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Thousands of chemicals are directly added to or come in contact with food, many of which have un-
dergone little to no toxicological evaluation. The landscape of the food-relevant chemical universe was
evaluated using cheminformatics, and subsequently the bioactivity of food-relevant chemicals across the
publicly available ToxCast highthroughput screening program was assessed. In total, 8659 food-relevant
chemicals were compiled including direct food additives, food contact substances, and pesticides. Of
these food-relevant chemicals, 4719 had curated structure definition files amenable to defining chemical
fingerprints, which were used to cluster chemicals using a selforganizing map approach. Pesticides, and
direct food additives clustered apart from one another with food contact substances generally in be-
tween, supporting that these categories not only reflect different uses but also distinct chemistries.
Subsequently, 1530 food-relevant chemicals were identified in ToxCast comprising 616 direct food ad-
ditives, 371 food contact substances, and 543 pesticides. Bioactivity across ToxCast was filtered for
cytotoxicity to identify selective chemical effects. Initiating analyses from strictly chemical-based
methodology or bioactivity/cytotoxicity-driven evaluation presents unbiased approaches for priori-
tizing chemicals. Although bioactivity in vitro is not necessarily predictive of adverse effects in vivo, these
data provide insight into chemical properties and cellular targets through which foodrelevant chemicals
elicit bioactivity.
© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

An estimated ~10,000 chemicals are directly or indirectly added
to food in the United States, serving to enhance and preserve the
taste and appearance of foods, prevent spoilage, or act as packaging
constituents (Neltner et al., 2013). The addition of such chemicals to
human food is allowed by the US Food and Drug Administration
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(FDA) under the 1958 US Food Additives Amendment. The safe use
of newchemicals added to food is determined based on “reasonable
certainty in the minds of competent scientists that the substance is
not harmful under the intended conditions of use” (21 CFR x170.30)
(Rulis and Levitt, 2009). However, for additives commonly used
before 1958, safety may have been based on past use/experience
rather than scientific data (12 USC x321) (Burdock and Carabin,
2004). Thus, with thousands of food-relevant chemicals approved
for use in food, and as many as ~70% of direct additives having
minimal to no toxicological guideline study data (Neltner et al.,
2013), approaches that offer rapid evaluation to help inform,
maintain, and support food safety are needed.

In vitro high-throughput screening (HTS) assays offer a time-
and cost-effective platform for the evaluation of large chemical li-
braries (National Research Council, 2007). Such assays, in combi-
nation with computational approaches, provide an opportunity to
rapidly gain insight into chemical-elicited effects on biochemical
endpoints, cellular processes, and phenotypes as well as support
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the 3 R's (replacement, reduction, and refinement) of animal use in
toxicological testing (Russell and Burch, 1958; Ankley et al., 2010b;
Thomas et al., 2013). Using HTS data to inform on bioactivity can
have great potential impact on both product development and
safety testing (i.e., provide a platform for cost-effective high-
throughput hazard identification). A significant example is the US
Environmental Protection Agency's (EPA) ongoing ToxCast HTS
program, which has evaluated a library of over 3000 chemicals in
concentration-response format across over 1000 targeted in vitro
assay endpoints to assess bioactivity in vitro (Dix et al., 2007;
Kavlock et al., 2012; EPA, 2016b). A subset of 800 chemicals in
ToxCast, termed the E1K library, were specifically screened across a
subset of endocrine-related endpoints, highlighting that not all
chemicals were evaluated in all ToxCast assays. The ToxCast assays
cover a broad spectrum of chemical effects including enzyme in-
hibition, interaction with receptors, induction of cell stress path-
ways, and overt cytotoxicity (Kavlock et al., 2012).

The study presented herein is the first to evaluate strictly food-
relevant chemicals across the entire ToxCast HTS program. Initially,
a comprehensive inventory of food-relevant chemicals was
compiled identifying 8659 food-relevant chemicals that was
divided into three lists based not only on use but also chemistry: (1)
direct food additives, (2) food contact substances, and (3) pesti-
cides. The compiled food-relevant chemical list was then mined
against the entire ToxCast chemical inventory identifying 1530
food-relevant chemicals evaluated in ToxCast. The bioactivity of
these 1530 chemicals across all tested assay endpoints was
assessed, and we demonstrated that filtering bioactivity using
cytotoxicity can help hone in on potential selective chemical-
mediated bioactivity to aid in prioritization and characterization
of chemical effects. Combined, the results suggest that large HTS
programs such as ToxCast are a valuable resource that can help
inform on chemical prioritization and can have potential use as
support for food safety testing.

2. Materials and methods

2.1. Identification of food-relevant chemicals

The inventory from publicly accessible databases was mined for
chemicals, identified by their chemical abstract services registra-
tion numbers (CASRNs), to compile a comprehensive list of chem-
icals having any use associated with food. Accessed databases
included the following FDA resources: Everything Added to Food in
the US (EAFUS) (FDA, 2016a); Generally Recognized as Safe (GRAS)
Notice Inventory (FDA, 2016a); Select Committee on GRAS Sub-
stance Database (SCOGS) (FDA, 2016c); List of Indirect Additives
Used in Food Contact Substances (FDA, 2015); Inventory of Effective
Food Contact Substances (FDA, 2016b); and Threshold of Regulation
(TOR) Exemptions (FDA, 2016d). In addition, the Flavor & Extract
Manufacturers Association GRAS inventory (FEMA, 2016) and the
Aland Wood Pesticide database comprising active ingredients in
pesticides which were assumed to be food use for the purpose of
this study (Wood, 2015) were also included. Any defined chemical
mixtures encountered were separated into the individual compo-
nents and listed as unique CASRN for the purposes of this study. The
compiled list of food-relevant chemicals including all source lists
are summarized in Supplementary File S1, and a summary of the
inventories is provided in Table 1. The food-relevant chemical list
was cross-referenced against the entire publicly available ToxCast
program chemical inventory comprising 3784 chemicals (EPA,
2016b). More specifically, the “ToxCast & Tox21 Chemicals
Distributed Structure Searchable Toxicity Database (DSSTox files)”
dataset (DSSTox_20151019 released October 2015) was down-
loaded; chemicals evaluated in ToxCast were obtained from
“DSSTox_ToxCastRelease_20151019.xlsx”.

2.2. Chemical clustering

Manually curated, high-quality, quantitative structureeactivity
relationship (QSAR)eready simplified molecular input line entry
system codes (SMILES) curated by Mansouri et al. were obtained
from DSSTox for 4719 of the 8659 food-relevant chemicals (EPA,
2015; Mansouri et al., 2016). More specifically, the DSSTox Data
was downloaded and SMILES were retrieved from the “DSSTox-
All_20151019.xlsx” file. DSSTox does not contain SMILES for metals,
polymers, and unstable stereoisomers as they were not amenable
to the requirements for QSAR-ready structure definition file (SDF)
generation, and were omitted from these analyses. Furthermore, it
is important to note that while SMILES may exist for more of the
food-relevant chemicals, the current study only obtained SMILES
from DSSTox for consistency and reliability as DSSTox is a trust-
worthy manually curated resource. Using the rcdk package in R
software (Guha, 2007), the SMILES were used to generate SDFs
from which fingerprints were subsequently calculated using the
same rcdk package. The generated molecular fingerprints describe
a chemical's structure in a series of zeros or ones representing the
presence or absence of a substructure descriptor which were
defined using two descriptor sets: MACCS comprised of 166 de-
scriptors and PubChem comprised of 881 descriptors. The MACCS
descriptors are commonly used to evaluate chemical similarity
describing general chemical substructure features, the PubChem
fingerprints also describe substructural features summarizing a
diversity of structural valence-bond forms. In total, 874 descriptors
were associated with at least one food-relevant chemical and hence
included for analysis (162 from MACCS and 712 from PubChem).
The kohonen package in R (Wehrens and Buydens, 2007) was used
to cluster the chemicals based on fingerprints across the 874 de-
scriptors provided to the algorithm to form a self-organizing map
(SOM), which groups the most similar chemicals together and
displays cluster relationships in map form. The SOM generated
from the 4719 chemicals was used to visualize chemical use cate-
gories as well as the ToxCast results. Supplementary File S2 pro-
vides the CASRN and SMILES for the 4719 chemicals in the SOM as
well as which bin each chemical was in after clustering. Supple-
mentary File S3 provides performance metrics from the SOM
clustering. All analyses were conducted in R v3.1.3, with all scripts
including analysis and each figure's code compiled into the source
package “karmaus.fct.2016” attached as Supplementary File S4.

2.3. ToxCast HTS data

ToxCast data were retrieved from the publicly available down-
load files (EPA, 2016b). For reproducibility, a self-contained R
package with all pertinent data, analysis scripts, and figure gener-
ation scripts is provided as Supplementary File S4. Using the kar-
maus.fct.2016 R package, all data can be viewed, and all analyses
and figures can be reproduced. To create this package, the “MySQL
Database” (invitrodb_v2, released in October 2015) and the “R
Package” (tcpl_1.0 released in November 2015) were downloaded
and used as the foundation for all work (EPA, 2016b). Additionally,
all the ToxCast data used for this study are also available for
download as Excel files using the “ToxCast & Tox21 Summary Files”
download link (for invitrodb_v2 released October 2015), the
pertinent files used in the current study to evaluate ToxCast results
are “tested_Matrix_151020.csv”, “modl_ga_Matrix_151020.csv”,
“hitc_Matrix151020.csv”, and “zscore_Matrix_151020.csv”; ToxCast
data can also be viewed using the iCSS ToxCast Dashboard (EPA,
2016a). Chemicals evaluated in the ToxCast program were
screened in concentration-response across 1157 assay endpoints,



Table 1
Summary inventories for compiled food-relevant chemicals and defined use categories.

Inventory source Number of entries
in inventory

Number of CASRN or
codes in inventorya

Use category Number of CASRN
in use categorya,b

Number of CASRN
with defined fingerprints

Number of CASRN
in ToxCast

FDA EAFUS 3968 3968 (3277) Direct Food
Additives

4610 / 4610
(3888 / 3888)

2016 616
FDA SCOGS 378 351 (320)
FDA GRAS Notices 603 380 (349)
FEMA GRAS 2796 2664 (2659)

FDA Effective FCS 1205 715 (715) Food Contact
Substances

3785 / 3713
(3111 / 3039)

1173 371
FDA Indirect in FCS 3229 3229 (2555)
FDA TOR 50 56 (56)

Alan Wood Pesticides 1813 1808 (1808) Pesticides 1808 / 1732
(1808 / 1732)

1530 543

TOTAL 14,042 13,171 (11,733) TOTAL 13,171 / 10,055
(11,733 / 8659)

4719 1530

a The values preceding brackets represent the sum of unique CASRN and FDA CFSAN-generated numeric codes (ie. 977nnnnnn) together. However, since the FDA codes do
not reflect true chemical entities mapped to CASRN, the numbers in brackets omit these codes and summarize the total number of unique CASRN only.

b The Total Number CASRN in use category reflects the sum of CASRN in each category. The values before the arrow represent the number of CASRN in each use category
when merging the inventories from the multiple sources contributing to the use category. The values after the arrow represent the unique number of CASRN in each use
category after chemicals were assigned to only one use category, and all duplicates were removed. For chemicals appearing in more than one use category preference was
given to classification as a Direct Food Additive > Food Contact Substance > Pesticide. The subsequent columns (“Number of CASRN with Defined Fingerprints” and the
“Number of CASRN in ToxCast” are subsets from the final value after the arrow in brackets.
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though not all chemicals were evaluated in all assay endpoints. For
example, most of the 1530 food-relevant chemicals were evaluated
in ~300e800 assay endpoints, with a range of assay endpoints
tested per food-relevant chemical from as many as 1057 assay
endpoints to as few as 95 assay endpoints. Chemicals with fewer
tested assay endpoints generally comprise the E1K subset of
chemicals that were prioritized for the EPA's Endocrine Disruptor
Screening Program and run mainly in endocrine-related assays
(Browne et al., 2015). The significant effect of a chemical in any
assay (referred to as the bioactivity of a chemical for the purposes of
this study) was already identified in the downloaded data, denoted
by the “hitc” output variable from analysis with the ToxCast Pipe-
line package in R (tcpl package, version 1.0) (EPA, 2016b) such that
hitc was true when a concentrationeresponse relationship and a
minimum activity thresholdwere achieved. For the purposes of this
study, the AC50 value (identified as the “modl_ga” variable from the
downloaded data) was used as a quantitative measure to reflect the
potency of bioactivity. The AC50 value reflects the concentration at
which 50% of the maximum response is achieved (where response
units could be fold change, percent activity, or percent viability).
2.4. Cytotoxicity evaluation

Because cytotoxicity can be a confounding factor in the evalu-
ation of specific in vitro assay effects (Cantor and Janovitz, 2013), we
defined the concentration at which chemicals elicited overt cyto-
toxicity. The median AC50 from 35 ToxCast assays measuring
cytotoxicity was used to define a “cytotoxicity center” for each
chemical (Supplementary File S5 summarizes the 35 cytotoxicity
assays and cytotoxicity centers per chemical). All 1530 chemicals
were evaluated in at least 14 of the 35 cytotoxicity assays (i.e., not
all chemicals were evaluated in all cytotoxicity assays). To calculate
a cytotoxicity center, chemicals must have elicited a significant
effect in at least three cytotoxicity assays. For the purpose of
filtering out bioactivity that may have been confounded by cyto-
toxicity, we defined a “cytotoxicity limit” by multiplying the global
median absolute deviation (MAD) of all chemicals across all assay
endpoints by 3. This approach sets the cytotoxicity limit based on
the distribution of variances between AC50 values across the cyto-
toxicity assays. By applying the cytotoxicity limit as a threshold, we
defined selective bioactivity as any assay endpoint with an AC50
below the cytotoxicity limit. This approach recognizes that all
bioactivity occurs within a distribution and aims to conservatively
define selective bioactivity for each chemical.
3. Results

3.1. Chemical clustering

A list of 8659 chemicals was identified as food-relevant
comprising a diversity of uses and chemistries. To organize this
large list, three use categories were defined per chemical based on
the database of origin: (1) direct additives, (2) food contact sub-
stances, and (3) pesticides (Table 1). Several inventories contained
code numbers generated by FDA in lieu of CASRN to identify sam-
ples that are not attributable to specific CASRN; such codes were
removed from the total chemical counts as these entries do not
reflect defined chemical entities. Furthermore, for the purposes of
this study, chemicals were only allowed in one use category with
priority given to direct food additives > food contact
substances > pesticides. These requirements resulted in aworkflow
beginning with 13,171 unique total CASRN or codes compiled from
all resources, reduced to 10,055 CASRN, and ultimately once
chemicals were only allowed into one use category 8659 unique
food-relevant chemicals. More specifically, the direct food additives
category contains 3888 substances that were obtained from the
FDA SCOGS, FDA GRAS, FEMA GRAS, and EAFUS databases; these
chemicals are generally added to food to achieve an intended
technical effect in the finished food. The food contact substance
category comprises 3039 chemicals from food contact substance
databases that are used in packaging, manufacturing, and trans-
portation of food, but have no intended technical effect in or on
finished food, nor are they necessarily intended to be in the finished
food product. Finally, the pesticides category comprised the entire
Alan Wood database of 1808 pesticide actives, of which 76 chem-
icals were duplicated from other sources and assigned into other
use categories, resulting in 1732 chemicals being classified as pes-
ticides for the purpose of the current study. There were 3080
chemicals that were identified in multiple databases sources, this
overlap is largely represented by the 2348 chemicals that overlap
between FEMA GRAS and EAFUS.

To evaluate the landscape of structural diversity among the
food-relevant chemicals, fingerprints were generated for 4719 of
the 8659 food-relevant chemicals which had SMILES available in



A.L. Karmaus et al. / Food and Chemical Toxicology 92 (2016) 188e196 191
DSSTox, and used to build a SOM. The SOM clustering approach
organized chemicals into bins, effectively grouping the large list of
chemicals based on fingerprints (ie. physical/chemical similarity). A
layout of 20 � 24 was used to target ~10 chemicals per bin (i.e., 480
bins for 4719 chemicals). The resulting clustering achieved a stable
clustering distribution with an average of 10 chemicals per bin,
with a distribution ranging from 0 to 50 chemicals per bin, Sup-
plementary File S3 contains more details on the summary statistics
for the SOM. For visualization, bins were laid out such that those
containing most alike chemicals were nearest to each other, with
direct neighboring bins being most similar. This SOM was then
colored to visualize the use category designations of the chemicals
in each bind food additives, food contact substances, or pesticides.
The proportion of chemicals in each bin belonging to the respective
use categories revealed a clear separation such that distinct regions
Fig. 1. SOM colored to evaluate chemical use and bioactivity. The SOM generated using 4719
bin that are (A) direct food additives, (B) food contact substances, or (C) pesticides. The color
category are gray and bins where all chemicals are in the use category are red. There are 12 e
bins were then highlighted to reflect the number of chemicals in ToxCast, such that gray bin
bioactivity in ToxCast shown as the mean of the proportion bioactive assays was highlighte
assays in which the chemical was tested). The bin with the greatest mean proportion of active
(bold red CASRN) with a mean of 0.4 proportion active assays, suggesting that these che
registration number; SOM, self-organizing map.
of the SOM comprised 100% direct additives or pesticides while the
food contact substances were distributed between these regions
(Fig. 1AeC). It is important to note that the percent of chemicals per
use category may be affected by the total number of chemicals in
each bin. However, the layout of bins will be driven by similarity
regardless of the number of chemicals in each bin, reflecting the
key descriptors/fingerprints that define the bins. The clear sepa-
ration of direct additives from pesticides, with food contact sub-
stances spread in between, supported the designation of use
categories as a functional grouping for chemicals by confirming
that there are distinct physical/chemical properties differentiating
these groups of chemicals.

The same SOMwas also used to visualize chemicals evaluated in
ToxCast. First, the number of chemicals per bin evaluated in ToxCast
was highlighted (Fig. 1D). There were 1475 of the 1530 food-
food-relevant chemicals was highlighted to visualize the proportion of chemicals per
scale ranges from blue to red such that bins with no chemicals associated with the use
mpty bins with no chemicals (white). (D) To visualize ToxCast coverage and bioactivity,
s are composed entirely of chemicals not evaluated in ToxCast. (E) Finally, the relative
d for tested chemicals (i.e., mean of the number of active assays out of total number of
assays is expanded, revealing that 4/10 chemicals in this bin were evaluated in ToxCast
micals are highly promiscuous in in vitro assays. CASRN, chemical abstract services
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relevant chemicals in ToxCast that had structural data in DSSTox
amenable to clustering for the SOM. Although not all bins contain a
chemical represented in ToxCast, most of the food-relevant chem-
ical landscape represented in the SOM is included in ToxCast with
395 of the 468 bins containing chemicals (480 bins total minus 12
empty bins) having at least one chemical evaluated in ToxCast. This
demonstrates that the ToxCast chemical inventory encompasses a
broad diversity of food-relevant chemistry without a discernable
void in coverage. Finally, to evaluate bioactivity, the mean propor-
tion of active assay endpoints per chemical (calculated as the
number of active assay endpoints divided by the total number of
assay endpoints in which the chemical was tested) was visualized
using heatmap coloring on the SOM (Fig.1E). Overall, the bins in the
bottom-right corner, composed largely of pesticides, had the
highest proportion of active chemicals. Some bins stood out as
having a larger proportion of assay endpoints with significant
bioactivity, suggesting that fingerprints comprising these bins may
be associated with chemicals eliciting promiscuous bioactivity. The
bin with the highest proportion of active assay endpoints was
expanded revealing triphenyltins and phenylmercuric chemicals all
belonging to the pesticides category (Fig. 1E). It is important to note
that there are 10 chemicals comprising this bin with only four
having been evaluated in ToxCast (designated by the CASRN in bold
red font).

Having evaluated chemical similarity and proportion of active
assay endpoints, a ternary plot was used to visualize mean potency
of bioactivity in ToxCast to gain insight into the relative potency of
chemicals across use categories (Fig. 2). This approach also utilizes
the same bins that chemicals were grouped into from the SOM,
using only the 395 bins that contained at least one chemical eval-
uated in ToxCast. These bins were plotted as points across three
Fig. 2. Evaluation of mean activity in ToxCast for food-relevant chemicals. Chemicals
were clustered into bins based on physical/structural fingerprints using a SOM algo-
rithm. These bins were distributed on a ternary plot based on the proportion of
chemicals in the bin belonging to each use category, such that the higher up, and closer
to, the axis reflects greater proportion of chemicals in that bin belonging to the use
category. To visualize overlapping points, translucent coloring and minimal scattering
was incorporated. There are 395 bins represented on the plot, as at least one chemical
had to be tested in ToxCast. Bins were colored based on the mean of the activity in
ToxCast across the chemicals contained in the bin. Mean activity was calculated as the
mean of log2 sum potency, where sum potency is the sum of �log(AC50) for all assays
in which a chemical was bioactive. Direct food additives and pesticides had the largest
number of bins with 100% of the chemicals belonging solely to those use categories,
respectively, as visualized by the large cluster of bins at the top of those axes. The
chemicals in the pesticide bins show greater mean bioactivity, revealed by more red
and yellow bins; meanwhile the direct food additives are generally less bioactive, as
shown by the density of blue and aqua bins on that axis.
axes representing the different use categories to integrate separa-
tion based on the proportion of chemicals in each bin belonging to
each category (integrating the results depicted in Fig. 1AeC). The
points were then colored to visualize mean sum potency, calculated
as the sum of�log(AC50), such that if a chemical was potently active
in many assay endpoints it would have a greater sum. This plot re-
iterates that direct food additives and pesticides had the most
distinct chemistries, as shown by the large number of bins directly
on the top of those axes, respectively. Furthermore, the coloring
reflecting potency reveals that bins composed of direct additives
were mostly low potency chemicals versus the higher potency seen
on the pesticides axis.

3.2. Evaluation of cytotoxicity

Cytotoxicity and cell stress can confound results from cell-based
in vitro assays. For example, in a loss-of-signal assay, a chemical that
kills cells is very likely to concurrently decrease the assay signal,
regardless of the relationship of the assay endpoint to the mecha-
nism of cytotoxicity (Judson et al., 2013). To account for this effect, a
cytotoxicity center was calculated for each chemical using the
median AC50 from cytotoxicity assays in the ToxCast database.
Although all 1530 food-relevant chemicals were evaluated in at
least 14 cytotoxicity assays, not all chemicals elicited cytotoxicity in
the concentration range tested (usually up to 100 mM). Only 25% of
the food-relevant chemicals tested (388 of 1530) had a determined
cytotoxicity center (Fig. 3). More specifically, only 10% (62 of 616) of
direct food additives, 29% (108 of 371) of food contact substances,
and 40% (218 of 543) of pesticides had determined cytotoxicity
centers. These relative percentages demonstrate striking differ-
ences between the use categories. For chemicals where cytotoxicity
centers were calculated, the cytotoxicity centers were generally
between 10 and 100 mMwith a slightly higher mean for direct food
additives relative to the food contact substances and pesticides
(Fig. 3). Several chemicals from each use category were outliers
having significantly lower cytotoxicity centers; most of these out-
liers had cytotoxicity centers below 2 mM, suggesting that these
chemicals may elicit more potent cytotoxicity and could be chem-
icals of interest (Table 2).

To eliminate possible promiscuous bioactivity concurrent with
cell stress and cytotoxicity, bioactivity below a chemical-specific
cytotoxicity limit was identified. In order to filter for bioactivity
below the cytotoxicity limit, only chemicals that did elicit cyto-
toxicity (i.e., had a determined cytotoxicity center) were included.
Application of the filter for cytotoxicity assumes that any bioactive
assay endpoint with an AC50 value greater than or equal to the
cytotoxicity limit was nonspecific and thus should no longer be
included in the active assay count for the chemical. This filtering
resulted in an 8-fold decrease in the average number of active assay
endpoints per chemical for all use categories (from an average of
~80 assay endpoints per chemical to an average of ~10 assay end-
points per chemical). A noticeable trend showing pesticides having
a higher mean number of active endpoints than food contact sub-
stances or direct additives can be seen (Fig. 4). Although the pes-
ticides were on average evaluated inmore assay endpoints than the
chemicals in other use categories, the pesticides maintain a greater
proportion of active assays and higher number of active assay
endpoints overall, even when normalized to total number of assays
tested (Supplementary File S6). In general, the chemicals with the
greatest number of active assay endpoints in all use categories were
those that elicited cytotoxicity, confirmed by the drastic decrease in
active assay endpoints after cytotoxicity, which was consistent for
chemicals across all use categories. The high number of active
endpoints before filtering was similar across all use categories, ~80
assay endpoints; however, it is important to note that Fig. 4 is



Fig. 3. Evaluation of cytotoxicity. The cytotoxicity range for food-relevant chemicals, grouped by use category, was determined based on 35 ToxCast cytotoxicity assays (note: all
food-relevant chemicals were evaluated in at least 14 of these cytotoxicity assays). A minimum of three assays with concentration-dependent cytotoxicity effects were required per
chemical, resulting in only a subset of chemicals having a determined cytotoxicity center. The number of chemicals with a determined cytotoxicity center (N) versus the total
number of chemicals in each category are shown on the right. Boxplots represent the distribution of cytotoxicity center values, denoting the mean at the center of the boxplot and
the 95th percentile within the boxplot whiskers. The relative height of the boxplots reflects the proportion of chemicals from the use category included in the plot (i.e., 10% [62 of
616] of direct additives had a determined cytotoxicity center resulting in a narrow boxplot versus 40% [218 of 543] of pesticides with a cytotoxicity center resulting in a tall box plot).
The shaded area reflects the density of cytotoxicity AC50 values, to help visualize where the majority of data points lie.

Table 2
Chemicals with cytotoxicity centers below 2 mM.

CASRN Chemical name Active cytotoxicity assays/cytotoxicity assays evaluated Cytotoxicity center (mM)a

Direct Food Additives
8000-34-8 Clove leaf oil 4/35 0.39
112-31-2 Decanal 3/33 1.43
Food Contact Substances
1461-22-9 Tributyltin chloride 34/35 0.78
683-18-1 Dibutyltin dichloride 15/19 1.07
81-48-1 D&C Violet 2 3/14 1.75
3064-70-8 Bis(trichloromethyl)sulfone 14/14 1.94
Pesticides
50-65-7 Niclosamide 22/35 0.32
134-31-6 8-Hydroxyquinoline sulfate 4/19 0.35
76-87-9 Triphenyltin hydroxide 33/35 0.64
62-38-4 Phenylmercuric acetate 34/35 0.84
100-56-1 Phenylmercuric chloride 17/18 1.05
1897-45-6 Chlorothalonil 29/35 1.72

a The cytotoxicity center was calculated as the median of AC50 values from all active cytotoxicity assays in which the chemical was evaluated. Chemicals had to have a
determined AC50 in �3 cytotoxicity assays for a cytotoxicity center to be calculated.
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comprised only of chemicals for which cytotoxicity centers were
determined so that cytotoxicity filtering would be possible,
reflecting a far lower proportion of the direct food additives (10%)
than food contact substances (29%) or pesticides (40%). The cyto-
toxicity filtered list of bioactive assay endpoints is more informa-
tive, providing better insight into potential selective targets of the
chemical. For example, nordihydroguaiaretic acid (NDGA; CASRN
500-38-9) was active in 82 of the 317 assay endpoints in which it
was tested with a determined cytotoxicity center of 52 mMbased on
AC50 values from 3 of the 19 cytotoxicity assays in which it was
tested. Among the 82 active ToxCast assay endpoints, 30 had AC50
values below the cytotoxicity limit and were thus considered po-
tential selective targets for NDGA. These bioactive assay endpoints
after cytotoxicity filtering are the possible selective targets of NDGA
and comprised 12 estrogen receptor (ER) assays, suggesting a po-
tential mechanism of action as a xenoestrogen.
4. Discussion

Advances in analytical chemistry have paved the way for the
detection and development of many chemicals and mixtures that
are directly added to, and come in contact with, human food. These
chemicals serve a multitude of purposes, including the fortification,
preservation, manufacture, and packaging of food, and it has been
suggested there are roughly 10,000 such chemicals in use in the
United States (Neltner et al., 2013). We sought to comprehensively
compile a list of chemicals from many publicly available resources
to define a list of food-relevant chemicals. A total of 8659 unique
food-relevant chemicals were identified, slightly below previous
estimates of the food-use chemical universe; furthermore, only
3888 were possible direct additives while 4771 were food contact
substances or pesticides. It is also important to note that all
chemicals with GRAS registrations were systematically grouped
into the direct food additives category for the purpose of our study;
however, chemicals are given GRAS designation specifically based



Fig. 4. Effect of cytotoxicity filtering. To identify the selective effects of chemicals from
overt cytotoxicity (defined as having significant effects in �3 cytotoxicity assays), only
bioactive assay endpoints with AC50 values below the cytotoxicity center were deemed
active. This filtering approach resulted in a marked decrease in the number of active
assays for these chemicals. On average, chemicals that elicited cytotoxicity were
bioactive in an average of 80 assays per chemical (white; mean for direct food additives
was 65 assay endpoints while both food contact substances and pesticides had a mean
of 87 assay endpoints). However, when active assays having an AC50 above the cyto-
toxicity center per chemical were deemed nonspecific and removed from the bioactive
assay count, the average number of selective bioactive assays was reduced 8-fold to an
average of 10 assays per chemical (gray hashed; direct food additives average was 7
assay endpoints, food contact substances averaged 10 assay endpoints, and pesticides
averaged 14 assay endpoints). There were a few chemicals that did not elicit any
bioactivity below the cytotoxicity center, resulting in fewer chemicals included in the
filtered versus unfiltered boxplots (see the number of chemicals listed below the
boxplots).
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on a defined intended use, which in the future should be evaluated
for proper categorization and prioritization of these chemicals.
Despite possible refinements in chemical categorization, our food-
relevant list encompasses a broad chemical diversity including
various uses representing unique chemistries as confirmed by SOM
clustering. The list of 8659 food-relevant chemicals compiled
herein is not necessarily complete, other resources could be
included to increase the scope of food-use chemical analyses (e.g.,
incorporation of chemical lists from countries other than the United
States).

With a defined list of 8659 food-relevant chemicals in hand, it
becomes evident that traditional toxicity testing for each of these
chemicals is simply not feasible. One suggested approach to
address this challenge is to prioritize chemicals warranting follow-
up testing using in vitro HTS (National Research Council, 2007). The
cost- and time-efficient nature of HTS enables the evaluation of
thousands of chemicals, even if there are limited to no previous
testing data for a chemical. Publicly available data from the ToxCast
in vitro HTS program as well as the Tox21 qHTS program offer
unique resources for identifying the specific biochemical targets of
chemicals, aiding in mapping adverse outcome pathways, and
prioritizing chemicals for toxicological evaluation (Dix et al., 2007;
EPA, 2016b; NIH/NCATS, 2016). The Tox21 dataset, though rich in
chemical diversity with ~9000 chemicals evaluated, was not
included for the current study due to the lower number of assay
endpoints evaluated. Our analysis is the first to specifically focus on
food-relevant chemicals in ToxCast, identifying 1530 food-relevant
chemicals. These 1530 chemicals showed trends in promiscuity and
overt cytotoxicity between use categories, consistent with their
design such that bioactivity across ToxCast correlated with the
intended technical function of the ingredient. For instance, pesti-
cide active ingredients are intended to have potent activity on an
intended target by design, often growth inhibitory or toxic,
whereas direct additives are not intended to have potent
bioactivity.

The broad landscape of food-relevant chemical diversity and
assay endpoints evaluated across ToxCast enables a multitude of
analyses for the identification of specific chemicals of interest.
Many suitable alternate and complementary approaches are
possible for identifying chemicals of interest from such a large
dataset in addition to the examples highlighted herein (clustering,
cytotoxicity, and bioactivity summaries); nevertheless, our ap-
proaches revealed several points of interest. For example, NDGA
was included in this study because it was listed in the EAFUS in-
ventory due to its historic use as an antioxidant and preservative for
fats and butter. Use of NDGA was initially approved by the Meat
Inspection Division of the US War Food Administration in 1943 (Lu
et al., 2010). The GRAS status for NDGA was withdrawn in 1968,
because subsequent studies found that NDGA elicited nephropathy
in rats (Evan and Gardner, 1979). This example highlights the fact
that future studies would benefit from manual curation of large
database outputs, as is the focus of our future studies. In the case of
NDGA in the inventory, we discovered that several FDA databases
serve as a repository for any/all registrations, whether historic and
withdrawn or current and active. Interestingly, NDGA has more
recently been shown to be estrogenic in vitro and in vivo and is
being investigated for its potential medical use treating tamoxifen-
resistant breast cancer due to its effect on the ER (Fujimoto et al.,
2004; Zavodovskaya et al., 2008). These studies directly correlate
with the top biological targets of NDGA in ToxCast, as after cyto-
toxicity filtering ER assays were identified as the most specific
targets of NDGA.

Another example of potential priority chemicals identified in the
current study are organotins, included in both the food contact
substance and pesticide categories with uses including antifouling
agents, stabilizers, and fungicides. Within the food-relevant subset
of ToxCast, several organotins elicited potent cytotoxicity and
bioactivity across assays in both the food contact substance and
pesticide categories, namely tributyltin chloride (CASRN 1461-22-
9) and triphenyltin hydroxide (CASRN 76-87-9), respectively.
Furthermore, the SOM-based analysis identified the bin containing
triphenyltins as having the highest proportion of active assays; this
bin contained two organotins evaluated in ToxCast: triphenyltin
chloride (CASRN 639-58-7) and triphenyltin hydroxide. Given that
these chemicals, in addition to the phenylmercuric compounds in
the same bin, had such a high proportion of active assays, it would
be worthwhile to follow-up with evaluation of the other chemicals
in this bin in future studies. It should be kept inmind, however, that
these may represent a structural class that interfere with many
in vitro assays (e.g., detergent-like compounds), and additional
testing should be approached with this in mind (Judson et al.,
2013). Evaluation of cytotoxicity center distributions identified
the aforementioned organotins as outliers with significantly lower
cytotoxicity centers, which artifactually increases the number of
positive assay hits. Despite the triphenyltin compounds having
been sorted into a different bin in the SOM than the tributyltin and
dibutyltin compounds (likely due to the presence of the phenyl
moiety), the merging of multiple analyses cumulatively identified
all of these organotins. This finding from in vitro ToxCast data is
consistent with the overt toxicity observed upon organotin expo-
sure in animal studies (Kimbrough, 1976). In fact, the uses of
organotins continue to be restricted, being limited to stabilizers for
polyvinyl chloride packaging materials and fungicides for plant
protection, resulting in very low potential food-use exposure. The
highest risk of organotin consumption arises from eating shellfish,
likely due to past use of such compounds as antifouling agents
(Rosenberg, 2013).
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In vitro assays can inform on chemical interaction with
biochemical and cellular targets to aid in chemical hazard priori-
tization (Browne et al., 2015). However, it is important to note that
in vitro assays also have limitations. Furthermore, in vitro assays are
subject to false positives and negatives, such that the manual
evaluation of data for endpoints of specific interest should always
be considered. In vitro assays lack absorption, distribution, meta-
bolism, and excretion processes that occur in vivo and may influ-
ence the bioavailability of a chemical in target tissues, which are
critical to providing a dose context to the observed results. Signif-
icant advances have been made in modeling reverse toxicokinetics
to aid in starting to address these challenges (Wambaugh et al.,
2015; Wetmore et al., 2015), and added parameters should be
considered with regard to indirect food contact substances to ac-
count for possible migration into products at levels that need to be
defined. The resulting dietary exposures would need to be esti-
mated in order to determine expected exposures. Such exposure
estimates are a critical part of prioritization in addition to the
characterization of hazard made possible by in vitro evaluation.

While the chemicals included in the current ToxCast inventory
covered the food-relevant landscape fairly well despite comprising
only chemicals soluble in dimethylsulfoxide (DMSO), no mixtures
were evaluated in ToxCast. Food is composed of mixtures, though
not all are well-defined mixtures. Most food contact substances
were registered as defined mixtures, which could be emulated and
evaluated in in vitro assays. Furthermore, assays in which food-
relevant chemicals are most frequently active could be incorpo-
rated during the evaluation phase of ingredient development.

The battery of ~1000 assays included in the current ToxCast data
is impressive, yet there are many biological targets that are not
represented; new assays are being added to increase coverage of
biological space (Kavlock et al., 2012). Ultimately, characterization
of bioactivity through in vitro assays is merely one step in charac-
terizing the effects of chemicals on biological systems. For instance,
the construction of adverse outcome pathways (AOP) that link
molecular initiating events (MIEs) measured with in vitro assays to
apical endpoints is an area of increasing research and regulatory
activity (Ankley et al., 2010a). The feasibility of the AOP approach
has been demonstrated for the ER pathway inwhich a model based
on in vitro assays targeting the MIE of ER activation was shown to
robustly predict an associated in vivo adverse endpoint, increased
uterine weight (Wambaugh et al., 2015). However, broader appli-
cation of the AOP approach for endpoints that underlie most safety
decisions for food-relevant chemicals is still in its infancy and will
require additional effort across all sectors.

5. Conclusions

The identification of 8659 food-relevant chemicals and subse-
quent evaluation of 1530 diverse food-relevant chemicals across
hundreds of in vitro assays demonstrated that large-scale analyses
are possible and feasible for the food-relevant chemical universe.
Data from the ToxCast HTS program provided the unique oppor-
tunity to evaluate the diversity of food-relevant chemicals in
concentration-response on a broad set of endpoints. This is a sig-
nificant step in characterizing the bioactivity of food-relevant
chemicals in vitro. Evaluation of other alternate and/or comple-
mentary analysis methods and data sources would help build
confidence in the ToxCast-based findings presented herein. Follow-
up studies focusing on subsets of chemicals or subsets of targeted
assays to address more specific topics of interest, incorporation of a
cytotoxicity filter to identify specific chemical-mediated effects,
and consideration of dosimetry and exposure estimates will also
serve to strengthen the characterization of chemical-mediated ef-
fects identified in vitro. The current study highlighted examples of
approaches for the large-scale identification and evaluation of
food-relevant chemicals ultimately integrating cheminformatics
and ToxCast HTS data. The results confirmed that such approaches
are useful in identifying chemical-elicited bioactivity to support
food safety when evaluated in the proper context. Future studies
will seek to refine the categorization of food-relevant chemicals,
incorporate other analysis and data integration approaches, and
evaluate other available data sources such as exposure estimates
and in vivo data to provide further context and confidence in the
in vitro and in silico findings.
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