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Potential immunosuppressive effects of
Escherichia coli O157:H7 experimental
infection on the bovine host
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Abstract

Background: Enterohaemorrhagic Escherichia coli (EHEC), like E. coli O157:H7 are frequently detected in bovine faecal
samples at slaughter. Cattle do not show clinical symptoms upon infection, but for humans the consequences after
consuming contaminated beef can be severe. The immune response against EHEC in cattle cannot always clear the
infection as persistent colonization and shedding in infected animals over a period of months often occurs. In previous
infection trials, we observed a primary immune response after infection which was unable to protect cattle from re-
infection. These results may reflect a suppression of certain immune pathways, making cattle more prone to persistent
colonization after re-infection. To test this, RNA-Seq was used for transcriptome analysis of recto-anal junction tissue
and ileal Peyer’s patches in nine Holstein-Friesian calves in response to a primary and secondary Escherichia coli O157:
H7 infection with the Shiga toxin (Stx) negative NCTC12900 strain. Non-infected calves served as controls.

Results: In tissue of the recto-anal junction, only 15 genes were found to be significantly affected by a first infection
compared to 1159 genes in the ileal Peyer’s patches. Whereas, re-infection significantly changed the expression of 10
and 17 genes in the recto-anal junction tissue and the Peyer’s patches, respectively. A significant downregulation of 69
immunostimulatory genes and a significant upregulation of seven immune suppressing genes was observed.

Conclusions: Although the recto-anal junction is a major site of colonization, this area does not seem to be modulated
upon infection to the same extent as ileal Peyer’s patches as the changes in gene expression were remarkably higher in
the ileal Peyer’s patches than in the recto-anal junction during a primary but not a secondary infection. We can conclude
that the main effect on the transcriptome was immunosuppression by E. coli O157:H7 (Stx−) due to an upregulation of
immune suppressive effects (7/12 genes) or a downregulation of immunostimulatory effects (69/94 genes) in the ileal
Peyer’s patches. These data might indicate that a primary infection promotes a re-infection with EHEC by suppressing
the immune function.
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Background
Enterohaemorrhagic Escherichia coli (EHEC), such as E.
coli O157:H7, are frequently detected in faecal cattle
samples at slaughter (6.3% in Belgium, n = 1281) [1].
Cattle are the main natural reservoir, do not show clin-
ical signs upon infection and can remain asymptomatic

carriers for a very long period. If humans become in-
fected by consuming contaminated food, mainly inad-
equately cooked beef products, the consequences can be
severe [2]. After ingestion and subsequent colonization
of the human colon, EHEC releases Shiga toxins causing
microvascular endothelial injuries, which might lead to
bloody or non-bloody diarrhea, haemorrhagic colitis and
the haemolytic uremic syndrome [3, 4].
Recently, the prevalence of EHEC was studied in 12

Belgian cattle herds of which some animals were diag-
nosed as EHEC-positive at slaughter [5]. Longitudinal
follow up of herds showed that faecal samples were
intermittent positive, while some animals were suggested
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to have a chronic excretion over a period of at least 6–
12 weeks was observed. Of the intermittent shedders,
one animal was positive at the beginning of the study
and was also excreting when sampled 11 months later.
Furthermore, the shedding patterns showed that positive
animals can shed different strains at different sample
points [6]. Other studies showed that positive animals
became culture negative within 2–3 months after the
first testing [7]. The immune response of the animals
against the EHEC strains, which has been investigated in
few studies, might explain these excretion patterns. One
study demonstrated that antibodies against the O157
lipopolysaccharide (LPS) and Shiga toxin-1 and -2 (Stx1,
Stx2) frequently occur in bovine sera and colostrum
upon experimental infection [8], but this response could
not clear the infection, as infected animals secreted bac-
teria over a period of months [4]. Another study on two
farms demonstrated that faecal excretion was not always
correlated with E. coli secreted protein A (EspA), intimin
and, translocated intimin receptor (Tir) specific serum
antibody responses. In contrast, 87.5% of the animals
showed a serum antibody response against Escherichia
coli secreted protein B (EspB) at the same time that their
faecal sample was positive for EHEC O157, O26 or, O111
or 6 weeks after a positive faecal sample. These antibodies
persisted, even when shedding had ceased, until the ani-
mals were slaughtered, which was 2–8 months later,
whereas EspA-specific antibodies disappeared within 2
months [9]. These results indicate that farm animals,
which develop an immune response after infection, can
become reinfected by different EHEC strains as evidenced
by intermittent excretion which may reflect suppression
of certain pathways of the immune system by the primary
infection, making cattle more prone to persistent
colonization by a subsequent infection.
In 2003, Naylor et al. [10] described the preference of E.

coli O157:H7 for the terminal rectum up to the recto-anal
junction (RAJ) as primary site for colonization. This site is
characterized by a high density of lymphoid follicles. Pre-
dilection for epithelium above mucosa-associated tissue
could be important for modulating the immune system.
Indeed, EHEC O157 is capable of suppressing cell-
mediated immune responses in cattle by targeting lym-
phocytes via their Shiga toxins [8, 11], but enterocytes do
not have receptors for these toxins, suggesting that close
contact with the immune system might be necessary.
Here, the ileal Peyer’s patches might play a role as they are
of major importance for the mucosal immune responses
in cattle [12]. In this study, a Stx negative strain was used
for biosafety reasons. Nevertheless immunomodulating
effects of other virulence factors of E. coli O157:H7 have
been described. The H7 flagellin, bacterial LPS and type
IV pilus have been shown to induce proinflammatory re-
sponses upon EHEC infection. On the contrary, it has

been observed that EHEC as wells as EPEC strains could
suppress NF-κB and MAPK activation as well as IκB
degradation, [13] and could inhibit the production of pro-
inflammatory cytokines IL-8 and IL-6, early in the infec-
tion by different LEE- and non-LEE encoded effectors
(Tir, NleB, NleC, NleD, NleE, NleH1 and NleH2) [14].
Clearance of EHEC O157 is associated with an up-
regulation of Th-1 associated transcripts within the rectal
mucosa, the principle site of colonization [10, 15], suggest-
ing that a cellular component of the adaptive immune re-
sponse may be important in EHEC O157 control.
In this study we wanted to obtain insights in genes in-

volved in an immunosuppressive effect of an E. coli
O157:H7 Stx negative strain. In our experimental infec-
tions prolonged excretion was observed after a second
infection with this strain. Transcriptome analysis of the
ileal Peyer’s patches and the RAJ from calves was per-
formed using RNA-seq technology. Samples were taken
from animals infected either once or twice which have
never been in contact with E. coli O157:H7.

Methods
Bacterial strain
The E. coli O157:H7 strain NCTC 12900, a well-
characterized Shiga-toxin negative E. coli O157:H7 strain
of human origin with naladixic acid resistance [16] was
used for experimental infections in calves. We used this
Stx-negative strain for biosafety reasons. Bacteria were
grown overnight in Luria Bertani broth (LB) with aeration
(200 rpm) at 37 °C, harvested by centrifugation (11 337 ×
g, 5 min), re-suspended in sterile phosphate-buffered sa-
line (PBS) to a concentration of 1010 CFU/10 ml and sub-
sequently used for experimental infections.

Experimental infection of calves and sample collection
Nine 5-week-old Holstein-Friesian calves were randomly
assigned to three groups (primary infection, re-infection
and uninfected control; n =3), each reared in separate
boxes in isolation units (Fig. 1). These animals were
screened to be seronegative for intimin, EspA and EspB,
as well negative for faecal shedding of E. coli O157:H7
and non-O157:H7. The animals were milk-fed from their
arrival until the end of the experiment and allowed free
access to hay, water and grain-based pellets. The milk-
uptake gradually decreased as the animals were able to
digest more pellets, to allow a normal development of
the gastro-intestinal tract.
Six animals were inoculated at the age of 6 weeks with

1010 CFU during two consecutive days as previously
described by Kieckens et al. [17]. Two weeks after infec-
tion, three animals were euthanized (Infection Group,
IG). At the same time, the remaining three infected ani-
mals were re-infected and euthanized 2 weeks later at 10
weeks of age (Re-infection Group, RG). At that time, the
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three uninfected control animals (Control Group, C) of
the same breed and age, were also euthanized (Fig. 1).
Euthanasia was carried out by captive bolt and samples
from the ileal Peyers’ patches and the RAJ were collected
for RNA isolation to analyze the transcriptome profiles
by RNA-Seq. Hereto, tissue samples of 1 cm2 were cut
and rinsed in sterile cold PBS (4 °C) and immediately
frozen in liquid nitrogen and stored at −80 °C until RNA
purification. All experimental and animal management
procedures were undertaken in accordance to the re-
quirements of the animal care and ethics committee of
the Faculty of Veterinary Medicine, Ghent University,
Belgium (EC2011/082).

Excretion of E. coli O157:H7
Faecal samples were analyzed immediately after sam-
pling, as described by Vande Walle et al. [18]. Briefly,
ten gram of faeces was homogenized in 90 ml sterile
modified tryptone soy broth (Oxoid Ltd., Hanst, United
Kingdom) supplemented with 20 mg/liter novobiocin
(Sigma Aldrich, St. Louis, MO, USA). Enumeration of E.
coli O157 was performed by plating 10-fold serial dilu-
tions onto MacConkey agar supplemented with sorbitol,
cefixime, tellurite and nalidixic acid (NalCT-SMAC)
(Merck, Darmstadt, Germany) and incubating the plates
at 37 °C for 18 h. The remaining broth was enriched for
6 h at 42 °C and subjected to immunomagnetic separ-
ation (IMS) using Dynabeads (Invitrogen, Merelbeke,
Belgium), according to the manufacturer’s instructions.
Finally, 100 μl was plated onto NalCT-SMAC agar and in-
cubated for 18 h at 37 °C. Selected sorbitol-negative
colonies were confirmed by the O157-specific latex agglu-
tination assay (Oxoid Ltd., Basingstoke, United Kingdom).

RNA extraction and sequencing using RNA-seq
Total RNA was extracted from the tissues using the
Qiagen RNeasy mini kit as described by the manufac-
turer. Briefly, the samples were ground to a fine powder
under liquid nitrogen using a mortar and pestle and
homogenized. Then, the lysate was further processed as
instructed by Qiagen. The RNA purity was verified using

NanoDrop Technology (Thermo Fisher Scientific, USA)
and the RNA concentration was measured. High-quality
RNA (260/280 nm ratio ~ 2.0; RNA Rin# > 8.0) was
processed using an Illumina TruSeq RNA sample prep
kit following manufacturer’s instruction (Illumina, San
Diego, CA, USA). Individual RNA-Seq libraries were
pooled based on their respective sample-specific 6-bp
adaptors and sequenced at 50 bp/sequence read using
an Illumina HiSeq2000 sequencer.

Data analysis and bioinformatics
The mean number of raw reads generated per sample
in the study was 18,910,480.56 ± 5,610,677.59 (mean ±
SD; n =18). SolexaQA was used for trimming and filter-
ing using default parameters. The resultant reads with
< 40 bp in length were discarded. After performing
trimming and filtering, the final number of reads for
the genome alignment was 16,042,336.72 ± 5,046,779.84
(mean ± SD).
The resultant quality reads were aligned to the bovine

reference genome (UMD 3.1) using TopHat2 (v2.0.6) [19]
using the following parameters: mismatches allowed: 2 bp;
and max insertions: 3 bp and max deletions: 3 bp (using
bowtie2 v2.0.2 with INDEL allowed). The SAM output files
from the TopHat alignment, along with the GTF file from
ENSEMBL bovine genebuild v67.0, were used in the
Cuffdiff program in the Cufflink package (v2.0.2) to test for
differential gene expression. Mapped reads were normal-
ized based on the upper-quartile normalization method.
Cuffdiff models the variance in fragment counts across
replicates using the negative binomial distribution [20].
Results were considered significant for p <0.05. Differ-

entially expressed genes identified in the transcriptome
were further analyzed using GeneOntology (GO) analysis
(https://github.com/tanghaibao/goatools) after FDR cor-
rection for FDR <0.1. A Fisher ‘s exact test was used for
enrichment of certain GO terms. A multiple correction
control (permutation to control false discovery rate,
FDR) was implemented to set up the threshold to obtain
the list of significantly over-represented GO-terms as
previously described [21].

Fig. 1 Experimental setup
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IPA (Ingenuity Pathway Analysis) and Path designer
was used to visualize connections between differentially
expressed genes.
The fold change was reported in the result section for

every gene in brackets.

Results
Excretion of E. coli O157:H7 (Stx−)
Average excretion patterns of the infected animals are
shown in (Fig. 2).Animals were negative before infection
and the highest peak of bacteria in faeces was detected
at day 4 post infection. Within 14 days after the primary
infection, all animals of the primary infection group be-
came negative. The second infection gave rise to a lower
level of bacterial shedding but these animals were still
shedding bacteria at euthanasia.

Transcriptome analysis of gut tissues
A total of 21,046 genes were detected at least once in
one of the nine RAJ samples or in one of the nine ileal
Peyer’s patches samples. The number of genes expressed
per sample was 18,753.22 ± 276.94 (Mean ± SD). The
number of genes with mean hits ≥ 5.0 was 16,788
whereas the core transcriptome of the RAJ and the ileal
Peyer’s patches consisted of 16,948 and 17,197 genes, re-
spectively. This core transcriptome incorporates genes
represented by at least one sequence hit in each of the
samples tested.
We used the transcript abundance classification as de-

scribed by Li et al. [21]. Assuming 300,000 mRNA mole-
cules per cell, approximately 70.68% of genes transcribed
in the RAJ and 70.55% of genes transcribed in the ileal
Peyer’s patches can be classified into “very rare” with a

relative abundance of ≤15 molecules per cell (Table 1),
followed by “rare” (16–99 molecules per cell) at 16.18
and 17.29%, respectively. “Not expressed” genes (0 mole-
cules per cell) were calculated as 11.17 and 10.18%,
whereas “moderately abundant” genes (100–500 mole-
cules per cell) accounted for 1.74 and 1.78%. “Abundant”
genes were only for 0.23 and 0.21% part of the
transcriptome.

Genes significantly influenced by E. coli O157:H7
experimental infections
In the RAJ, the primary site of E. coli O157:H7
colonization in cattle, fifteen genes were found to be
significantly affected by a primary infection with E.
coli O157:H7 whereas ten genes were affected after
re-infection compared to the uninfected control group
(false discovery rate FDR < 0.1). Only one gene
(FABP2) appeared to be significantly impacted by
both primary infection and re-infection with E. coli
O157:H7 (Fig. 3). Three out of fifteen genes that were
significantly affected during the primary infection
could be linked to an immune function (KLRJ1,
MARCO, CCL20); one was upregulated and two
downregulated (Table 2). In the ileal Peyer’s patches
1159 genes were significantly influenced by a primary
infection compared to the control group and only
seventeen genes were significantly affected by the re-
infection compared to the same control, indicating a
larger effect on the transcriptome during primary in-
fection compared to a re-infection. Seven genes were
significantly different regulated after a primary as well
as after a re-infection (Fig. 4). The function of 103
out of 1159 genes that were differently regulated

Fig. 2 Average faecal excretion of infected animals. Error bars indicate standard deviations. Arrows on the x-axis indicate the timepoint of first
and second infection
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during the primary infection could be traced back to
the immune system.

Gene ontology (GO) analysis
A total of 15 genes were significantly affected by a pri-
mary infection with EHEC in the RAJ at a cutoff FDR
<10%. Enrichment with Bonferroni corrected P value =
0.0115 reveals three genes possessing scavenger receptor
activity (GO:0005044) and three genes having cargo re-
ceptor activity (GO:0038024). In the Peyer’s patches ileum,
1159 genes were significantly affected by a primary EHEC
infection. After enrichment, we could identify 997 genes
linked to a molecular function (GO:0003674), 882 genes
to biological processes (GO:0008150), 673 genes were
linked to a cellular process (GO:0009987) and 561 genes
to a single-organism process (GO:0044699). Also GO-
terms for metabolic process (GO:0008152), single-
organism cellular process (GO:0044763), catalytic activity
(GO:0003824), response to stimulus (GO:0050896), cellu-
lar response to stimulus (GO:0051716), nitrogen com-
pound metabolic process (GO:0006807), single-organism
metabolic process (GO:0044710), hydrolase activity (GO:0
016787), small molecule metabolic process (GO:0044281),
and response to stress (GO:0006950) were found for 492,
488, 405, 329, 247, 230, 223, 204, 145 and 123 genes,
respectively, out of 1159 genes that were significantly

impacted. GO-terms for <100 genes were not reported in
this manuscript.

Regulatory gene networks
The IPA software was used to further examine the RNA-
Seq dataset. Uploading the dataset for the RAJ after a
primary infection, the database could assign two rela-
tionships between the significantly regulated genes,
whereas for the re-infection four relationships could be
detected in both cases linked to antimicrobial responses.
When the data for ileal Peyer’s patches was uploaded,
IPA could identify three different networks that might
play a role in EHEC infection, related to antimicrobial
response (28 relationships) (Fig. 5), inflammatory re-
sponse (69 relationships) (Fig. 6) and infectious disease
(166 relationships) (Fig. 7).

Possible effect of E. coli O157:H7 experimental infection
on the function of immune cells
In order to gain insight in the impact of the differential
mRNA expression, the data were arranged according to
their effect on different immune cells in the specific tis-
sues: lymphocytes (3.5.1), natural killer cells (3.5.2), mono-
cytes and macrophages (3.5.3), dendritic cells (3.5.4),
granulocytes (3.5.5) Only genes with the highest fold
changes per cell type are reported. The gene expression
results for RAJ and ileal Peyer’s patches after primary in-
fection are represented in Tables 3 and 4, respectively.

Lymphocytes
In the RAJ, a significant downregulation of Chemokine
C-C motif ligand 20 (CCL20) (fold change = 0.07) was
observed, which is strongly chemotactic for immature
dendritic cells, and B- and T-lymphocytes [22].
Furthermore, in the ileal Peyer’s patches, Sushi domain

containing 2 (SUSD2) was significantly upregulated (fold

Table 1 Transcript abundance in the recto-anal junction and
Ileal Peyer’s patches

Transcript category Recto-anal junction Ileal Peyer’s patches

Not expressed 11.17% 10.18%

Very rare 70.68% 70.55%

Rare 16.18% 17.29%

Moderately abundant 1.74% 1.78%

Abundant 0.23% 0.21%

Fig. 3 Venn diagram of differentially expressed genes in the recto-anal junction
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change = 4.75). SUSD2 can interact with Galectin-1 which
is known to contribute to the evasion of immune re-
sponses of tumors and infectious organisms by inducing
apoptosis of activated T cells [23]. The activation of T-
lymphocytes might be inhibited by the significant down-
regulation of the expression of T cell immunoglobulin and
mucin domain 4 (TIMD4) (fold change = 0.20), respon-
sible for regulation of Th1 responses [24]. C-X-C motif lig-
and 13 chemokine (CXCL13), strongly expressed in the
follicles of the spleen, lymph nodes and Peyer’s patches
promoting the migration of B lymphocytes in the
lymph nodes [25] was significantly downregulated in
the ileum (fold change = 0.01). Interleukin 17 receptor
E-like (IL17REL), a member of the Interleukin 17 (IL17)
cytokine receptor family that functions as a receptor for
the proinflammatory cytokine responding to invading
extracellular pathogens [26] was found to be significantly
downregulated (fold change = 0.29) upon E. coli O157:H7
infection. A significant downregulation of prothymosin
alpha (PTMA), a tumor necrosis factor receptor (RELT),
Interleukin-21 receptor (IL21R), a guanine nucleotide ex-
change factor (VAV1) with fold change = 0.41, 0.38, 0.36,

0.35 respectively and many more immune response stimu-
lating genes linked with lymphocyte responses were seen
in the ileal Peyer’s patches.

Natural Killer (NK) cells
Effector functions of NK cells are controlled by a bal-
ance of inhibitory and stimulatory signals. In the RAJ, a
strong significant upregulation of killer cell lectin-like re-
ceptor (KLRJ1) was observed (fold change = 14.93).
KLRJ1 is probably important for the NK cell recognition
of target cells, which are certain tumor cells, virally in-
fected cells and host MHC class I cells as a mechanism
of self/health recognition. An upregulation of KLRJ1
would imply an upregulation of the inhibitory signal,
causing more survival of the target cells [27]. In the ileal
Peyer’s patches, a significant upregulation of protein di-
sulfide isomerase (PDIA2) (fold change = 21.28), killer
cell immunoglobulin-like receptor, two domains, short
cytoplasmic tail 1 (KIR2DS1) (fold change = 7.61), killer
cell immunoglobulin-like receptor, two domains, long
cytoplasmic tail 5A (KIR2DL5A) (fold change = 3.52) and
killer cell lectin-like receptor subfamily C, member 1-like

Table 2 Overview of numbers of up- and downregulated genes in respect to their effect on the immune system

Immune stimulating effect Immune suppressive effect

# upregulated # downregulated # upregulated # downregulated

Recto-anal junction / 2 1 /

Ileum + PP 25 67 6 5

Fig. 4 Venn diagram of differentially expressed genes in ileal Peyer’s patches
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(KLRC1) (fold change = 2.58) was observed. In contrast, a
significant downregulation of IL21R (fold change = 0.36)
important for the proliferation and differentiation of B-,
T- and NK cells, leukocyte-associated immunoglobulin-
like receptor 1 (LAIR1) (fold change = 0.29) an inhibitory
receptor found on NK cells, T cells and B cells regulating
the immune response to prevent lysis of cells recognized
as self [28], hematopoietic cell signal transducer (HCST)
(fold change = 0.24) playing a role in cell survival and
proliferation by activation of NK and T cell responses
[29, 30] and killer cell lectin-like receptor subfamily F,
member 1 (KLRF1) (fold change = 0.12) stimulating the
cytotoxicity and cytokine release of NK cells [31], was
observed.

Monocytes and macrophages
In the RAJ, macrophage receptor with collagenous structure
(MARCO) was significantly downregulated (fold change =
9.20). This is a receptor which is part of the innate anti-
microbial immune system binding both Gram-negative

and Gram-positive bacteria via an extracellular, C-terminal,
scavenger receptor cysteine-rich (SRCR) domain [32].
At the ileal Peyer’s patches significant upregulation was

seen of ectonucleotide pyrophosphatase/phosphodiesterase
7 (ENPP7), PDIA2, carboxypeptidase M (CPM) important
for monocyte to macrophage differentiation [33], the in-
flammatory purinergic receptor ligand-gated ion channel,
7 (P2RX7) and egf-like module containing, mucin-like, hor-
mone receptor-like 4 pseudogene (EMR4P), a member of
the EGF-TM7 receptor gene family which is thought to be
important for adhesion and migration of macrophages
[34] with fold changes of 974.24, 21.28, 3.33, 3.24 and
2.64, respectively. Al these genes result in stimulation of
the immune system on level of monocytes and macro-
phages. On the other hand, macrophage migration inhibi-
tory factor (MIF) which is important for the acute
immune response [35] was significantly downregulated as
well as chemokine C-C motif receptor 1 (CCR1) playing a
role in recruitment of leukocytes to the effector site [36]
(fold change = 0.45 and 0.36, respectively). Furthermore,
sialic acid binding Ig-like lectin 10 (SIGLEC10) which is a

Fig. 5 Regulatory network related to antimicrobial response impacted in the ileal Peyer’s patches of calves after a primary infection with E. coli
O157:H7. Up- and downregulation is represented by green and red colours, respectively
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negative regulator of immune signaling by functioning as
an inhibitory receptor [37] and B cell linker (BLNK), an
adaptor molecule linked to the pathway activated by B-
cell antigen receptor signals [38], were significantly down-
regulated, with fold changes of 0.01 and 0.26, respectively.

Dendritic cells (DC’s)
No differential mRNA expression of genes indicating an
effect on DC’s was seen in the RAJ. In samples from the
ileal Peyer’s patches, a significant upregulation of PDIA2,
toll-like receptor adaptor molecule 1 (TICAM1) (fold
change = 2.97) and EMR4P was observed, whereas
SIGLEC10 and MIF were significantly downregulated.

Granulocytes
In the RAJ, there was no differential regulation observed
that could have a direct influence on granulocytes. How-
ever, in the ileal Peyer’s patches, a significant upregula-
tion of ENPP7, PDIA2, chemokine C-C motif ligand 24
(CCL24) (fold change = 3.82), which is chemotactic for
eosinophils and neutrophils [39] and of EMR4P was de-
tected. While a significant downregulation of neutrophil
cytosolic factor 1 (NCF1) (fold change = 0.31), neutrophil
cytosolic factor 2 (NCF2) (fold change = 0.31) and

neutrophil cytosolic factor 4 (NCF4) (fold change = 0.43)
important for the formation of the neutrophil phagosome
leading to phagocytosis of bacteria [40], CCR1, hemopoietic
cell kinase (HCK) (fold change = 0.31) playing a role in the
neutrophil migration and degranulation [41], SIGLEC10
and vascular cell adhesion molecule 1 (VCAM1) (fold
change = 0.88) mediating the adhesion of lymphocytes,
monocytes, eosinophils and basophils to vascular endothe-
lium [42], was noticed.

Discussion
It is well known that some pathogens have developed
mechanisms to prolong their persistence in a host and
can modulate the host immune response in different
ways in order to increase their survival in the host [43].
This might be done by passive evasion of the immune
surveillance for instance by altering expressed antigens,
as Streptococcus pneumonia does. Another way to sur-
vive is actively modulating and interfering with regula-
tore networks that are part of the immune defence. This
is done when EHEC and EPEC inject modulatory pro-
teins into the host cell using T3SS [43–45]. Further-
more, the suppression of immune responses via TLR4 by
uropathogenic E. coli (UPEC) leads to a decrease of IL-6

Fig. 6 Regulatory network related to inflammatory response impacted in the ileal Peyer’s patches of calves after a primary infection with E. coli
O157:H7. Up- and downregulation is represented by green and red colours, respectively
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and IL-8 release [46]. This is congruent with our obser-
vations in several infection experiments: a primary infec-
tion could elicit an antibody response, but this primary
immune response was unable to protect against an ex-
perimental re-infection with the same strain. On the
contrary, whereas the primary infection led to faecal
shedding during less than 2 weeks (<14 days; n = 32), a
re-infection resulted in excretion for more than 4 weeks
(>28 days; n = 21) (Table 5; unpublished results).
To our knowledge, this is the first RNA-Seq study

highlighting the effect of a primary infection and a re-
infection with E. coli O157:H7 in cattle, leading to a

better understanding of the transient and sometimes re-
current pattern of EHEC infections. In 2007, Li and
Hovde described the differential expression of 49 genes
in the RAJ after a primary infection with E. coli
O157:H7 using cDNA microarray [47]. Here, we used
the RNA-Seq technique which allowed us to determine
effects on both RAJ and ileal Peyer’s patches. We could
identify an important difference in regulation of the
transcriptome after an initial contact with the bacteria:
the ileal Peyer’s patches were more influenced by the in-
fection compared to the RAJ, which is part of the pri-
mary site for colonization in cattle [10]. In this study we

Fig. 7 Regulatory network related to infectious disease impacted in the ileal Peyer’s patches of calves after a primary infection with E. coli
O157:H7. Up- and downregulation is represented by green and red colours, respectively

Table 3 Gene expression results for recto-anal junction samples with fold change >2

Gene namea Gene function Fold change Reference

KLRJ1 + (Ly49) Natural killer cell receptor binding host MHC I as a mechanism of self/health
recognition. Binding of the ligand results in an inhibitory signal to prevent killing
of the target cell.

−3.89971 Storset et al. (2003) [27]

MARCO− Innate immune defense. Can bind Gram-negative bacteria to stimulate clearing
of the pathogen.

3.68421 Elomaa et al. (1998) [32]

CCL20− Strongly chemotactic for lymphocytes and weakly for neutrophils. 3.33712 Mohammed et al. (2007) [22]
a: + = upregulated; − = downregulated
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Table 4 Gene expression results for Ileal Peyer’s patches samples with fold change >2

Gene
Namea

Gene function Fold
change

Reference

ENPP7+ Might have an inflammatory effect, as it could degrade and inactivate platelet-
activating factor (PAF).

−9.92813 Wu et al. (2006) [55]

PDIA2+ Helps to load antigenic peptides into MHC I molecules and is therefore important
in antigen recognition and clearing.

−4.4116 LeBrasseur (2006) [56]

BT.36112+ (KIR) Killer cell immunoglobulin receptor suppresses the cytotoxic activity of NK
cells.

−2.92833 Vilches et al. (2002) [57]

MGC137099
+

Is preferentially expressed on Th2 cells and is together with SEMA4A a stimulatory
molecule for T-cell activation.

−2.54481 European bioinformatics institute (2015)
[58]

PRLR+ Cytokine receptor and important in the JAK-STAT, JAK-RUSH, Ras-Raf-MAPK and PI-
3 K pathways.

−2.47279 Bouchard et al. (1999) [59], Lee et al.
(1999) [60], Amaral et al. (2004) [61]

LY6G6E+ Possible role of Ly-6 family members in T-cell activation, differentiation and
maturation (mouse studies)

−2.4165 Mallya et al. (2006) [62]

BTRAPPIN-5
+

Multifunctional host-defense peptide with anti-proteolytic, anti-inflammatory and
anti-microbial activities.

−2.25014 Kato et al. (2010) [63]

SUSD2+ Contributes to evasion of immune responses by induction of apoptosis in
activated T-cells

−2.24943 Watson. (2011) [23]

KLRJ1+ (see Table 3 on RAJ) −2.04608 Storset et al. (2003) [27]

FCRLA− Leading to inflammatory responses and antibody-mediated cellular cytotoxicity. 7.21319 Inozume et al. (2007) [64]

CXCL13− Chemokine B-lymphocyte chemoattractant. 6.63854 Legler et al. (1998) [65]

DEFB5− Bovine neutrophil β-defensins exert broad spectrum of antimicrobial activities
against several species that cause mastitis as S. aureus, E. coli, K. pneumoniae and P.
aeruginosa

6.0118 Alnakip et al. (2014) [66]

BT.53744− Development and differentiation of B-cells into plasma cells. 6.01462 International Molecular Exchange
Consortium (2015) [67]

TNFRSF13C
−

Mature B-cell survival. 5.9961 Thompson et al. (2001) [68]

CD79B− Initiation of the signal transduction cascade activated by the B-cell antigen
receptor complex which will lead to antigen presentation.

5.81055 Luisiri et al. (1996) [69], Tseng et al.
(1997) [70], Pelanda et al. (2002) [71]

SRCRB4D− Regulation of innate and adaptive immune responses. 5.45381 OMIM database (2004) [72]

CD180− Controls B-cell recognition and signaling of LPS. 4.59918 NCBI Reference Sequence Database
(2008) [73]

FCRL1− Functions in B-cell activation and differentiation. 4.43127 Gauld et al. (2002) [74], Harwoord et al.
(2010) [75]

CLEC4E− Induces secretion of inflammatory cytokines after binding of ligands (such as
damaged cells, funghi and microbacteria).

4.4039 Miyake et al. (2010) [76]

CXCR5− Chemokine plays an essential role in B-cell migration. 4.00308 Sáez de Guinoa et al. (2011) [25]

CD19− Acts as a B-cell coreceptor in conjunction with CD21 and CD81. 3.8374 Van Zelm et al. (2006) [77]

P2RY8− Regulator of the immune response. 4.05228 Amisten et al. (2007) [78]

LTA− Mediates a large variety of inflammatory, immunostimulatory and antiviral
responses.

3.70982 NCBI Reference Sequence Database
(2012) [79]

CXCR4− Receptor for SDF-1, has potent chemotactic activity for lymphocytes. 3.67364 Tamamis et al. (2014) [80]

TLR10− Role in pathogen recognition and activation of innate immunity. 3.64532 Lee et al. (2014) [81]

SPP1− Chemotactic for many cell types including macrophages, dendritic cells and T
cells; it enhances B lymphocyte immunoglobulin production and proliferation. In
inflammatory situations it stimulates both pro- and anti-inflammatory processes.

3.49813 Wang et al. (2008) [82]

BANK1− Is expressed during development of B-lineage cells. 3.34384 Dymecki et al. (1992) [83]

FCRL3− Regulator of the immune system. 3.32282 Swainson et al. (2010) [84]

LTB− LTs are important for innate and adaptive immune responses by controlling the
expression of several adhesion molecules, other cytokines and chemokines

2.50217 Creus et al. (2012) [85]

DOK3− Negative regulator of JNK signaling in B-cells. 3.02771 Robson et al. (2004) [86]

KLRF1− 3.00125 Kuttruff et al. (2009) [31]
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were able to show suppression of immunity on different
levels of the innate and adaptive immune response, indi-
cating that E. coli O157:H7 can modulate this response
in a wide variety of ways. The excretion patterns confirm
our previous findings, as a first infection mounts a
higher level of bacterial shedding during a shorter period
of time compared to a re-infection. It might be mooted
that there is a correlation between the higher level of in-
fection and a more pronounced effect on the immune
system. However, we hypothesize that the priming of the
immune system by the first exposure is more important
than the level of bacteria since a second infection with E.
coli O157:H7 mostly results in a prolongued colonization,
whereas for other pathogenic E. coli such as enterotoxi-
genic E. coli in pigs a complete protection occurs after a
first infection.
Our data suggests that an infection with E. coli O157:H7

(Stx−) is capable of modulating the immune response
causing dramatic decreases in CCL20. A similar trend was
observed in a bacterial infection with Mycoplasma

gallisepticum in chicken, where a down-regulation in
mRNA expression of CCL20 as well as of IL-1, IL-8 and
IL-12p40 genes was seen. These results indicate the im-
portance of lymphocyte and monocyte chemotactic fac-
tors in development of disease, but also the fast
occurrence of modulations of the host immune responses
by bacteria [22].
Granulysin delivers granzymes into bacteria to kill di-

verse bacterial strains. In Escherichia coli, granzymes
cleave electron transport chain complex I and oxidative
stress defense proteins, generating reactive oxygen spe-
cies (ROS) that rapidly kill bacteria [48]. An upregula-
tion of granulysin is part of the adaptive immune
response against bacterial infections.
A study of St John et al. [49] demonstrated down-

regulation of CXCL13 and CCL21 during an infection
of draining lymph nodes by Salmonella typhimurium.
The pathogen disrupts the lymph node architecture
and cellular trafficking, which enhances its virulence
and could serve as a mechanism of immune suppres-
sion used by pathogens that primarily target lymphoid
tissue. In our study, we could not observe a signifi-
cant downregulation of CXCL13 nor CCL21 altough
the bacterium is in close contact to lymphoid dense
tissue in the RAJ and the ileum.
We observed a downregulation of IL17REL, a gene

which is important for a fast inflammatory response. The
cells of the innate immune system are the first line of
defense against pathogen and their cytokines govern the
differentiation of T- helper cells. Their pattern-recognition
receptors, which are not specific for any particular

Table 4 Gene expression results for Ileal Peyer’s patches samples with fold change >2 (Continued)

Activating lectin-like receptor expressed on NK-cells and stimulates their
cytotoxicity and cytokine release.

FCER2− Transportation in antibody feedback regulation 2.85172 Kijimoto-Ochiai (2002) [87]

FCAMR− is expressed constitutively on the majority of B-lymphocytes and macrophages;
FCAMR functions as a receptor for the Fc fragment of IgA and IgM and binds IgA
and IgM with high affinity and mediates their endocytosis

2.82211 Shibuya et al. (2000) [88], McDonald et
al. (2002) [89]

CCL19− Antimicrobial gene; may play a role in normal lymphocyte recirculation and
homing. It also plays an important role in trafficking of T cells in thymus, and in T
cell and B cell migration to secondary lymphoid organs

2.54095 National Center for Biotechnology
Information Gene (2014) [90]

TNFSF8− Involved in cell differentiation, apoptosis and immune response 2.43376 Wei et al. (2011) [91]

SOCS1− Negative regulator of cytokine signaling. 2.33913 Krebs et al. (2011) [92]

TIMD4− Enhances the engulfment of apoptotic cells: involved in regulating T-cell
proliferation and lymphotoxin signaling.

2.304 Uniprot (2015) [93]

SIT1− Negatively regulates T-cell receptor mediated signaling in T-cells. 2.28439 Marie-Cardine et al. (1999) [94]

BDKRB1− Receptor binding leads to increase in the cytosolic calcium ion concentration,
resulting in chronic and acute inflammatory responses.

2.26204 Talbot et al. (2012) [95], Enquist et al.
(2014) [96]

AKAP5− Is expressed in T-lymphocytes and may function to inhibit IL-2; IL-2 is part of the
body’s natural responses to microbial infections.

2.20946 Schillace et al. (2002) [97]

PGLYRP2− Recognizes peptidoglycan, a component of bacterial cell walls. 2.19916 Dziarski et al. (2010) [98]

CD37− T-cell and B-cell interactions. 2.13192 Knobeloch et al. (2000) [99]
a: + = upregulated; − = downregulated

Table 5 Duration of infection after primary or re-infection with
NCTC12900 strain

Duration of infection Primary infection
(n = 32)

Re-infection
(n = 26)

0–7 days 9 0

7–14 days 23 5

14–21 days 0 4

21–28 days 0 3

>28 days 0 14
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epitope, allow them to respond to a wide variety of micro-
bial invaders by producing cytokines that activate T-cells
of the adaptive immune system. T-helper 17 cells produce
IL17 and this is particularly important for immunity at
epithelial and mucosal surfaces, as indicated by the
pattern of expression of their chemokine receptors and ef-
fector cytokines. Several pathogens, like gram-positive
Propionibacterium acnes and gram-negative Citrobacter
rodentium, induce mainly Th17 responses [50]. Further-
more, Luo et al. [51] have shown that F4 fimbriae of ETEC
can elicit an IL17 response in piglets, suggesting a role in
protection of the host against ETEC infection.
A downregulation of IL21R might play a role in the

persistence of colonization during the primary E. coli
O157:H7-infection and re-infection of the host, since the
IL-21-IL-21R pathway is important in the development
of immune responses, as abnormal signaling through the
IL-21R/γc/JAK3/STAT3 pathway leads to defective
humoral immune responses to both T-dependent and T-
independent antigens and impairs the establishment of
long-lasting B-cell memory [52]. A bacterial infection
can elicit IgM memory B-cells which requires T cell-
dependent and IL-21R signaling. The study of Yates et
al. [53] demonstrates that T cell-dependent IgM memory
B cells can be elicited at high frequency and can play an
important role in maintaining long-term immunity dur-
ing bacterial infection.
In the RAJ, we could observe the downregulation of

MARCO, a receptor that can bind Gram-negative bac-
teria and is only found on macrophages of the marginal
zone of the spleen and lymph nodes [32]. Pinheiro da
Silva et al. [54] have shown that E. coli are capable of
hijacking inhibitory ITAMs leading to a decrease in
MARCO-mediated phagocytosis. This observation is in-
dicating a decrease in antibacterial protection of the host
at the primary site of EHEC infection.
Due to biosafety reasons and limitations on housing

facilities we performed this experiment using an E. coli
O157:H7 (Stx−) strain. Although this is not the exact
same strain as the strains found during natural EHEC-
infections, this study may be seen as a first step to inves-
tigate the immunomodulating capacities of E. coli
O157:H7 strains in cattle using RNA-Seq. We believe
that this study is a valuable contribution to the current
knowledge on immune suppression in the bovine host
and this study is congruent with previous findings show-
ing that also other bacterial factors apart from Stx can
play a role in immune suppression.
A limitation of our study is that most information

from gene function databases is derived from studies
that are not performed in cattle but in human and mice,
therefore we have to take into consideration species-
specific differences which we unfortunately can not con-
trol. This study is important since it is the first study

using the highly-accurate and sensitive RNA-Seq tech-
nique to study the effect of EHEC on the cattle immune
responses. These insights are crucial to better under-
stand EHEC colonization and shedding within herds and
our data could contribute to effective measures to con-
trol EHEC colonization in ruminants, thereby reducing
zoonotic food-borne infections in humans.

Conclusions
We can conclude that the main effect on the transcrip-
tome was immune suppression by E. coli O157:H7 due to
an upregulation of immune suppressive effects (7/12
genes) or a downregulation of immunostimulatory effects
(69/94 genes). Furthermore, the changes in gene expres-
sion were remarkably higher in the ileal Peyer’s patches
(1159 genes) than in the RAJ (15 genes) during a primary
infection. This effect was less obvious after the re-
infection (17 and 10 genes, respectively). The data might
indicate that a primary infection promotes a re-infection
with EHEC by suppressing the immune function.
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