., 2010; Bécavin et al.,
2014).

New technologies, as next-generation sequencing (post-
Sanger sequencing technologies) using Illumina MiSeq or
NextSeq platforms, have been described and successfully
applied for extremely fast whole-genome sequencing. To
accurate data analysis, new bioinformatic devices are facili-
tating comparative genomics and data sharing among re-
searchers, which improves the quality of epidemiological
studies (Stasiewicz et al., 2015; Bergholz et al., 2016). These
studies indicate that in a very near future, genome sequencing
will replace many of the previously described methods due to
its discriminatory power and portability of generated data
(Kwong et al., 2016).

Pathogenicity Factors and Virulence Potential

L. monocytogenes has acquired a variety of virulence
factors that allow it to successfully invade and survive within
host cells. This bacterium has a characteristic way to colonize
the human host using phagocytic cells to be distributed in the
body for cell-to-cell spread (Fig. 1) (Chaturongakul et al.,
2008). After adhesion and invasion of the intestinal epithe-
lium, L. monocytogenes spreads throughout the body,
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infecting macrophages, epithelial cells, endothelial cells,
hepatocytes, fibroblasts, and cells of the nervous system
(Fig. 2). Translocation from the lumen into the intestinal
epithelial cells is mediated by the surface-associated viru-
lence protein internalin A (InlA) encoded by the gene inlA;
these proteins interact with specific receptors on host cells,
leading to receptor-mediated internalization. InlA protein
binds to glycoprotein E-cadherin present on the host cell,
resulting in a rearrangement of the cell cytoskeleton and entry
of the pathogen into the host cell (de las Heras et al., 2011).

After internalization, other virulence proteins, such as
pore-forming cytolysin listeriolysin O (LLO) encoded by the
gene hly and 2 phospholipases C (PlcA and PlcB) encoded by
the genes plcA and plcB, help the bacterium to escape from
phagosomes formed during the invasion process. The protein
encoded by the hly gene causes pores in the membrane of the
phagosome, resulting in lysis of the membrane and bacterial
escape.

Furthermore, this protein is responsible for hemolytic ac-
tivity in virulent isolates. The proteins encoded by the genes
plcA and plcB operate in synergy within the vacuole, being
activated by a metalloprotease (Mpl), which is encoded by mpl
gene. For replication in the host cell cytoplasm, sugar phos-
phate permease HPT protein is required. Then, the spreading to
neighboring cells is fully dependent on the actin polymerizing
protein ActA, encoded by the gene actA, that guarantees the
movement through the cell by induction of actin polymeriza-
tion (Fig. 1). In addition, the actA protein also participates in the
maintenance of Listeria aggregates in the cecum lumen
(Vázquez-Boland et al., 2001; de las Heras et al., 2011).

L. monocytogenes can spread by the bloodstream to me-
senteric lymph nodes, liver, spleen and multiply within host

cells as well. Several genes encoding proteins related viru-
lence, such as actA, plcA, plcB, hlyA, mpl, and prfA, that are
located in the Listeria pathogenicity island 1 (LIPI-1)
(Schmidt and Hensel, 2004), which is regulated by the protein
PrfA. To avoid unnecessary expression in the environment,
the PrfA regulon is selectively activated during infection (de
las Heras et al., 2011).

Another important virulence-associated locus comprises
the inlAB gene locus. The L. monocytogenes genome encodes
27 proteins now known as a family of internalins; however,
InlA and InlB are the only internalins that have been directly
implicated in host cell internalizations (Pizarro-Cerdá et al.,
2012). In addition, the Listeria genomic island 1 (LGI1),
initially identified by Gilmour et al. (2010), consists of genes
that encode putative translocation, resistance, and regulatory
determinants. These characteristics suggest that this locus
plays an important role in bacterial persistence and/or path-
ogenicity. The internalin protein encoded by the gene inlA is
critical to the invasion of the bacteria into the intestinal
barrier during the initial stage of infection (Bonazzi and
Cossart, 2006).

Several studies have shown that mutations in the inlA gene
can lead to premature stop codons (PMSCs), resulting in the
expression of a nonfunctional truncated protein (Tamburro
et al., 2010). Although PMSCs are found in isolates from
lineages I and II, they are most commonly observed in iso-
lates from lineage II (serotypes 1/2a and 1/2c) that are fre-
quently associated with environmental and food sources.

In a study conducted by Van Stelten et al. (2010), it was
confirmed that mutations in isolates from foods are more
common than those from clinical cases. Associated with this,
strains with mutations had reduced invasion of Caco-2 cells,

FIG. 1. Steps of Listeria monocytogenes intracellular infection cycle: (1) attachment to the host cell surface and inter-
nalization via a ‘‘zipper mechanism’’ is promoted by two listerial surface proteins (InlA and InlB, encoded by inlA and inlB
genes) with their respective cell surface receptors (E-cadherin and the receptor tyrosine kinase c-Met); (2) this results in
engulfment of bacteria and endosome formation; (3) the escape from the vacuole is mediated by three membrane-damaging
factors: a pore-forming toxin LLO, encoded by the gene hly, and two phospholipases PlcA and PlcB, encoded by genes plcA
and plcB (the latter needs to be processed by the Mpl metalloprotease after secretion, which is encoded by mpl gene); (4)
replication in the cell cytosol using cytosolic resources (Listeria adapt their metabolism and start the expression of several
genes, such as the hexose transporter Hpt or the lipoate protein ligase LplA1, for multiplication); (5) cell-to-cell spread
mechanism, which allows intracellular motility, is mediated by the surface protein ActA (encoded by the gene actA), which
induces actin polymerization, providing Listeria motility through the cytoplasm; (6) at the end of this cycle, Listeria reach
the plasma membrane and induce the formation of pseudopod-like structures (listeriopods), allowing the invasion of the
neighbor cell: this activity is mediated by InlC protein (encoded by inlC gene); (7) phagocytosis and formation of a double-
membrane vacuole; and (8) rupture of the two-membrane vacuole and Listeria escape initiate a (9) new round of prolif-
eration, actin-based motility, and intercellular spread. LLO, listeriolysin O.

CHARACTERIZING LISTERIA MONOCYTOGENES 411

http://online.liebertpub.com/action/showImage?doi=10.1089/fpd.2015.2115&iName=master.img-000.jpg&w=417&h=163


consistent with the critical role of internalins in the infection
process. In this way, sequencing data of the inlA gene provide
important information regarding virulence potential of L.
monocytogenes strains obtained from the food production
chain and clinical cases. In addition, sequencing the inlA gene
helps estimate the risk of exposure to pathogenic strains
through the consumption of food (Olier et al., 2005; Rous-
seaux et al., 2004; Van Stelten et al., 2010).

Several factors may contribute to the development of lis-
teriosis, such as the number of ingested bacterial cells, host
immunity, and virulence potential of each strain. Despite
being naturally virulent, some L. monocytogenes strains are
avirulent and unable to cause disease. The evaluation of the
virulence potential should be made by appropriate laboratory
methods, such as sequencing of virulence genes and evalu-
ation of the expression of virulence factors and their effects
on host cell invasion through cell culture studies (Liu, 2006).
Such assessment may contribute to a better understanding of
the virulence potential of strains isolated from the food pro-
duction chain and clinical cases, and it provides input to
implement programs to promote the prevention of listeriosis.

Concluding Remarks

The intracellular foodborne pathogen L. monocytogenes is
ubiquitous in nature. Genetic profiles obtained by molecular
methods have helped demonstrate the genetic diversity of this
foodborne pathogen from various sites. The best methods are
those that are specific, sensitive, fast, simple, reproducible,

and low cost. In addition, they must provide information
about the pathogenic potential of strains. By applying these
methods, it has been possible to detect various foods involved
in outbreaks of listeriosis and allow proper control by food
inspection agencies and the food industry. These methods can
be useful for monitoring critical control points in the food-
handling environment to provide subsidies to apply correc-
tive measures regarding cleaning and sanitization procedures
to eliminate L. monocytogenes in the environment.
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Hächler H, Marti G, Giannini P, et al. Outbreak of listerosis due
to imported cooked ham, Switzerland 2011. Euro Surveill
2013;18:20469.

Hadjilouka A, Andritsos ND, Paramithiotis S, Mataragas M,
Drosinos EH. Listeria monocytogenes serotype prevalence and
biodiversity in diverse food products. J Food Prot 2014;77:
2115–2120.

Hagens S, de Wouters T, Vollenweider P, Loessner MJ. Reporter
bacteriophage A511::celB transduces a hyperthermostable
glycosidase from Pyrococcus furiosus for rapid and simple
detection of viable Listeria cells. Bacteriophage 2011;1:143–
151.

Hagens S, Loessner MJ. Phages of Listeria offer novel tools for
diagnostics and biocontrol. Front Microbiol 2014;5:159.

Harvey J, Norwood D, Gilmour A. Comparison of repetitive el-
ement sequence-based PCR with multilocus enzyme electro-
phoresis and pulsed field gel electrophoresis for typing Listeria
monocytogenes food isolates. Food Microbiol 2004;21:
305–312.

Hitchins AD, Jinneman K. BAM: Detection and enumeration of
Listeria monocytogenes. 2011. Retrieved from www.fda.gov/
Food/FoodScienceResearch/LaboratoryMethods/ucm071400
.htm Accessed April 1, 2011.

Huang B, Fang N, Dimovski K, Wang X, Hogg G, Bates J.
Observation of a new pattern in serogroup-related PCR typing
of Listeria monocytogenes 4b isolates. J Clin Microbiol
2011;49:426–429.

Jadhav S, Bhave M, Palombo EA. Methods used for the de-
tection and subtyping of Listeria monocytogenes. J Microbiol
Methods 2012;88:327.

Jay JM, Loessner MJ, Golden DA. Modern Food Microbiology.
New York, NY: Springer, 2005.

Kabuki D, Kuaye A, Wiedmann M, Boor K. Molecular sub-
typing and tracking of Listeria monocytogenes in Latin-style
fresh-cheese processing plants. J Dairy Sci 2004;87:2803–
2812.
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