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Fungi can produce a wide range of chemical compounds via secondary
metabolism. These compounds are of major interest because of their
(potential) application in medicine and biotechnology and as a poten-
tial source for new therapeutic agents and drug leads. However, under
laboratory conditions, most secondary metabolism genes remain silent.
This circumstance is an obstacle for the production of known metabo-
lites and the discovery of new secondary metabolites. In this study, we
describe the dual role of the transcription factor Xylanase promoter
binding protein 1 (Xpp1) in the regulation of both primary and second-
ary metabolism of Trichoderma reesei. Xpp1 was previously described
as a repressor of xylanases. Here, we provide data from an RNA-
sequencing analysis suggesting that Xpp1 is an activator of primary
metabolism. This finding is supported by our results from a Biolog
assay determining the carbon source assimilation behavior of an
xpp1 deletion strain. Furthermore, the role of Xpp1 as a repressor of
secondary metabolism is shown by gene expression analyses of poly-
ketide synthases and the determination of the secondary metabolites
of xpp1 deletion and overexpression strains using an untargeted
metabolomics approach. The deletion of Xpp1 resulted in the en-
hanced secretion of secondary metabolites in terms of diversity and
quantity. Homologs of Xpp1 are found among a broad range of fungi,
including the biocontrol agent Trichoderma atroviride, the plant path-
ogens Fusarium graminearum and Colletotrichum graminicola, the
model organism Neurospora crassa, the human pathogen Sporothrix
schenckii, and the ergot fungus Claviceps purpurea.
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Fungi are prominent producers of a broad variety of so-called
secondary metabolites (1, 2). They are highly variable in struc-

ture and effects but share the following common feature: they are
produced via the secondary metabolism (3, 4). Whereas primary
metabolites are shared between all living cells, secondary metabo-
lites are highly diverse and frequently produced by a limited
number of species or cell types. Fungi use secondary metabolites for
different purposes [e.g., protection against predation (5) or harsh
environments (6), communication (7), competition and toxicity
against bacteria (8) and other fungi (9), and pathogenicity (10)].
Some fungal secondary metabolites have toxic characteristics, such
as aflatoxins, fumonisins, trichothecenes, fusarins, zearalenone, and
ergot alkaloids (11–16), whereas other secondary metabolites are of
major interest because of their potential application in the treat-
ment of infectious diseases [e.g., antibiotics (17)] or cancer [e.g.,
immunosuppressants (18)] and as a potential source for novel
therapeutic agents and drug leads (19). Interestingly, some of these
natural products have already been used by ancient human pop-
ulations (20). Numerous new compounds have been identified
within the last decade that are now applied by the biotechnology
and pharmaceutical industry (4). However, a vast number of com-
pounds still awaits discovery (1, 21–23). A hindrance to the dis-
covery of new products is the fact that a majority of secondary
metabolite biosynthesis genes remain silent under standard labo-
ratory conditions (1, 21). A strategy to overcome this problem is the
exploitation of pleiotropic regulators of the secondary metabolism.

One well-studied example is the nuclear protein LaeA, which was
originally described as a regulator of secondary metabolism in As-
pergillus sp. (24). In additional studies, orthologs of LaeA were also
shown to globally regulate secondary metabolism in other fungi
(25–28). Other than regulation on the transcriptional level, a class
of 4-phosphopantetheinyl transferases was found to be necessary
for the activation of polyketide synthases (PKSs) and nonribosomal
peptide synthases (NRPSs) in eukaroytes (29) on the posttranslational
level. PKSs and NRPSs are large multidomain enzymes responsible
for the synthesis of polyketides [e.g., norsolorinic acid, an interme-
diate in the biosynthesis pathway of aflatoxins (30)] or nonribosomal
peptides [e.g., L-ergopeptam, an intermediate in the biosynthesis
pathway of peptide ergot alkaloids (31)]. In this study, we describe
the identification of a transcription factor that acts as a switch be-
tween primary and secondary metabolism. The deletion of the
previously described xylanase repressor Xylanase promoter binding
protein 1 (Xpp1) (32, 33) results in a decline of the primary me-
tabolism and the up-regulation of secondary metabolism in terms of
compound diversity and quantity in the saprotrophic ascomycete
Trichoderma reesei [teleomorph; Hypocrea jecorina (34)]. To study
the extent of the Xpp1 regulon in detail, we performed RNA-
sequencing (RNA-Seq) analysis. Global carbon source assimila-
tion analysis was used to understand its impact on the primary
metabolism. To study the biological relevance of Xpp1 on the
formation of secondary metabolites, the relative transcript levels
of PKS-encoding genes were determined, and the metabolite pro-
files of a T. reesei xpp1 deletion strain and an xpp1 overexpression
strain were compared with their parent strains using a stable iso-
topic labeling-assisted untargeted metabolomics approach. Based
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on the biological relevance of Xpp1 for secondary metabolite syn-
thesis, its presence in other fungi was investigated in silico, and
conserved motifs were identified.

Results
The Absence of Xpp1 Leads to the Earlier and Enhanced Secretion of
Sorbicillin-Related Yellow Pigments. The industrially used, cellu-
lase-producing fungus T. reesei secretes a typical yellow pigment on
a range of carbon sources (35–37). The pigment is a mixture of
different sorbicillin derivatives, of which biosynthesis results from a
gene cluster that is present in a range of not closely related asco-
mycetes (38, 39). However, in a previous study, we cultivated an
xpp1 deletion strain and its parent strain on carboxymethylcellulose
(CMC) to determine the expression levels of cellulases (33).
Throughout growth, we observed that cultures of the xpp1 deletion
strain turned yellow earlier and that coloring was more pro-
nounced compared with the parent strain. For this study, we cul-
tivated these strains together with an xpp1 overexpression strain
(33) on CMC, lactose, and D-glucose media. The absence of Xpp1
enhances the secretion of the yellow pigment on all three carbon
sources (Fig. 1 A–C). In contrast, the overexpression of xpp1 re-
duced the accumulation of yellow pigment compared with the
parent strain on lactose and D-glucose (Fig. 1 B and C). On CMC,
the parent strain itself barely produced any yellow pigment (Fig.
1A). Notably, on D-glucose, the secretion of the yellow pigment was
delayed in the overexpression strain compared with the other two
strains (Fig. 1C). We also observed these differences on D-glucose
plates (Fig. 1D).
To learn whether Xpp1 regulates the expression of the sorbi-

cillin cluster genes, we compared the expression of Yellow pigment

regulator 1 (Ypr1), the main regulator of the cluster (39), in the
xpp1 deletion strain with its parent strain. The elevated ypr1
transcript levels in the xpp1 deletion strain (Fig. 1E) point toward
an indirect regulation of the cluster by Xpp1 via regulation of
Ypr1. Notably, the putative Xpp1 binding motif (an indirect AGAA
repeat overlapping with the palindrome TCTAGA) is present in the
ypr1 upstream regulatory region (at −1,394 to −1,382). Because the
yellow pigments are products of PKS activity and therefore, sec-
ondary metabolism, we sought to investigate the potential regula-
tory role of Xpp1 on secondary metabolism.

Xpp1 Affects the Expression of Genes of Primary and Secondary
Metabolism. To gain insight into how Xpp1 influences the fungal
transcriptome, we performed RNA-Seq analysis. For this purpose,
the xpp1 deletion and parent strains were grown for 48 h on CMC,
on which the two strains grow similarly (33). The processing of
individual samples (Fig. S1A) was equally successful (50,209,455–
57,345,532 reads without a significant difference between the two
strains). The sequences of the reads were mapped to the reference
genome of T. reesei (40) (genome.jgi.doe.gov/Trire2/Trire2.home.
html) with coverage of 93.1–93.7%. In total, 9,129 unique tran-
scripts were detected. A clustering of the samples based on the
respective number of the unique reads showed a clear difference
between the two strains (Fig. S1B). Next, differential gene expres-
sion analysis was performed. Genes were considered to be differ-
entially expressed between the two strains when the average reads
of the corresponding transcripts differed with an adjusted P value <
0.01 (41). We found 995 differentially expressed genes (DEGs)
comparing the xpp1 deletion and the parent strains. The number
of up- and down-regulated genes and the extent of different

Fig. 1. Xpp1 influences the secretion of sorbicillin-related yellow pigments in T. reesei. The xpp1 deletion strain (green diamonds), the xpp1 overexpression
strain (yellow circles), and the parent strain (blue squares) were grown in (A) CMC, (B) lactose, and (C) D-glucose. Samples of the supernatant were taken at
indicated time points, and absorbance at 370 nm was photometrically measured. Error bars indicate SDs from three independently grown cultures. (D, Left)
The xpp1 deletion, (D, Right) the xpp1 overexpression, and (D, Center) the parent strains were grown on D-glucose. Pictures were taken at (D, Top) 48, (D,
Middle) 72, and (D, Bottom) 96 h. (E) The xpp1 deletion (green diamonds) and the parent (blue squares) strains were grown in CMC. Samples were taken at 36,
48, 52, 60, 66, and 72 h. Relative transcript levels of ypr1 were determined by qPCR, normalized by using the reference genes sar1 and act, and correlated to
the reference sample (parent strain, 36 h). Error bars indicate SDs from three independently grown cultures.
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expression were similar—490 genes were up-regulated, and 505
genes down-regulated, with medians of the log2 fold changes of
1.478 and −1.272, respectively.
Next, we categorized the DEG according to their eukaryotic

clusters of orthologous groups (KOGs) assignment as published on
genome.jgi.doe.gov/Trire2/Trire2.home.html. KOGs represent the
basic functional groups of genes. Because not all genes could be
assigned to a KOG, the overview provided in Table S1 contains a
total number of 669 DEGs. To estimate which functional group of
genes is most prevalently influenced by Xpp1, we tested which
KOG has an overrepresented number of DEG. First, the expected
portion of genes was calculated as the percentage of the genes
assigned to a specific KOG of the total number of all KOG-
assigned genes (i.e., 6,836 according to genome.jgi.doe.gov/Trire2/
Trire2.home.html). Analogously, the obtained portion of DEGs
was calculated as the percentages of DEGs assigned to a specific
KOG of the total number of KOG-assigned DEGs (i.e., 669
genes). Second, we compared the obtained percentages with the
expected percentages for each KOG. We found a higher pro-
portion of DEGs than expected in the KOG “metabolism” (Fig. 2
and Table S1). Precisely, a higher portion of DEGs than expected
was found in six of its nine KOG classes, including the KOG class
“secondary metabolites biosynthesis, transport, and catabolism”

(Fig. 2 and Table S1). The other five classes could be considered to
represent the primary metabolism. A detailed analysis of the DEGs
of each class drew our attention particularly to the KOG class
“carbohydrate transport and metabolism.” Nearly all up-regulated
DEGs within this class were genes encoding transporters (Table
S2). The other DEGs in this class (encoding for, e.g., hydrolases
and enzymes involved in glycolysis and the TCA) were down-
regulated, suggesting a suppression of the primary metabolism.

Xpp1 Supports Fungal Growth.Because the KOG overrepresentation
analysis pointed toward an influence of Xpp1 on primary metab-
olism, we were interested in its effect on the carbon assimilation
behavior of T. reesei. Therefore, we compared the xpp1 deletion

strain with its parent strain in a Biolog assay. Only those carbon
sources on which both strains grew better than on water (control)
were included in the analysis. Throughout growth, the xpp1 de-
letion strain accumulated equal or less biomass than the parent
strain on all tested carbon sources (Fig. 3A). We performed a
Wilcoxon test on the data pairs, namely the mean values of the two
strains for each carbon source, and found them to be significantly
different (P value < 0.001) for both tested time points (48 and 72 h).
Next, we plotted the data pairs in scatter graphs for both time points
and calculated the respective trend lines (Fig. 3 B and C). The
statistical significance of the differences of the data pairs and the
high R2 values of the trend lines indicate that the impaired growth
behavior of the xpp1 deletion strain is an inherent property of the
strain. Accordingly, Xpp1 seems to promote growth in T. reesei.
This observed phenotype is concordant with the RNA-Seq results,
which had already suggested an attenuation of primary metabolism
in the absence of Xpp1.

Xpp1 Regulates the Gene Expression of PKSs. The KOG over-
representation analysis based on the RNA-Seq data pointed to a
regulatory influence of Xpp1 on secondary metabolism. How-
ever, the difference between the percentage of obtained DEGs
(4.48%) and the expected percentage (3.83%) in this KOG class
was relatively small (Fig. 2 and Table S1). In the course of the
detailed analysis of the DEGs, we realized that the genes
encoding PKS were assigned to the KOG class “lipid transport
and metabolism.” Consequently, the calculated difference be-
tween the obtained and expected percentages for the secondary
metabolism class would have been higher if the PKS-encoding
genes were assigned to the secondary metabolite class. Surpris-
ingly, the genes encoding the two PKSs from the sorbicillin
cluster (39) (protein IDs 73621 and 73618) were not included in
the list of DEGs because of their P values. Table 1 separately
lists the results obtained from our RNA-Seq analysis for all PKS-
encoding genes. We decided to investigate the potential regu-
latory role of Xpp1 on the expression of PKS-encoding genes in

Fig. 2. KOG overrepresentation analysis The xpp1 deletion and the parent strains were grown on CMC for 48 h and subjected to an RNA-Seq analysis. The
obtained DEGs were assigned to their KOGs. The obtained number of DEGs was normalized to the expected number of DEGs (blue dashed line; according to
the normal distribution of genes) for each KOG (capitalized letters and dark green bars) and KOG class (light green bars). Bold indicates a KOG or KOG class
with a higher number of DEGs than could be expected. NA, not applicable.
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more detail. To this end, we measured the transcript levels of the
most strongly regulated PKS-encoding genes (as indicated in Table
1) by quantitative PCR (qPCR) analysis in the parent and the xpp1
deletion strain grown on CMC. With this method, we found the
strongest differences for the genes encoding the two PKSs from
the sorbicillin cluster, namely protein IDs 73621 and 73618 (Fig. 4
A and B). This result matches the elevated transcript levels of the
gene encoding their main regulator, ypr1 (Fig. 1E). No difference
could be detected for the protein ID 65116 (Fig. 4C). The results
for the protein IDs 65172, 60118, and 81964 were unclear (Fig. 4
D–F). The expression of protein ID 65172 was up-regulated earlier
and thereafter, also down-regulated earlier in the xpp1 deletion
strain (Fig. 4D). Protein ID 60118 generally appeared to be in-
creased in expression at later time points (Fig. 4E). The expression
of protein ID 81964 followed an oscillating expression pattern,
without clear differences in overall expression strength between

the two strains (Fig. 4F). However, these results prompted us to
investigate the influence of Xpp1 on the phenotype of T. reesei in
the context of the secretion of secondary metabolites.

Absence of Xpp1 Enhances the Secretion of Low-Molecular Weight
Compounds. The KOG overrepresentation analysis and the tran-
script levels of some PKS-encoding genes pointed toward a regu-
latory influence of Xpp1 on secondary metabolism. Therefore, we
sought to investigate to what extent deletion of Xpp1 results in the
secretion of low-molecular weight compounds (LMCs) that could
be used as indicators for secondary metabolism. We previously
established an untargeted metabolomics workflow based on liquid
chromatography–high-resolution MS (LC-HRMS) for the prefer-
ential detection of secondary metabolites in the supernatants of
fungal cultures. The stable isotope labeling approach is based on
parallel cultivation on native and highly 13C-enriched, uniformly

Fig. 3. Influence of Xpp1 on the growth behavior of T. reesei. The xpp1 deletion (green bars) and the parent (blue bars) strains were subjected to a Biolog
assay and grown at 30 °C in darkness. Absorbance at 750 nm was measured as an indicator for biomass accumulation. (A) Absorbance was measured after 72 h
on a representative selection of carbon sources. The selection accounts for all types of carbon sources used in the assay and covers the entire value range. Error
bars indicate SDs from three independently performed cultivations in one assay. Mean values of both strains after (B) 48 and (C) 72 h were blotted against
each other (x axis, parent strain; y axis, xpp1 deletion strain), and linear trend lines were inserted with a forced intercept of (0,0). Equations of the trend lines
and corresponding coefficients of determination are shown.
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labeled D-glucose (U-13C6 D-glucose) as sole carbon source in a
small-scale setup (42). In a preexperiment, the T. reesei strains
were grown under these modified cultivation conditions. Whereas
the strains grew slower than under generally applied conditions
(compare Fig. S2A with ref. 33), the reduced growth of the xpp1

deletion compared with the WT strain also was observed here (Fig.
S2A). Again, we observed more pronounced secretion of the yel-
low pigment in the xpp1 deletion strain in contrast to reduced
amounts of pigment in the supernatant of the xpp1 overexpression
strain (Fig. S2B). The expression levels of the gene coding for PKS

Table 1. Influence of Xpp1 on expression of PKSs in T. reesei

Protein ID Clade Mean reads Log2 (fold change) Adjusted P value

65172* Reducing clade I: lovastatin/citrinin diketide 28.1 2.06 0.00028
65891 Reducing clade I: lovastatin/citrinin diketide 169.5 −0.34 0.33321
105804 Nonreducing fungal clade III 4.0 0.18 0.79373
82208† Nonreducing fungal clade I 877.5 0.77 0.03328
59482 Reducing clade III: t-toxin 484.5 0.79 0.04114
60118* Reducing clade I: lovastatin/citrinin diketide 1,429.5 −1.37 1.1E-09
65116* Reducing clade IV: fumonisins 30.3 −2.22 6.6E-06
81964* Nonreducing fungal clade I–II 445.5 −3.02 1.3E-12
106272 Reducing clade I: lovastatin/citrinin diketide 451.1 −0.37 0.14051
73621‡ Nonreducing fungal clade III 6,491.1 1.98 NA
73618§ Reducing clade I: lovastatin/citrinin diketide 6,966.4 2.24 NA

NA, not applicable.
*PKSs that are DEGs according to the RNA-Seq analysis.
†Termed PKS4; essential for conidial pigmentation (35).
‡Homolog of P. chrysogenum SorB, which is involved in sorbicillin biosynthesis (38, 39).
§Homolog of P. chrysogenum SorA, which is essential for sorbicillin biosynthesis (38, 39).

Fig. 4. Xpp1 influences the expression of PKSs in T. reesei. The xpp1 deletion (green diamonds) and the parent (blue squares) strains were grown in CMC.
Samples were taken at 36, 48, 52, 60, 66, and 72 h. Relative transcript levels of the genes encoding PKSs with the protein IDs (A) 73621, (B) 73618, (C) 65116,
(D) 65172, (E) 60118, and (F) 81964 were determined by qPCR, normalized by using the reference genes sar1 and act, and correlated to the reference sample
(parent strain, 36 h). Error bars indicate SDs from three independently grown cultures.
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73621 from the sorbicillin cluster were increased in the xpp1 deletion
compared with the parent strain (Fig. S2C) as previously observed
on CMC (Fig. 4A). Interestingly, the difference in expression be-
tween the xpp1 deletion and the parent strains for the second PKS-
encoding gene (protein ID 65172) was more pronounced under
these conditions than on CMC (compare Fig. 4D with Fig. S2D).
However, we did not observe any differences between the xpp1

overexpression and parent strain, except for a clear delay of the
expression peak of protein ID 73621 (Fig. S2 C andD). In summary,
we conclude that the small-scale setup and the modified medium
were suitable for our purposes.
For metabolite profiling, the xpp1 deletion, xpp1 over-

expression, and the parent strains were grown in parallel on na-
tive and U-13C6–labeled D-glucose. The constituents of culture

Fig. 5. Xpp1 influences the secretion of LMCs in T. reesei. The xpp1 deletion (Δxpp1), the xpp1 overexpression (OExpp1), and the parent (Δtmus53) strains
were grown in modified minimal medium containing only D-glucose (unlabeled or U-13C6 labeled) as the sole carbon source in four biological replicates.
Secreted compounds of three strains were analyzed using a UHPLC system coupled to an LTQ Orbitrap XL. The Venn diagrams depict the numbers of different
compounds secreted by three strains at (A) 72 and (B) 96 h. (C) The results obtained for the 96-h cultures were subjected to a hierarchical analysis and are
represented in the heat map normalized to the levels of the parent strain Δtmus53. Six different metabolite groups based on the relative abundances in three
strains are indicated: gray, increase in metabolite levels in Δxpp1; red, increase in metabolite levels in Δxpp1 and decrease in OExpp1; turquoise, increase in
metabolite levels in OExpp1; pink, decrease in metabolite levels in Δxpp1; green, decrease in metabolite levels in OExpp1; and yellow, metabolites that
tended to be less abundant in both mutant strains (Δxpp1 and OExpp1) compared with the parent strain. The results of t tests between Δtmus53/Δxpp1 (Δ)
and Δtmus53/OExpp1 (OE) are indicated next to the clustering (gray: significant difference, P value < 0.05, fold change > 2; dark gray: highly significant
difference, P value < 0.00009, fold change > 2).
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supernatants were then separated on a reverse-phase C18HPLC column
and recorded by high-resolution MS in full-scan mode. Sub-
sequently, the resulting LC-HRMS raw data were evaluated using
the latest version of the in house-developed MetExtract algorithm
(42, 43). Screening for corresponding mass peaks of native and
uniformly 13C-labeled metabolites facilitated the detection of only
true T. reesei strain-derived metabolites. We detected total numbers
of 344 and 545 metabolites at 72 and 96 h, respectively. According
to the chosen chromatographic conditions (i.e., reverse-phase C18)
and observed retention behavior of the detected metabolites (∼90%
of the compounds exhibited retention times >10 min), the chosen
approach predominantly captures secondary fungal metabolites
(44). In contrast, LMCs of the central metabolism, such as non-
aromatic amino acids, sugars, sugar phosphates, small alcohols, or
organic acids, are not retained on the used C18 HPLC column and
therefore, are not contained among the measured fungal metabo-
lites. Accordingly, a series of the detected LMCs, including sorbi-
cillin and sorbicillinol, was annotated to secondary metabolites by
searching m/z values and corresponding numbers of carbon atoms
per metabolite ion against the Antibase (45) database for matching
entries of the genus Trichoderma (SI Text). As shown in the Venn
diagrams (Fig. 5 A and B), a large number of the detected com-
pounds was exclusively present in the supernatants of the xpp1 de-
letion strain at both time points (i.e., 31 after 72 h and 91 after
96 h). In contrast, many compounds were not detected in the xpp1
overexpression strain (i.e., 43 and 127, respectively) (Fig. 5 A and
B). Next, we performed hierarchical cluster analysis and heat map
analysis of the results obtained at 96 h (Fig. 5C). Our results in-
dicated a clear separation of three strains, and the metabolite
dendrogram in the heat map yielded six distinct metabolite clusters.
Increased amounts of almost all compounds were detected in the
xpp1 deletion strain, and smaller amounts were in the xpp1 over-
expression compared with the parent strain (Fig. 5C). In addition,
univariate t tests of the xpp1 deletion and the parent strain were
performed for all 545 detected metabolites. In total, 168 metabolites
exhibited significant differences (P value ≤ 0.05, fold change ≥ 2),
and 320 metabolites exhibited highly significant differences (P
value ≤ 0.00009, fold change ≥ 2). We conclude that Xpp1 re-
presses the secretion of LMCs in terms of number and concentra-
tion levels. Comparing the number of carbon atoms per metabolite
of the detected LMCs, we observe a higher relative abundance of
large compounds in the xpp1 deletion strain (Fig. S3). Because large
compounds are more likely secondary metabolites, these findings
strongly support that Xpp1 is a regulator of secondary metabolism.

Homologs of Xpp1 Are Found in a Broad Range of Ascomycetes.
Based on these promising findings, we were interested whether
homologs of Xpp1 are found in other fungi. To this end, we
performed a BLAST analysis and found homologs in a broad
range of ascomycetes. For the identification of conserved domains
and motifs, we performed a conserved domain search and a
multiple alignment of all homologs obtained from the BLAST
analysis with a reasonable similarity (i.e., chosen cutoff of total
scores above 175 bits) and sufficient sequence information (Fig. 6,
black). Within the sequences of all aligned Xpp1 homologs, six
highly conserved motifs were found (Fig. S4 A, Roman numbers
and B, double underlined). Additionally, a glycine- and proline-
rich stretch (Fig. S4B, waved underlined) is present in most ho-
mologs directly after the conserved motif III—although notably,
not very pronounced in Trichoderma sp. Furthermore, two semi-
conserved motifs (not conserved throughout all tested sequences)
were identified in the multiple alignment (Fig. S4 A, Arabic
numbers and B, single underlined). T. reesei Xpp1 contains a basic
helix–loop–helix domain at R396–K462 (32) (Fig. S4B). The
motifs IV and V compose the DNA binding domain (Fig. S4B).
Notably, the motifs I, 1, II, 2, and III might constitute a conserved
domain. In the light of the results for Xpp1 of T. reesei, the elu-
cidation of the role of its homologs is warranted.

Discussion
In a recent publication, we could link the production of the typical
yellow pigment to a secondary metabolism gene cluster containing
the two PKSs 73618 and 73621. The gene cluster is also present in
a series of not closely related ascomycetes, including Penicillium
chrysogenum. Both studies, the former on P. chrysogenum and our
recent study on T. reesei, showed that this cluster is responsible for
the production of sorbicillin. Notably, here we found again a
number of metabolites in the supernatant of T. reesei, two of which
are annotated as sorbicillin and sorbicillinol (SI Text).
In the KOG overrepresentation analysis, only one class that

does not belong to the KOG metabolism exhibited an over-
represented number of DEGs, namely the class “defense mecha-
nisms” (Fig. 2 and Table S1). This result is caused by the fact that
specific DEGs identified during this study (encoding the proteins
with IDs 119805, 123475, 123976, 109748, and 105342)—next to a
series of other genes—are annotated as “von Willebrand factor
and related coagulation proteins” (according to genome.jgi.doe.
gov/Trire2/Trire2.home.html). We could not confirm this anno-
tation regarding the mentioned DEGs by performing manual in
silico analyses (conserved domain search and BLAST analysis).
Without these DEGs, the KOG class defense mechanisms would
not have exhibited an overrepresented number of DEGs. There-
fore, we did not include defense mechanisms in the subsequent
design of the study and the experiments.
The results obtained from RNA-Seq analysis, Biolog assay, and

LMC screening indicate that Xpp1 is both a positive regulator of
primary metabolism and a repressor of secondary metabolism. It
seems to be involved in a central switch mechanism. To test
whether Xpp1 might act on secondary metabolism indirectly (e.g.,
via known regulators of secondary metabolism), we examined the
results from the RNA-Seq analysis for Lae1 and the two 4-phos-
phopantetheinyl transferases, protein IDs 56081 and 48788. They
were not differentially expressed in the xpp1 deletion strain, with
log2 fold changes of 0.265, −0.097, and 0.626 and adjusted P values
of 0.539, 0.880, and 0.120, respectively.
As mentioned in the Introduction, Xpp1 was originally identi-

fied and described as a repressor of xylanase expression (32, 33).
Therein, Xpp1 was reported to regulate the expression of xyla-
nolytic enzymes at late time points during cultivation on xylan. In
this study, we showed a regulatory influence of Xpp1 on the ex-
pression of a total of 995 genes involved in primary metabolism
and secondary metabolism. This finding shifts the role of Xpp1
from a narrow-range regulator to a putative wide-domain regula-
tor. This assumption is supported by the fact that 28 transcription
factors are regulated by Xpp1 according to our RNA-Seq analysis.
The latter finding suggests that Xpp1 influences the expression of a
large number of genes (also) by regulating a set of narrow-range
regulators. This type of action was, for example, shown in the case
of the sorbicillin cluster genes, which are indirectly controlled by
Xpp1 via regulation of ypr1 expression.
Previously, the expression of Xpp1 itself was shown to depend

on growth rate (33). Taken together, we propose that the general
role of Xpp1 is to direct the flow of material and energy toward the
accumulation of biomass. Xpp1 might facilitate this by (i) de-
livering a feedback signal on the expression of nutrient-degrading
enzymes when sufficient levels have been reached (33) and (ii)
negatively controlling secondary metabolism and balancing it with
growth. In this regard, it needs to be considered that Xpp1 might
be involved in the regulation of additional biological processes.

Materials and Methods
Fungal Strains and Cultivation Conditions. T. reesei QM6aΔtmus53 (ATCC
13631), the xpp1 deletion QM6aΔtmus53Δxpp1 (QM6aΔxpp1) (33), and the
xpp1 overexpression (QM6aOExpp1) (33) strains were maintained on malt
extract (MEX) agar at 30 °C. Hygromycin B was added when applicable to a
final concentration of 113 U/mL.
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For growth comparison on plates, T. reesei was pregrown on Mandels–
Andreotti (MA) medium (46) plates containing 1% glycerol at 30 °C. Equal
pieces of overgrown agar were used to inoculate MA medium plates con-
taining 50 mM D-glucose. Plates were incubated at 30 °C in darkness. Pictures
were taken from the bottom of the plates.

For cultivation on CMC, T. reesei was grown in 60 mL MA medium con-
taining 1% CMC (Carl Roth GmbH) in 1-L Erlenmeyer flasks stationary at
30 °C. For cultivation on D-glucose and lactose, T. reesei was grown in MA

medium containing 50 mM D-glucose or 27.5 mM lactose at 30 °C on a rotary
shaker at 180 rpm. Mycelia and supernatants were separated by filtration
through Miracloth (EMD Millipore). Mycelia were stored in liquid nitrogen.

For small-scale cultivation, T. reeseiwas grown in 24-well plates stationary
at 30 °C in 1.5 mL modified MA medium containing either 50 mM native
D-glucose or U-13C6–labeled D-glucose with a degree of enrichment of 99%
(Euriso-Top GmbH). The phosphate citrate buffer was replaced by a 0.1 M
sodium phosphate buffer, and the medium was sterilized by filtration.

Fig. 6. Phylogenetic tree of Xpp1 (unrooted). Relative similarities of Xpp1 homologs in the given organisms were calculated using the COBALT for multiple
protein sequences and visualized in the cladogram, which was generated using the Fast Minimum Evolution algorithm based on the Grishin distance model.
Homologs of Xpp1 in the organisms written in gray were omitted in the motif search, because their sequences either were only partially available (depicted
by asterisks) or differed too strongly from their own close homologs.
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Supernatants were quenched with 30% (vol/vol) acetonitrile and centri-
fuged at 20,000 × g for 10 min at 4 °C.

Transcript Analysis by RNA-Seq. Illumina RNA sequencing and differential
gene expression analysis were performed by Microsynth using their stan-
dardized analysis pipeline. RNA was isolated using the RNeasy Plant Mini Kit
(Qiagen), and the quality of the RNA samples was controlled using an Agilent
2100 Bioanalyzer. RNA libraries were prepared using a TruSeq Stranded mRNA
Sample Prep Kit including poly(A) enrichment (Illumina) and quantified with an
Illumina LibraryQuantificationKit (KAPABiosystems). Thepooled librarieswere
sequenced on a NextSeq500 instrument (Illumina) with read lengths of 75 nt.
For bioinformatic analysis, the sequence readsweremappedonto the reference
genome of T. reesei (genome.jgi.doe.gov/Trire2/Trire2.home.html) using the
TopHat and Bowtie 2 software (47, 48) before reads were counted using
HTSeq (49). The counted transcripts were normalized and subjected to statis-
tical analysis through the DESeq2 software package (50). The mapped reads
were provided as bam files and visualized using the Integrative Genomics
Viewer (software.broadinstitute.org/software/igv/). Both strains were analyzed
in three independent biological replicates.

KOG-Related Analysis of DEG. The DEGs obtained from the RNA-Seq analysis
were assigned to a KOG. To determine which KOGs are more prevalently
affected by the deletion of xpp1, the obtained number of DEGs assigned to a
certain KOG was compared with the annotated number of genes assigned to
this KOG. The obtained portion of DEGs (obtained percentage) was calcu-
lated as the percentage of the DEGs of a certain KOG of the total number of
DEGs that could be assigned to a KOG (i.e., 669 genes). Analogously, the
expected portion of DEGs (expected percentage) was calculated as the
percentage of the genes of a certain KOG of the total number of all KOG-
assigned genes (i.e., 6,836; according to genome.jgi.doe.gov/Trire2/Trire2.
home.html). For graphical visualization, the obtained percentage was nor-
malized to the expected percentage.

Biolog Microarray Technique. The global carbon assimilation profiles were
evaluated by using Biolog FF MicroPlate (Biolog, Inc.) following a previously
described protocol (51), with minor modifications as follows: the inoculum was
prepared from cultures on MEX plates incubated at 30 °C; mycelial growth was
measured after 18, 24, 30, 36, 42, 48, 66, 72, and 90 h using biological triplicates.

Transcript Analysis by qPCR. Between 0.01 and 0.03 g harvested mycelia were
homogenized in 1 mL peqGOLD TriFast DNA/RNA/Protein Purification System
Reagent (PEQLAB Biotechnologie) using a FastPrep FP120 BIO101 Thermo-
Savant Cell Disrupter (Qbiogene). RNA was isolated according to the man-
ufacturer’s protocols, and the concentrations were measured using the
NanoDrop 1000 (Thermo Scientific). Synthesis of cDNA from mRNA was
performed using the RevertAid H Minus First Strand cDNA Synthesis Kit
(Thermo Scientific) according to the manufacturer’s protocols.

qPCRswere performed in aMastercycler Ep Realplex 2.2 System (Eppendorf).
All reactions were performed in triplicate. The amplification mixture (final
volume of 25 μL) contained 12.5 μL 2× iQ SYBR Green Mix (Bio-Rad Labora-
tories), 100 nM forward and reverse primers, and 2.5 μL cDNA (diluted 1:100).
Primer sequences are provided in Table S3. Cycling conditions and control
reactions were performed as previously described (52). Calculations using sar1
and act as reference genes were performed as previously published (52).

Screening for LMCs. Equal volumes of all quenched U-13C–labeled supernatants
(three strains in four biological replicates each) were pooled together.
Quenched unlabeled supernatants (three strains in four biological replicates
each) were individually mixed at a ratio of 1:1 (vol/vol) with the U-13C–labeled
pool. All samples were analyzed as described previously (53) using an ultra-
high-performance liquid chromatography (UHPLC) System (Accela; Thermo
Fisher Scientific) coupled to an LTQ Orbitrap XL (Thermo Fisher Scientific) with

an electrospray ionization interface in positive ionization (ESI) mode. A re-
versed-phase XBridge C18 150 × 2.1-mm i.d., 3.5-μm Particle Size Analytical
Column (Waters) preceded by a C18 4 × 3-mm i.d. Security Cartridge (Phe-
nomenex) were used with MeOH and water, both containing 0.1% formic acid
as solvents. The flow rate was maintained at 250 μL/min using a linear gradient
program. The chromatographic method held the initial mobile-phase com-
position (10% B) constant for 2 min followed by a linear gradient to 100% B
within 30 min. This final condition was held for 5 min followed by 8 min of
column reequilibration at 10% B. The ESI interface was operated with the
following settings: sheath gas: 60 arbitrary units; auxiliary gas: 15 arbitrary
units; sweep gas: 5 arbitrary units; capillary voltage: 4 kV; and capillary tem-
perature: 300 °C. The orbitrap mass analyzer was operated in full-scan mode in
a scan range from m/z 100 to 1,000, with a resolving power setting of 60,000
FWHM (at m/z 400).

Before data processing, LC-HRMS raw data were centroided and converted
to the mzXML format with the Proteowizard Toolbox (54) (version 3.0.8789).
Subsequently, the data files were processed with an updated version of
MetExtract (43). In brief, each MS scan was inspected for the isotope patterns
derived from both native and uniformly 13C-labeled metabolite ions as de-
scribed by Bueschl et al. (42). The minimum intensity threshold for mono-
isotopic 12C and uniformly 13C-labeled derived MS signals was set to 5,000 in at
least three scans, the maximum allowed m/z deviation of related m/z values
was set to 2.5 ppm, and a maximum isotopolog abundance error of ±20%
was used. Chromatographic peaks of MS signal pairs were detected in the
extracted-ion chromatograms of the native and the U-13C–labeled metab-
olite isotopologs with the algorithm by Du et al. (55). Two such matching
chromatographic peaks representing a native and a U-13C–labeled ion had
to show a minimum correlation of 0.7. Different ions of a metabolite formed
during ionization of the metabolite were convoluted using their similar
retention time (±10 scans) and a minimum correlation coefficient of 0.85. All
detected feature pairs were bracketed over the LC-HRMS files into a data
matrix, which was used for statistical analysis.

For statistical analysis, the intensity ratios of the relative monoisotopic
unlabeled and the fully 13C-labeled feature abundances (metabolome-
wide internal standardization) were used. For univariate significance
testing, a global P value threshold of 0.05 was used, which was reduced to
0.00009411 after multiple testing correction with the �Sidák method. For
multivariate analysis, missing values were imputed by zero, and the
abundances of the detected metabolites were range-scaled (56) and cen-
tered relative to the mean value of the WT replicates. For hierarchical
cluster analysis and heat map analysis, squared Euclidean distance and
ward linkage were used.

In Silico Analysis of Xpp1 and Its Orthologs. The amino acids sequence of
T. reesei Xpp1 was used as the query for a BLAST analysis (57) at blast.ncbi.
nlm.nih.gov/Blast.cgi using the blastp algorithm searching the nonredundant
protein sequences database. Relative distance of the orthologous proteins
with a total score above 175 bits was calculated using the Constraint-Based
Multiple Protein Alignment Tool (COBALT) (58) at www.st-va.ncbi.nlm.nih.
gov/tools/cobalt/re_cobalt.cgi and visualized in a tree using the Fast Mini-
mum Evolution algorithm (59) based on the Grishin distance model (60).
Conserved motifs were determined manually based on the multiple align-
ment. Conserved domain searches were performed against the CDD v3.14
database (61) at www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi.
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