Behavior of *Bacillus cereus* under conditions simulating the proximal gut

Faculteit Bio-ingenieurswetenschappen Faculty of Bioscience Engineering

M.Sc. Varvara TSILIA

Foodborne Outbreaks - Belgium

+

FASFC, 2004-2007

2007

Foodborne Outbreaks - France

'In France, from 1998 to 2000, *B. cereus* represented 4 to 5 % of foodborne poisoning outbreaks of known origin.'

'Strain 391-98 ... was responsible for an outbreak of <u>diarrhoeal syndrome</u> food poisoning in a nursing home for elderly people in <u>France in March 1998</u>. The strain was isolated at a level of 3×10^5 g⁻¹ from a vegetable purée, and 44 people were ill. Six of the patients had bloody diarrhoea, and <u>three of them died</u>'.

Lund et al. (2000) Mol. Microbiol. 38

Disease Mechanism? - Diarrhea

+

Food Processing/Bad handling *B. cereus* spores may survive Spore germination, growth and toxin

Disease Mechanism? - Diarrhea

STOMACH (HCl/Pepsin) Vegetative cell death Enterotoxin degradation

+

STOMACH

+**Disease Mechanism? -** Diarrhea

INTESTINE

Duodenum (bile, pancreatin) Spore survival

Ileum Spore germination, growth and toxin

+**Disease Mechanism? -** Diarrhea

DIARRHOEA

Disease Mechanism? - Requirements

- 1. Germination/Growth
- 2. Toxin production

42

- **3. Functional toxins**
- **?. Adhesion on mucus**

Hypothesis:

Adhesion on mucus

- protect B. cereus from the toxic intestinal slurry
- preserve/enhance the activity of enterotoxins

- No germination/growth (Ceuppens et al. 2012a)
- Quorum sensing (Gohar et al. 2002; 2008)
- Instability (Ceuppens et al. 2012b)
- Surface proteins (Sanchez et al., 2009)

+ Methods - Proximal gut simulation

Results – Stomach

+

pН

Mucus

1. Why could we not detect enterotoxins in the **lument**

1.1. Toxin degradation by host secretions? 1.2. Quorum sensing not activated?

2. What is the role of the mucus?

2.1. Could we detect enterotoxin in mucus?2.2. Are enterotoxins protected by mucus?

1.1. Toxin degradation by host secretions?

42

Toxin is sensitive to bile/pancreatin mixture

1.2. Quorum sensing not activated?

-1-

Probably not, stationary phase in not reached

1.2. Quorum sensing not activated?

Run the system longer?

44

Luminal Bacteria

Adhered Bacteria

What do the adhered bacteria do?

What do the adhered bacteria do?

2.1. Could we detect enterotoxin in mucus?

44

Enterotoxin can be detected in mucin agar

2.2. Are enterotoxins protected by mucus?

÷

Toxins are maintained in the system longer due to mucus?

Thank you for your attention

Promotors

ala.

Prof. dr. ir. Van de Wiele Prof. dr. ir. Uyttendaele

Financial support

Federal Public Service, Belgium

federale overheidsdienst

VOLKSGEZONDHEID, VEILIGHEID VAN DE VOEDSELKETEN EN LEEFMILIEU

Collaborators

