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Invasive species present significant threats to global agriculture,
although how the magnitude and distribution of the threats vary
between countries and regions remains unclear. Here, we present
an analysis of almost 1,300 known invasive insect pests and patho-
gens, calculating the total potential cost of these species invading each
of 124 countries of the world, as well as determining which countries
present the greatest threat to the rest of the world given their trading
partners and incumbent pool of invasive species. We find that
countries vary in terms of potential threat from invasive species and
also their role as potential sources, with apparently similar countries
sometimes varying markedly depending on specifics of agricultural
commodities and trade patterns. Overall, the biggest agricultural
producers (China and the United States) could experience the greatest
absolute cost from further species invasions. However, developing
countries, in particular, Sub-Saharan African countries, appear most
vulnerable in relative terms. Furthermore, China and the United States
represent the greatest potential sources of invasive species for the rest
of the world. The analysis reveals considerable scope for ongoing
redistribution of known invasive pests and highlights the need for
international cooperation to slow their spread.
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Invasive species are a major cause of crop loss and can adversely
affect food security (1). In the United States alone, crop and

forest production losses from invasive insects and pathogens
have been estimated at almost US$40 billion per year (2). With
increased globalization and connectedness via world trade, the
threat from invasive species arriving to countries in which they
were previously absent is expected to increase (3, 4). To quantify
this threat and develop effective biosecurity policy requires an
understanding of the sources of potential pests and pathogens,
their likelihood of arriving at a particular location, their likeli-
hood of establishment upon arrival, and an estimate of their
possible impact. Numerous studies have modeled arrival and/or
establishment (5, 6) of invasive species, often with a focus on the
threat from individual species to a particular country. A few
studies have considered establishment of broader species as-
semblages (7–11) but, again, typically from an individual country-
level perspective. To date, there has been no evaluation of total
invasion threat and its potential cost to agricultural crop pro-
duction from a global pool of potential invasive species consid-
ering all countries at risk. Such an analysis would be valuable as it
not only identifies those countries most vulnerable to invasion by
this global pool of invasive species but also those countries that
present the greatest threat to the rest of the world given their
current trade patterns and the pests they already have present.
We define invasion threat as the product of arrival likelihood

(i.e., the chances of a particular pest or pathogen arriving in a
new location) and establishment likelihood (i.e., the chances of a
particular pest or pathogen establishing in a new location once it
has arrived). Quantifying the many potential pathways by which
multiple invasive species could arrive at a particular country is
extremely challenging. However, the numbers of invasive species
in a region or country have consistently been shown to be related
to gross levels of trade (4, 12–16). Accordingly, we used the value

of each country’s annual mean (2000–2009) importation (in mil-
lions of US dollars) from each trading partner as a proportion of
total imports from all trading partners (17) as a proxy for species
arrival likelihood. For establishment likelihood, we analyzed the
worldwide distribution of the almost 1,300 insect pests and fungal
pathogens (18) using a self-organizing map (SOM), which analyses
pest assemblages and pest associations to generate establishment
indices for all species, for all countries included in the dataset
(8, 10). The pest assemblage present in a location captures the
biotic and abiotic characteristics of that location and serves as a
proxy measure for those variables. To illustrate, a location that has
a humid climate will have present a collection of pests and path-
ogens that can only survive there because the abiotic character-
istics (such as temperature and humidity) are suitable. If two
locations (A and B) have similar assemblages, then they are likely
to have similar biotic and abiotic conditions. If location A has
species 1–10 and location B has species 1–9, then it is reasonable
to assume that species 10 has a high likelihood of establishing in
location B. The SOM is able to assess the similarity between lo-
cations (in this case, countries) based on species assemblages for
all countries simultaneously, generating establishment indices for
all species in all locations in which they are not currently present.
This method has been shown to be resilient to significant errors
in species distributional data (19) and highly effective at ranking
those species that can establish in a region above those that
cannot (20).
For each country, we obtained mean annual crop production

values (2000–2009) (21) for the most important crops grown (i.e.,
those crops that comprised approximately the top 75% of the
total value of agricultural production for the country). For every
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pest and pathogen species in the analysis, we calculated the invasion
threat to a particular country only if that country grew an agricul-
tural crop that was a known host of that pest or pathogen species
and that species was not already present in the country. The in-
vasion threat (ITtps) of one species, p, from one source country, s, to
a recipient (or threatened) country, t, was calculated as the product
of the arrival and establishment indices. We calculated the total
invasion threat (TTtp) of one species, p, from all possible source
countries to a given threatened country, t (SI Appendix, Fig. S1). We
then combined the TT values for all species to calculate an overall
invasion threat (OTt) to a country, t, incorporating all pests and
pathogens from all possible source countries (trading partners).
Having defined the threat from invasive species to a country,

we then calculated the potential cost from invasive pests and
pathogens on each crop, c, in each country, t (crop invasion cost—
CICtc). It was not possible to determine the potential impact of all
species in all countries as such data are not available. As an
alternative, we obtained the maximum reported percentage im-
pact for 140 species (of the 1,297 species in our analysis) on one of
its main agricultural hosts. We assumed this represented the range
of possible impacts of all species in our dataset. For each species,
p, and each crop, c, and in each country, t, we sampled from this
range 100 times (with replacement) to get a mean potential impact
(MIpct). We therefore generated more than 37,000 unique mean
potential impact values, for each possible combination of species,
crop, and country. The mean was then multiplied by the TTtp and
the value of the crop in that country to generate the potential
financial impact of that pest on that crop in that country. This was

subsequently summed over all pests and all crops to determine the
total invasion cost (TICt) to that country.
We were also able to identify not just threatened countries,

which have the most to lose from these invasive species, but also
those countries that represent the greatest threat to the rest of
the world, given their trade patterns and the invasive species they
already have present within their borders. To estimate source-
TIC (TICs) for an individual source country, s, we followed a
similar method used to generate TICt for threatened countries,
except we used the crop data of countries they export to and
those invasive species present within their own country, which
could spread to trading countries.

Results
Invasion Threat. We found that 40 of the 124 countries assessed
(32%) had a likelihood index of being invaded (OTt) by any one
insect or pathogen species greater than 0.80 (Fig. 1A and SI Ap-
pendix, Table S1). Only 10 countries (8%) had OTt values <0.4.

Invasion Cost. As expected, countries that are large agricultural
producers such as China, United States, India, and Brazil exhibit
the highest potential cost from these 1,297 invasive species (Fig.
1B and SI Appendix, Table S2). However, the economic signifi-
cance of an invasive species following introduction will likely
depend not only on the value of the threatened commodity but
also the ability to manage or mitigate the impact via means such
as pest management, plant breeding, crop substitutions, imports,
or subsidies (22). To provide an estimate of this relative cost, we
divided a country’s TICt by its mean gross domestic product

Fig. 1. World map representation of model outputs. (A) The overall invasion threat (OTt) to each threatened country, t; (B) the total invasion cost (TICt) (in
millions of US dollars) to threatened countries; (C) the total invasion cost (TICt) (in millions of US dollars) to threatened countries, as a proportion of GDP; and
(D) the total invasion cost (TICs) (in millions of US dollars) from source countries, s. Those countries without color were not included in the analysis.
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(GDP) (2000–2009) (23) [our assumption being that countries in
which TICt represents a larger proportion of GDP will be more
vulnerable to invasive species impacts (22)]. Countries with the
largest TICt values relative to GDP (countries in red, Fig. 1C)
were all developing countries, with the top 6 countries most at risk
(and 11 of the top 20) all located in Sub-Saharan Africa (Fig. 1C
and SI Appendix, Table S3).

Source Countries. As with the rankings by TICt, we found that
China and the United States ranked first and second as potential
source countries (Fig. 1D and SI Appendix, Table S4). Further-
more, exactly one-half (10) of the countries ranked in the top 20
source countries were also ranked in the top 20 for threatened
countries (Fig. 1B and SI Appendix, Table S2).

Discussion
We saw little pattern in which countries had higher or lower OTt
values, indicating the complex interplay between the types of
crops grown in a country, the level of trade with other countries,
and the particular invasive species present in those trading
countries. For example, neighboring countries can have surpris-
ingly different OTt values. Italy has a low OTt, whereas its im-
mediate neighbors, Switzerland and Austria, both have high OTt
values (Fig. 1A and SI Appendix, Table S1), despite Italy’s
importing approximately twice the value of either Switzerland or
Austria (IT = $371,349M, CH = $151,835M, AT = $188,494M).
This is partly driven by the fact that fewer invasive species threaten
Italy (IT = 147, CH = 170, AT = 264), but also by the particular
species that are threatening (and their establishment indices), as
well as the different trading partners of these countries. Further-
more, although it would be expected that import dollars will
strongly influence a country’s TICt, we found a number of exam-
ples where this is not the case. India and Sweden have similar
mean import dollars ($138,542M and $109,479M, respectively),
but very different TICt values (Fig. 1B and SI Appendix, Table S2),
as a result of the number of species threatening each country (190
and 58, respectively), which is a function of the crops grown and
the invasive species present in trading countries. Finally, examin-
ing TICs shows that, although export dollars can influence a
country’s TICs value, it can also be the number of threatening
invasive species. Mexico and Pakistan have very different TICs
values (Fig. 1D and SI Appendix, Table S4) but similar numbers of
invasive species present (379 and 377, respectively). The differ-
ence in TICs values for these two countries is influenced by
the large differences in mean export dollars ($217,484M and
$12,464M, respectively). Alternatively, India and Czech Republic
have similar mean export dollars ($97,034M and $86,478M), yet
different TICs values (Fig. 1D and SI Appendix, Table S4), driven
by large differences in the number of invasive species present in
each country (627 and 212, respectively).
Despite these apparent complex interactions, when examining

TICt as a proportion of GDP, countries in Sub-Saharan Africa
were clearly identified as the most vulnerable to the potential im-
pact of invasion by the agricultural pests and pathogens included in
this analysis. These countries (and many of the highly ranked de-
veloping countries) generally do not have diverse economic in-
dustries and are subsequently disproportionately more dependent
on agriculture (24). As a result, any threat from invasive species
can potentially have a greater relative impact on these countries.
Wealthy regions where agricultural activity represents a smaller
proportion of GDP have a much smaller relative TICt, even where
invasion threat is large. To illustrate, North American and Scan-
dinavian countries all have a high OTt (Fig. 1A), yet, when po-
tential impact (TICt) as a proportion of GDP is considered
(Fig. 1C), these countries are placed in the lowest category.
The United States and China were identified as the two most

important source countries to the rest of the world. These coun-
tries are characterized by large and diverse trade volumes and

have been confirmed as network hubs in the international agro-
food trade network (25). They also have diverse agroecosystems
and host a substantial number (52% and 56%, respectively) of the
pool of invasive pests and pathogens, more than any other country
in this analysis. As such, they can be considered central nodes in
the worldwide network of invasive species spread. Other countries,
such as Japan, Germany, France, and Republic of Korea, also
ranked highly as potential source countries [Germany and France
have also been identified as network hubs (25)]. At the other end
of the scale, numerous developing countries ranked low as po-
tential sources of invasive species. This contrasts to their position
as generally the most vulnerable countries to invasion as a function
of GDP (Fig. 1C).
Uncertainties are an intrinsic feature of any model-based

assessment of ecological invasions (26), and it is important to
quantify the impact of these uncertainties in any model outputs.
There were four key parameters in our model (arrival index, es-
tablishment index, mean potential impact, and crop production
value), and we examined their impact on TIC for both threatened
and source countries (TICt and TICs, respectively).
We found little change in the rankings with the introduction of

these errors (SI Appendix, Figs. S2–S9). We also found only small
changes in TICt and TICs values. The largest change was a de-
crease in TICt for Mongolia by 16% with the introduction of
uncertainty to mean annual crop value, although this country’s
ranking only dropped by one place as a result (from 111 to 112).
Overall, the mean change in TICt and TICs varied from 0.24% to
3.94% depending on the type of uncertainty introduced (i.e.,
arrival index, establishment index, mean potential impact, or
mean annual crop value) (SI Appendix, Table S5).
Predicting invasion by a species with no known invasion history

or with no previous pest impact is extremely challenging because
they are likely to be unknown before invasion of the new region.
However, the invasive species assessed here are a substantial
subset of the known global species pool of economically significant
pests. We would therefore expect the patterns revealed in this
analysis to be robust to the inclusion of more species.
The presence/absence data used in the Centre for Agriculture

and Bioscience International (CABI) Crop Protection Com-
pendium (CPC) include species that may be recorded in a country
from a restricted range (one location only) up to a widespread
range. As such, we have not been able to consider whether a
species establishes and does not spread or if there is a lag phase
before spread. Our predictions therefore only consider whether
a species can establish in a country and not the more complex
dynamic invasion processes that could follow. Furthermore, pre-
dicting the impact of an individual pest species is extremely
challenging due to spatial and temporal uncertainty. The same
pest species can have a major impact in one location yet a minor
impact in another. The rate of spread of a pest species will also
influence any economic impact assessment. Accordingly, we feel
our use of mean potential impact drawn from the range of reported
impacts for a subsample of species in this analysis is a parsimonious
approach to analyzing global patterns.
To our knowledge, this is the first analysis summarizing the

invasive species threat to global crop production on a country-
by-country basis. We find that far from being “saturated” or
“homogenized,” many countries are open to substantial ongoing
threat of invasion from known pests and/or pathogens. Countries
that are large crop producers are most at risk in absolute terms,
whereas numerous developing countries are disproportionately
vulnerable to invasion in relative terms. Countries with diverse
commodities and/or large trade volumes are likely the greatest
source of invasive pests and pathogens, whereas countries with
developing economies likely play less of a role as sources of in-
vasion. As trade volumes continue to increase and more trade
connections are made between countries, the pressures from in-
vasive species will only intensify. The formation of an international
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body responsible for invasive species could not only enable the
management of invasive species at the global scale but also pro-
vide those countries identified here as most vulnerable, with the
information, and possibly the resources necessary to protect their
borders and limit the further spread of invasive species (27).

Materials and Methods
Species and Country Data. Species data were extracted from the CABI CPC (18).
Species in this database fall into one of two categories in terms of the
quality of data (basic data sheets and full data sheets). Basic data sheets are
generated by a process of data mining and have not been manually checked.
Full data sheets have been written specifically for the compendium by a
range of specialists. These full data sheets are then edited and checked by
additional experts. Only those insect and fungal pathogen species in the
database with a full data sheet available were extracted.

Countries were included in the analysis only if both crop data from the
Food and Agriculture Organization of the United Nations (FAO) (21) and
direction of trade data from the International Monetary Fund (17) were
available. For some country-to-country combinations, no direction of trade
data were available (e.g., Burkina Faso and Azerbaijan). These were rela-
tively infrequent, and rather than remove both countries from the analysis,
we assumed the value of trade between the two countries was zero.

Arrival Index. An arrival index was generated from direction of trade data
(17), which has consistently been shown to be related to the number of
invasive species in a country or region (4, 12–16). For each country, we
generated a mean importation value (in millions of US dollars—normalized
to 2011) from each trading partner over the period of 2000–2009. For each
country, a proportion was generated by dividing the mean import value
from the trading country by the mean total import value from all trading
countries. This proportion was used as a proxy for likelihood of a species
arriving at the threatened country over the course of 1 y.

Establishment Index. The species distribution for each of the 1,297 invasive
species in 124 countries was extracted (18) and placed into a 124 × 1,297
matrix of 1’s and 0’s in which 1 represented a species being present in a
country and 0 represented absence.

An SOM (28) was used to analyze this matrix. An SOM is a type of artificial
neural network capable of converting high-dimensional data into a 2D map,
pictorially showing which data points are most similar. The SOM therefore is
a clustering method and full details can be obtained from refs. 10 and 28,
but essentially each region occupies a multidimensional space determined by
a vector of the presence/absence data. In this case, there are 1,297 species, so
each region will have a 1,297 element vector made up of 1’s (present) and 0’s
(absent) to determine its position in a 1,297-dimension space. The SOM is an
elastic network of neurons that are projected into this multidimensional
space and which interact with the regions. The vector that determines each
neuron’s position in this space is termed the neuron weight vector. The
number of neurons in an SOM is partially determined by the heuristic rule,
5√n, where n is the number of samples (in our case, this is 124 countries)
(29). In addition, the two largest eigenvalues are calculated from the data-
set, and the ratio of length and width of the SOM is set to those eigenvalues.
Given this ratio, the final number of neurons is set as close as possible to the
heuristic rule. The size of the map in this analysis was 9 × 6 (54 neurons), with
the standard hexagonal configuration.

Although the initial projection of these neurons into themultidimensional
space can be done randomly, a linear initialization is recommended, which
aligns the SOM corresponding to the first two eigenvalues discussed above.
This linear initialization significantly reduces the time required to complete
the analysis because the neurons are arranged in a way that is more rep-
resentative of the raw data (28).

When the analysis is initiated, each country is assessed and the closest
neuron to this country in multidimensional space is identified as the best
matching unit (BMU). The neuronweight vector of the BMU is adjusted so the
neuron moves closer to the country. All countries are assessed simultaneously
(batch algorithm). Because all neurons in the SOM are connected together
similar to a large “elastic net,” the process of one neuron moving closer to a
country exerts a gravitational force that drags other neurons in the SOM
with it. This gravitational effect is strongest on the nearest neurons to the
BMU and decreases with neurons further away. The simultaneous analysis of
all countries completes one iteration, and the recommended number of it-
erations is 500 × number of neurons (for this analysis, 500 × 54 = 27,000).
With each iteration, the gravitational effect of one neuron on neighboring
neurons decreases and the distance a BMU is moved closer to a country also

decreases. As the analysis approaches the final iterations, the SOM spreads
out to occupy approximately the same area that the countries occupy in the
multidimensional space. When the analysis is complete, each country will be
assigned to a BMU that is its closest neuron. Some countries will have the
same BMU, because they have similar assemblages of invasive species and
hence are found close to each other in the multidimensional space. Each of
the 1,297 elements of the neuron weight vector of a BMU corresponds to
each of the 1,297 invasive species in the analysis and will have a value be-
tween 0 and 1, which is a measure of the strength of association of the
invasive species with the assemblage of invasive species of any country
assigned to that BMU. The strength of association for a species can be
interpreted as an index of establishment likelihood for that species in a
region (10, 19, 20). On completion of the analysis, an establishment index
can be determined for every species in every country included in the analysis.

Mean Crop Value. The mean annual value (2000–2009) of each agricultural
crop (in millions of US dollars), for each of the 124 countries, was obtained
from the FAO (21). For each country, crop categories were ranked by value
and those crops that comprised the top 75% of total agricultural production
were used. For each crop category, a list of the insect pests and fungal
pathogens using that crop as a host was extracted from the CABI CPC (18).
Some crop categories were too general to determine what species of crop
was included (e.g., dry beans), whereas for other crop categories there was
no information available in the CABI CPC (e.g., mushrooms and truffles).
These crops were therefore omitted in the calculation of the top 75% of
agricultural production.

Invasion Threat. The invasion threat, ITtps, for each threatened country, t, for
each invasive species, p, from each source country, s, conducting trade with
the threatened country was calculated only if that invasive species was
present in the source country, absent from the threatened country, and a
known pest or pathogen of a crop grown in the threatened country:

ITtps =ΑtsEtp, [1]

where Ats is the arrival index of a species to a threatened country, t, from
source country, s, and Etp is the establishment index of species, p, in threatened
country, t.

Threatened Countries. The TTtp for a threatened country was calculated for
one species, p, from all possible source countries, s, to a given threatened
country, t:

TTtp = 1−∏s

�
1− ΙΤtps

�
. [2]

In addition, the total invasion threat, TTtc, from all species known to be a
threat to a particular crop, c, grown in a threatened country, t, was calcu-
lated as follows:

TTtc =1−∏p

�
1− ITtps

�
. [3]

The overall invasion threat, OTt, was calculated for all species threatening
any agricultural crop of a threatened country, t:

OTt = 1−∏p

�
1− TTtp

�
. [4]

Threatened Countries—Invasion Cost. Before estimating the invasion cost, we
first estimated the potential impact of species, p, on crop, c, in country t. To
do this, we searched the CABI CPC (30) and found the maximum reported
percentage impact on crop production for 140 species. Damage estimates
are not reported for most species and the 140 species were selected to in-
clude a representative diversity of pest taxa from the complete list, and to
span the range of possible impacts any species could have on any crop in any
country (SI Appendix, Table S6). For each species on each crop in each
country, we sampled from this range 100 times (with replacement) and
calculated the mean potential impact, MIpct, generating more than 37,000
unique mean potential impact values.

The crop invasion cost, CICtc, of all invasive species that are known pests or
pathogens of an agricultural crop, c, grown in a threatened country, t, was
then calculated as follows:

CICtc =ΤΤtcMIpctCVtc , [5]

where CVtc is the mean annual value of crop, c, in threatened country, t.
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The total invasion cost for each threatened country, TICt was calculated
from the sum of CICtc, of all crops grown in the threatened country:

TICt =
X

c
½CICtc �. [6]

Source Countries. The total invasion threat from all species found in a source
country, TTsc, to a particular crop, c, grown in a threatened country, t, was
calculated as follows:

TTsc = 1−∏p

�
1− ITtps

�
. [7]

Source Countries—Invasion Cost. The crop invasion cost from a source country,
CICsc, of all invasive species that are known pests or pathogens found in
the source country, s, and threatening an agricultural crop, c, grown in a
threatened country, t was calculated as follows:

CICsc =ΤΤscMIpctCVtc , [8]

where CVtc is the mean annual value of crop, c, in threatened country, t.

The total invasion cost from each source country, TICs, was calculated from
the sum of CICsc, of all crops, c, grown in threatened countries:

TICs =
X

c
½CICsc �. [9]

Uncertainty Analysis. We introduced an error rate separately to the four
parameters used in the analysis (arrival index, establishment index, mean
potential impact, and mean annual crop value) by multiplying the parameter
value for each species in each country, by a randomly selected value from a
uniform distribution between −0.2 and +0.2 and measured the change in
TICt (for threatened countries) and TICs (for source countries). We compared
the rankings of countries by TICt and TICs when these errors were introduced
with the original rankings, using Spearman rank correlation.
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