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The purpose of this paper is to set up a mathematical framework that risk assessors and regulators could use to
quantify the “riskiness” of a particular recommendation (choice/decision). The mathematical theory introduced
here can be used for decision support systems. We point out that efficient use of predictive models in decision
making for food microbiology needs to consider three major points: (1) the uncertainty and variability of the
used information based on which the decision is to be made; (2) the validity of the predictive models aiding
the assessor; and (3) the cost generated by the difference between the a-priory choice and the a-posteriori
outcome.
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1. Introduction

Predictive food microbiology focuses on the responses of foodborne
bacteria to their environment. Sufficiently accurate predictions on bac-
terial growth and survival can reduce the need for microbiological test-
ing of food, making product formulation and risk assessment much
cheaper and more efficient, and ultimately improving microbiological
food safety (Ross and McMeekin, 2003). The knowledge gained in the
c.a. 30 years-long history of the discipline has been implemented in
practical decision-supporting software packages, to be used by a range
of stakeholders, including industrialists, academicians and regulation
officers. Various predictive models are available for different foodborne
pathogenic as well as spoilage organisms to help quantitative microbial
risk assessment of food (Whiting and Buchanan, 2001; Koutsoumanis et
al., 2016).

Practical users face the question to what extent they can rely on
the predictions generated by predictive tools, for which one of the
most used examples is the ComBase Predictor (ComBase, 2016).
Overestimating the growth potentials of pathogenic bacteria can result
in food waste and economic loss, while underestimation can have even
more serious health- or reputation-related implications (Guillier et al.,
2016). Predictionerrors canoriginate from(i) biological andenvironmen-
tal variability; (ii) the uncertainty of the information (observations) on
which the predictions are based; and (iii) the inaccuracy of the mathe-
matical models and assumptions used.
he Biotechnology and Biological
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Predictive models are predominantly based on simplifying assump-
tions and observed data. There is no recipe or algorithm to decide
whether those simplifying assumptions are valid or allowed; they are
accepted if observations validate them (empirical considerations) and
they can be embedded in fundamental theories of science (mechanistic
reasons). Empirical models are less applicable for extrapolation than
mechanistic ones. However, to some degree, all predictions are extrap-
olations. Mathematical models exist in an ideal Platonian space, from
which the applications to future scenarios are inferences. The experi-
mental conditions of the observations, on which the models are based,
can rarely be repeated exactly, due to the “panta rhei” Heraclitean prin-
ciple: “One cannot step into the same water twice”.

It is relatively easy to test whether a prediction is a mathematical ex-
trapolation; i.e. whether it is outside the range of observations (Baranyi et
al., 1999). It ismuchmore difficult to decidewhether, for instance, a set of
measurements on a proxy organism can be applied to the “real one”. An
example for this is applying observations on Listeria innocua to infer the
kinetics of Listeria monocytogenes. Similarly: are certain environmental
conditions like food structure, native flora, processing background, etc.
negligible? It is also anopenquestionwhat details of experimental results
should be used for a practical predictive tool. Namely, the higher its reso-
lution, i.e. the more explanatory factors and in wider ranges are consid-
ered, the less robust the predictive model will be, more pruned to be
affected by randomerrors. Finding a trade-off between resolution and ro-
bustness is a central question in predictivemodelling (Ratkowsky, 1993).

While acknowledging the importance of such concerns, decision
makers may come across even more complex questions when using
predictive packages. Should a decision solely rely on predictions,
which normally represent the expected value of a response variable in
question? A simple method to correct predictions by a “bias factor”
was proposed by Ross (1996), refined by Baranyi et al. (1999). It is
nder the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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evident, for example, that conservative (cautious) decisions are useful
when the price of the prediction error is high. In fact, as we show
below, one faces three major challenges when making decisions based
on microbial risk assessment:

i) The accuracy (uncertainty and variability) of observations used
for developing the predictive model is not necessarily known or
easy to estimate;

ii) Available software packages are primarily based on empirical
models and can generate markedly different predictions espe-
cially close to extrapolation regions;

iii) It is not straightforward to decide what measure of dissimilarity
between prediction and actual response should be used. The cost
(either measurable financially, or in damage of reputation, or se-
verity of illnesses, or in decrease of influence or power, etc.)
assigned to their individual components are frequently on mixed
and asymmetric scales, which makes a combined optimization
difficult.

In this paper we explain, backed by examples, why predictive
models should be used in combination with a cost-benefit assess-
ment. We point out that a correct strategy does not necessarily
focus on the most probable event, but on mitigating the implications
of wrong decisions that can randomly and/or sooner or later inevita-
bly occur.

2. Theory and examples

It is commonly accepted and frequently cited (WHO/FAO, 2009) that
risk assessment consists of four steps: hazard identification, dose-re-
sponse assessment, exposure assessment and risk characterisation. Mi-
crobial risk itself is defined as the probability of an event and the
severity of its known or potential adverse health effects. Therefore,
mathematically, risk is a two dimensional vector variable assigned to
an event. Its components are the probability and the severity of the
event. Sometimes the product of the two is called the risk, which can
be considered as the “expected severity” of the event. The severity can
be quantified by various ways: e.g. number of death/hospitalization;
missed working hours; cost of treatments, etc.

The focus of this paper is not the above interpreted risk, assigned
to an a-posteriori event, but the risk of an a-priory decision, that we
also call choice or bet in what follows. We will suggest and exempli-
fy a formal mathematical definition for the risk of a decision. Its con-
struction aims at the use of predictive microbiology in decision
making, when for example a risk assessor needs to provide a recom-
mendation or a regulatory unit or a health worker needs to choose:
against what possible future events should be protective measure-
ments introduced.

Assume that a set of information quantified by an x random variable
(an n-dimensional vector) is available on the past behaviour and the
present state of a system. A decision maker needs to put forward a
guess b (also called choice or “bet” in what follows) on a future event
in the system, which is quantified by an m-dimensional random vari-
able, y. To help the decision, an y≈ g(x)mapping or algorithm (the pre-
dictor), based on a mathematical model, is available that allows the
estimation of the y outcome. Our focus is the error thatb is not necessar-
ily equal to y. The objective is to find a bopt, the “best bet”, which is op-
timal from a certain point of view.

Obviously, any b choice, if based on a reasonable strategy, should
depend on (i) the available information expressed by x (measure-
ments, observations, with their probability distributions); (ii) the
way how the y outcome and its probability distribution depends on
the past and present of the system (this is approximated by the
g(x) predictor); (iii) the implications if the outcome is different
from the guessed one.
Therefore, the typical elements of our task are:

i) Quantify the uncertainty of the information available;
ii) Determine a mathematical model to estimate the outcome y as a

function of the past behaviour and the present state of the
system;

iii) Assign cost to the error generated by the difference between b,
the a-priori decision (bet) and y, the in-fact to be happening a-
posteriori outcome.

All these variables could also contain time-dependent components,
in which case they are stochastic processes (dynamic, x(t), b(t), y(t)
variables rather than just static ones). The available information can
be a collection of measurements such as data on (possibly time-depen-
dent) bacterial concentrations, or growth/death rates as a function of
environmental factors.

The predictor g(x) is unbiased if the expected value of g(x) is equal to
the expected value of y. A well-known example for such predictor is
when x is a set of independent, identically distributed measurements
and the g(x)mapping is the procedure of taking their arithmetical aver-
age. A reasonable b bet on the result of the next measurement could be
this arithmetical average. Note that this number may not be measured,
therefore the bet could always be wrong, if for instance the set of possi-
ble outcomes consist of discrete values that do not include the calculat-
ed average; still the expected difference between the bet and the
outcome could be smaller than betting on an outcome that can really
occur.

For an example, for the simple m= 1 case, consider a “head or tail”
trial, with not necessarily equal probabilities for the two possible out-
comes, scored by 0 and 1, respectively.What is the best bet for the result
of the next toss if the cost of a wrong bet depends on the difference be-
tween the bet and the actual outcome? Note that the decision can nom-
inate any real number, not only 0 or 1.

We will see that if the aim is to minimize the expected cost of the
error and this cost is proportional to the squared distance between the
bet and the outcome, then the “best bet” is the average of the so-far ob-
served experimental results. So though this strategy can never bring a
correct prediction, since the decision is a number between 0 and 1,
while a single outcome is either 0 or 1; still, in the long run, it leads to
minimizing the loss due to wrong decisions.

That g(x) should be unbiased, i.e. the expected value of g(x) should
be equal to the expected value of y, is a rather trivial requirement. Could
we impose more restrictions on g? For example, what would be the
“best bet” if we introduced asymmetric penalties for under- and over-
estimations?

Below we define the risk of a decision. Let b be a bet on the y out-
come. Introduce a

c b; yð Þ : Rm � Rm⇒R

cost function to quantify the price we would pay for a decision error,
where R is the set of real numbers and Rm is the set of m-dimensional
vectors with components from R. Define the risk of decision b as the ex-
pected cost caused by the difference between b and the outcome y,
where the expectation (an integral) is calculated as y runs through its
possible values with py probability distribution:

Risk bð Þ ¼ E cb; yð Þ ¼ ∫ c b; yð Þdpy

We claim that this definition for the risk of the decision b is suitable
for our purposes. The same idea is used for example in pattern recogni-
tion (Devroye et al., 1996).

Fig. 1 demonstrates well the main point this paper addresses; while
traditional microbial risk assessment focuses on the risk of future events,
we concentrate on the risk of a decision to be taken before those events.



Fig. 1. Risk of the decision betting on b is determined by the cost generated by the
differences between b and the y possible outcomes, and the p(y) probability distribution
assigned to those outcomes.

Fig. 2. Defining risk by a cost function proportional to the sum of the squares of the
difference between bet and outcome (L2-norm) results in the mean (the “centre of
gravity”) being the best bet. Replacing the squared-difference with the absolute
difference (L1-norm) results in the median of the distribution, which, in our binary case,
is the outcome with the highest probability.
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When using an x dataset for a-priori information and a g(x) predic-
tor to estimate y, let

riskgbjx ¼ E c b;g xð Þð Þð Þ ¼ ∫ c b;g xð Þð Þ dpg

be called the standard estimated risk, analogously to the standard error
in regression. That is: the standard estimated risk of the decision,
given a predictor g(x) for the outcome, is the expected value of the
cost generated by the difference between the decision and the predicted
outcome. Therefore the estimated risk depends on the available obser-
vations (including their probability distributions), the predictive
model and the cost of the difference between b and the g(x) prediction.
It is trivial that, with sufficiently accurate predictor, the standard esti-
mated risk is expected to be somewhat smaller than the “real” risk,
since it does not count with the difference between the prediction and
the actual outcome. Its use is that, under natural conditions, the mini-
mum of the standard risk (that can be calculated from available data)
should be at the same bopt bet where also Risk(b) is optimal.

2.1. Two commonly used cost functions applied to a discrete event-space

Our aim is to analyse the nature of the “best bet”, that minimizes the
risk of the decision. Here we demonstrate how small changes in the c
cost function can affect this optimal decision.

1. Suppose that the cost function is proportional to the sum of the
squares of the differences between the respective components of the b
bet and the y outcome. This is the basis of the standard least-squares
method to fit data. It is usual to call this “the squared distance in L2-
norm”, which justifies the notation below

c b; yð Þ � ∥b−y∥2L2 ¼ ∑m
i¼1 bi−yið Þ2

In this case the risk of the decision b is defined as

Risk bð Þ ¼ kEð∥b−yÞ∥2L2Þ

where k is a proportionality constant (it does not have any effect on the
optimal value bopt).

It is known from regression analysis (Kumar and Singh, 2015) that
this risk is minimal if the decision is to bet on the expected value of
the outcome

bopt L2ð Þ ¼ E yð Þ

Therefore if anunbiased predictivemodel is available to estimate the
outcome, then it provides a minimum-risk decision, assuming that the
cost of error is proportional to the sum of squares of the differences
between the respective components of the decision and the outcome
(Small, 1990). Note that generally many unbiased g(x) predictors
exist and the above statement holds for various g predictors if their ex-
pected value is equal to the expected outcome.

A simple demonstration for this, in one dimension (n=1), is shown
in Fig. 2, which represents the “head or tail” systemwith an asymmetric
coin. Here the outcome is a single binary random variable y, with y0= 0
and y1 = 1 possible values and p0, p1 respective probabilities, where
p0 = 1 − p1, so the mean value is E(y) = p1. What is the best strategy
to estimate the outcome of the next toss, given a set of observations in
the past?

Imagine that we repeat the decision many times and we need a
strategy that is optimal in the long run.What is the best decision to pre-
dict the outcome of the next toss? The value of y can only be 0 or 1 but
the bet can be any real number. Somewhat paradoxically, the best bet is
the relative frequency (generated by the g predictor from past data) of
the “1” results, which is an approximation of p1. This p1 can never be
an outcome unless p1 is 0 or 1, which are extreme cases. Normally this
bet will never predict the outcome accurately, but the expected cost of
its error is the smallest.

The result however that “the best bet is the mean” is true only if the
cost is proportional to the squared difference between the bet and the
outcome (Fig. 2). If the cost is proportional to the absolute difference be-
tween the respective components (and not to the square of those), then
we need to find the minimum of

Risk bð Þ ¼ E b−yk kL1
� �

In our binary example above, this optimization is equivalent to find-
ing the b point on the [0,1] interval where

Risk bð Þ ¼ b � 1−p1ð Þ þ 1−bð Þ � p1

isminimum. It is an easy exercise to prove that here the risk isminimum
if we bet on the event of the higher probability

bopt ¼ 0 if p1b0:5 and bopt ¼ 1 if p1N0:5

For p0=1/2= p1, there is no absoluteminimum, the risk is the same
for any decision.

This result says that, for binary outcomes (like yes or no), if the cost
function is generated by the L1-norm, then the best strategy is to bet on
the most probable event. However, if the cost function is generated by
the L2-norm then the best bet is a compromise, the mean value. The
two cost functions do not seem very different, they both can be con-
ceived and supported by intuition, still they suggest very different strat-
egies for optimal decision.

It can be proven that, for L1-generated cost, the best bet is themedi-
an (Kumar and Singh, 2015). Onemay get the impression that, if the risk
is defined in L1-sense, then we should always bet on the median. This



Fig. 4. Inmulti-dimension, themedian (L1-generated risk) can be defined unambiguously
only under symmetry conditions when the problem is reducible to one dimension (the
diagonal in this case).
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conclusion however is true only for one-dimensional events. There is no
universal solution for multi-dimension. On the other hand, if the cost is
defined in L2-sense then the best bet is always the estimated mean, in
higher dimensions, too (Small, 1990).

A consequence is that the median is not a continuous function of
the probabilityweights, which is rather counter-intuitive for a risk func-
tion. For example, if the probability of an outcome is gradually increas-
ing, then the median of all (discreet) outcomes can suddenly change
from one point to the other. This is demonstrated on Fig. 3. I can be
easily shown by induction, for multi-dimension, too, that the L1-mini-
mized risk changes stepwise as the probability distributions change
continuously.

For an example of the multi-dimension case, let m = 2 (i.e. y =
[y1y2]) where yi are binary random variables with {0,1} possible values.
Let pi,j denote the probability of the event y= [i,j] where the sum of the
pi,j probabilities (i=0,1; j=0,1) is 1. As follows from above, bopt(L2) =
[p1,0, p0,1] (see Fig. 4). How about the other distance-dependent strate-
gies? Intuitively, if p1,0 = p0,1 then the problem is symmetric on the
(0,0)–(1,1) diagonal therefore the least risky decision also needs to be
on it. This way, some results of the one-dimension-case can be applied
to this scenario. Like in one-dimension, the L1-optimum still changes
stage-wise as the probability weights change continuously. On the
other hand, if the probabilities are uniformly distributed, then there IS
a unique solution for the optimum (the centre of gravity in the probabil-
ity space is minimum in this case for both L2- and L1-risk).

2.2. Asymmetric cost function on continuous event-space

Some of these examples for riskminimization exhibit stage-wise be-
haviour as the distribution of the underlying probabilities gradually
changes. This was shown for the relatively simple case when the
event-space was discrete and the cost of prediction is symmetric; i.e.
bets resulting in over- or underestimations had the same distance-
measure, therefore the same cost. In food safety and shelf-life studies,
the cost function is rarely symmetric; this is why conservative (safe)
predictions are preferred (Guillier et al., 2016). This causes further
complications in the optimization problem discussed in our paper. We
demonstrate this by an example below, now using continuous event-
space.

In a given perishable food product, let the log10-concentration of
spoilage bacteria, at the time of putting the food packs on the shelf, be
normally distributed with logc0 expected value and σ standard devia-
tion. Suppose that the bacteria grow at u rate on the log10 scale. Then
the y critical time, when they reach the Cs concentration level (which
is a threshold to be unacceptable) is a random variable also following
the normal distribution, with (Cs − logc0) / u expected value and σ/u
standard deviation (Fig. 5). The values of these parameters are estimat-
ed by means of a set of observations, x. What is the optimal time, b, to
take the packs off the shelf to optimize the risk that either spoiled
food could be sold or healthy food could be wasted?

This is the case of asymmetric cost function. Namely, if the food
packs are taken off too early (b b y), that means economic loss and
Fig. 3. The L1-generated best bet is at the median of the response. It can change abruptly
from one possible outcome to the other (unlike the L2-generated best bet) as the
probability distribution of the possible outcomes changes continuously.
foodwaste. If they are left on the shelf for too long (b N y), that can result
in illnesses and damage in reputation, with much more serious cost
than in the first case. Therefore, the optimal time to take the food off
the shelf is definitely sooner than the (Cs − logc0) / u expected time
for the bacteria to reach the Cs level. The bopt optimum time can be
estimated by minimizing

Risk bð Þ ¼ ∫b0c1 b; yð Þ � φ yð Þdyþ ∫∞bc2 b; yð Þ � φ yð Þdy

where φ(y) is the probability distribution function of the normal distri-
bution with (Cs − logc0) / u expected value and σ/q standard deviation;
and ci(b,y) (i= 1,2) are the cost functions for the cases y b b and b b y,
respectively, corresponding to the two parts of the above integral. For
example, if the cost of overestimating the critical time (y b b: food safety
issue), is proportional to the difference between the actual bacterial
concentration and its allowed 10Cs level, then the cost can be estimated
by

c1 b; yð Þ ¼ d1 10logc0þub−10Cs
� �

ybbð Þ

where d1 is a proportionality constant. On the other hand, for the case
when the b bet underestimates the critical time (b b y), it is reasonable
to assume that the waiting time for a pack to be bought by a customer
follows the exponential distribution, with the parameter v on the log10
scale, in which case the expected proportion of packs taken off before
time is (10−vb − 10−vy), with the cost

c2 b; yð Þ ¼ d2 10−vb−10−vy
� �

bbyð Þ
Fig. 5. The case of asymmetric cost function. Overestimating the timewhen a food product
is to be withdrawn is less costly (though increases food waste) than underestimating it,
which is a health issue.
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again with some d2 proportionality constant. The optimal decision is
where the derivative of Risk(b) becomes zero, as demonstrated in Fig. 5.

3. Discussion

Wedemonstrated that (i) the uncertainty and variability of available
information and (ii) the (possibly subjective) choice of the cost function
generated by the difference between the bet and the actual outcome are
major factors when using predictive models to optimize risk of deci-
sions. While model developers and decision makers are mostly aware
of the first factor, the nature and significance of the cost structure is
less analysed. Users may expect that the risk (expected cost) associated
to a decision is a continuous function of the probability distribution of
the observations and we showed that with relatively straightforward
cost functions (see the L1-minimized risk) this does not hold. On the
other hand, in case of multi-dimensional and/or asymmetric cost func-
tions, their non-uniform scaling may cause difficulties. A simple exam-
ple shown here was the optimal time for withdrawal of food products
from shelves: the cost of underestimation of this time is measurable in
economic loss and food waste, while overestimation may result in
health-problems for the consumer. Unifying such scales are especially
important when one objective function (e.g. food safety) works against
another (e.g. foodwaste; see Guillier et al., 2016). Another example for a
two-dimensional caseworthmentioning is when food quality is quanti-
fied by the concentration of its spoilage organisms and by a score
characterising its organoleptic properties. This leads to the scenario
when heat treatment improves the microbiological aspects while mak-
ing the other worse.

As emphasized above here it is not a future event to which risk is
assigned but to a current decision. This idea is more related to decision
analysis and game theory rather than traditional microbial risk assess-
ment. In game theory, for an agent, the probability distribution of the fu-
ture move of the opponent helps to find an optimal move. Our scenario
is similar: it is the probability distribution of future events what we use
to assign an expected cost (quantified consequence or implication) to a
decision, bywhichwe define its risk. The analogy can go on, considering
that the opponent can also calculate the strategy of this agent, therefore
may change his, generating a dynamic feed-back loop. This can also hap-
pen for example between supermarkets and consumers. In our last ex-
ample above, the price of the food product could be decreased in
order to encourage its sale, but the consumer may choose to wait for
this, which could accelerate the price decrease, again causing a feed-
back loop.

Our first example, the binary scenario, resembles the “type I” and
“type II” errors in statistical hypothesis testing; the first being the
incorrect rejection of a true null hypothesis (a “false positive”, i.e.,
accepting a false hypothesis as correct), the second being the failure to
reject a false null hypothesis (a “false negative”, i.e., rejecting a true hy-
pothesis as incorrect). The decision on acceptance or rejection is com-
monly made on the basis of a “significance level”, which is a threshold
probability that could be rather subjective. A possible objective determi-
nation of this level is to decide it on the cost of the two types of error. For
example, such a critical decision is made in forensic sciences, typically
with the justification that “if innocent, then an event happened which
has an extremely low probability”. In western democracies this level is
set very low, because unjust sentencing is considered much more seri-
ous error than setting guilty ones free.

These analogies and examples intend to highlight, from different an-
gles, the importance of cost-function analysis hand-in-hand with pre-
dictive models. Users should be encouraged to think of such analyses
rather than accepting predictions as they are. An approach to objective
decision making should be to minimize the cost of inevitable errors,
while being aware that the result can be highly sensitive to the structure
of the cost-functions assigned to those errors.
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