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Abstract

Background: Enterohemorrhagic Escherichia coli (EHEC) cause diarrhea-associated hemolytic uremic syndrome (D+ HUS)
worldwide, but no systematic study of EHEC as the causative agents of HUS was performed in the Czech Republic. We
analyzed stools of all patients with D+ HUS in the Czech Republic between 1998 and 2012 for evidence of EHEC infection.
We determined virulence profiles, phenotypes, antimicrobial susceptibilities and phylogeny of the EHEC isolates.

Methodology/Principal Findings: Virulence loci were identified using PCR, phenotypes and antimicrobial susceptibilities
were determined using standard procedures, and phylogeny was assessed using multilocus sequence typing. During the
15-year period, EHEC were isolated from stools of 39 (69.4%) of 56 patients. The strains belonged to serotypes [fliC types]
O157:H7/NM[fliCH7] (50% of which were sorbitol-fermenting; SF), O26:H11/NM[fliCH11], O55:NM[fliCH7], O111:NM[fliCH8],
O145:H28[fliCH28], O172:NM[fliCH25], and Orough:NM[fliCH25]. O26:H11/NM[fliCH11] was the most common serotype
associated with HUS (41% isolates). Five stx genotypes were identified, the most frequent being stx2a (71.1% isolates).
Most strains contained EHEC-hlyA encoding EHEC hemolysin, and a subset (all SF O157:NM and one O157:H7) harbored cdt-
V encoding cytolethal distending toxin. espPa encoding serine protease EspPa was found in EHEC O157:H7, O26:H11/NM,
and O145:H28, whereas O172:NM and Orough:NM strains contained espPc. All isolates contained eae encoding adhesin
intimin, which belonged to subtypes b (O26), c (O55, O145, O157), c2/h (O111), and e (O172, Orough). Loci encoding other
adhesins (efa1, lpfAO26, lpfAO157OI-141, lpfAO157OI-154, iha) were usually associated with particular serotypes. Phylogenetic
analysis demonstrated nine sequence types (STs) which correlated with serotypes. Of these, two STs (ST660 and ST1595)
were not found in HUS-associated EHEC before.

Conclusions/Significance: EHEC strains, including O157:H7 and non-O157:H7, are frequent causes of D+ HUS in the Czech
Republic. Identification of unusual EHEC serotypes/STs causing HUS calls for establishment of an European collection of
HUS-associated EHEC, enabling to study properties and evolution of these important pathogens.
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Introduction

Enterohemorrhagic Escherichia coli (EHEC) are the pathogenic

subgroup of Shiga toxin (Stx)-producing E. coli strains that cause

human diseases including diarrhea, bloody diarrhea and hemolytic

uremic syndrome (HUS). HUS is a severe, potentialy life-

threatening condition characterized by non-immune hemolytic

anemia, thrombocytopenia, and acute renal failure [1]. HUS

caused by EHEC strains is typically preceded with diarrhea (and

therefore designated D+ HUS), that usually begins as non-bloody

and progresses to bloody after several days [1]. D+ HUS usually

affects children under 5 years [1] and is the most common cause of

acute renal insufficiency in children. It develops in 10–15%

children infected with EHEC O157:H7 [1] and also complicates

infections with other EHEC serotypes [2–9]. In addition to the

kidneys, other organs can be affected during HUS including the

central nervous system, the pancreas, the heart, the liver and the

lungs [1]. The involvement of the central nervous system is the

most severe and is associated with higher mortality [6]. The

mortality of D+ HUS during the acute phase is ,5%, and there is

a high frequency of late renal or non-renal sequelae in survivors

[10,11].

Microvascular endothelial damage is the major pathological

change underlying HUS [1,12]. Stxs are presently the best

characterised EHEC virulence factors that cause the microvascu-

lar endothelial injury [12]. Stxs are released by EHEC in the

intestine, absorbed across the intestinal epithelium into the

circulation, and transported to microcapillaries of the target

organs, mainly the kidneys and the brain. Here Stxs bind to

glycosphingolipids of the globo-series, which are abundantly

expressed on both glomerular and brain microvascular endothelial

cells [13,14]. This triggers a complex cascade of events resulting in

a multi-organ thrombotic process [12]. Although the Stx family is

highly heterogeneous, not all Stx types have been associated with

HUS [15,16]. Stx2 is the most common Stx type found in EHEC
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isolated from HUS patients [3,15–17], but Stx2c, Stx2d and Stx1

also occur in HUS-associated EHEC [3,15]. In contrast, Stx2b,

Stx2e, Stx2f and Stx2g have not been found at all or are found

very rarely among HUS isolates [15,16,18–20]. A possible

explanation for the epidemiological association of Stx2 with severe

outcome of EHEC infections is the in vitro observation that Stx2 is

significantly more cytotoxic towards human renal [21] and human

brain [22] microvascular endothelial cells than Stx1.

The classical non-sorbitol-fermenting (NSF) EHEC O157:H7 is

the predominant cause of HUS worldwide [1,23,24]. In addition,

several other EHEC serotypes, the most frequent of which are

O26:H11/NM (non-motile), O91:H21, O103:H2/NM,

O111:H8/NM, O113:H21, and O145:H25/H28/NM, have been

increasingly recognized as causes of HUS in Europe [3–5,7,17,25–

27], North America [8], South America [20], and Australia [28].

EHEC strains that have the capability of causing HUS have been

designated HUSEC (HUS-associated E. coli) [3].

The role of EHEC as causes of HUS in the Czech Republic has

not yet been systematically studied. Here, we investigated stool

samples from all patients with D+ HUS hospitalized in pediatric

centers in the Czech Republic between 1998 and 2012 for EHEC

infection. We determined serotypes of the EHEC isolates, a subset

of molecular and phenotypic characteristics, and their phyloge-

netic relationships. Moreover, we determined susceptibilities of the

strains to a spectrum of antimicrobials.

Materials and Methods

Ethics Statement
This study was approved by the Ethical Committee of the

University Hospital Motol, Prague, Czech Republic. Written

informed consent for enrollment in the study and publication of

patients data was obtained from parents of all patients.

Patients and Stool Samples
During January 1998 to December 2012, stool samples from 56

patients with HUS were investigated for EHEC infection in the

Reference Laboratory for E. coli and Shigella of the National

Institute of Public Health in Prague, Czech Republic. This

laboratory is specialized for diagnosis of EHEC infections and

receives stools from all patients with HUS from this country. The

patients originated from different regions of the Czech Republic

and there were no apparent temporal or geographical linkages

between them. Thirty-four of 56 patients (60.7%) were boys and

22 (39.3%) were girls. All patients were children (median age, 27.5

months; range, 10 to 85 months). Stool samples were collected

between 2 and 15 days (median, 6 days) after the onset of

prodromal diarrhea.

Case Definition
HUS was defined as a case of microangiopathic hemolytic

anemia (hematocrit ,30% with peripheral evidence of intravas-

cular hemolysis), thrombocytopenia (platelet count ,150,000

platelets/mm3), and renal insufficiency (serum creatinine concen-

tration higher than the upper limit of the normal range for age)

[1].

Detection of EHEC in and Isolation from Patients Stools
The stool samples were enriched in G.N. Enrichment Broth

(Hajna) (Laboratorios Conda, Madrid, Spain) with novobiocin

supplement (Oxoid, Hampshire, UK) for 5–7 hours (37uC,

180 rpm) and the enriched cultures were inoculated on Columbia

blood agar, sorbitol MacConkey agar (SMAC), cefixime-tellurite

(CT)-SMAC agar and enterohemolysin agar (all from Oxoid).

Since 2008, the enrichment cultures were additionally examined

for the presence of E. coli O157, O26, O103, O111, and O145

using an immunomagnetic separation (Dynabeads anti-E. coli

O157, Dynabeads EPEC/VTEC O26, Dynabeads EPEC/VTEC

O103, Dynabeads EPEC/VTEC O111, Dynabeads EPEC/

VTEC O145) according to the manufacturers (Dynal, Oslo,

Norway) protocol and subsequently plated on the above media.

After overnight incubation at 37uC, bacterial growth from all four

plates was collected in a tube containing 1ml of 0.85% NaCl;

100 ml of this suspension was dilluted 1:10 in sterile distilled water,

heated for 10 min at 100uC and centrifuged (12000 rpm, 10 min).

Supernatant was used as a template for PCR with primers KS7-

KS8, LP43-LP44, and SK1-SK2 which target stx1a, stx2a and eae,

respectively [3,15]. All stx-positive samples were further PCR

tested for genes of O antigen biosynthetic clusters of E. coli O157,

O26, O55, O111, O103, O145, O91 and O113 [29–31]. To

isolate strains from samples with positive stx PCR results, bacterial

suspensions were restreaked on SMAC, CT-SMAC and enter-

ohemolysin agar plates. E. coli O157:H7 was isolated from SMAC

and/or CT-SMAC using agglutination of sorbitol-negative colo-

nies in O157 antiserum (Denka Seiken Ltd., Tokyo, Japan).

EHEC of the major non-O157 serogroups (O26, O111, O145)

were isolated from enterohemolysin agar based on their typical

enterohemolytic phenotype combined with agglutination in

antisera against the respective E. coli O antigens (Sifin, Berlin,

Germany; Denka Seiken). If no sorbitol-negative or enterohemo-

lytic colonies were present on SMAC/CT-SMAC or enterohe-

molysin agar, respectively, multiple colonies from these plates

(altogether up to 50) were tested for stx1a and stx2a genes using

PCRs described above. The isolates were confirmed as E. coli

biochemically (API 20E; bioMérieux, Marcy l’Etoile, France) and

using a MALDI-TOF mass spectrometer (Microflex LT, Bruker

Daltonics, Germany). Mass spectra were processed using the

BioTyper software with the version 3.2.1.0. database. Motility of

the isolates was determined directly after isolation as follows: The

strains were inoculated into the middle of tubes containing soft

(0.5%) agar, incubated at 37uC and observed for growth daily. An

isolate was considered motile if it spread out of the original

inoculation site during 10 days. If there was no growth from the

inoculation site during this time, the isolate was considered

nonmotile (NM).

Detection of other Enteric Bacterial Pathogens in Stools
The presence of Salmonella spp., Shigella spp., Yersinia enterocolitica,

and Campylobacter jejuni in stools was sought using standard

microbiological procedures.

Serotyping
stx positive colonies were serotyped using agglutination in

polyvalent and monovalent E. coli O antisera (Denka Seiken Co.,

Ltd., Tokyo, Japan; Sifin, Berlin, Germany; Robert Koch

Institute, Wernigerode, Germany) and H antisera (Denka Seiken).

The presence of the O26, O55, O111, O145, O157, and O172

antigens was confirmed using PCRs targeting genes of the

respective O antigen biosynthetic clusters [29–32]. The flagellin

subunit–encoding fliC gene was subtyped using HhaI restriction

fragment length polymorphism as described previously [7].

Genotypic Characteristics
PCRs were performed in a MyCycler Thermal Cycler (Bio-

Rad, München, Germany) using reagents from Top-Bio (Prague,

Czech Republic) and primers from Generi Biotech (Hradec

Kralove, Czech Republic). All isolates were tested for stx1a, stx2a,

and their subtypes (stx1c, stx2b, stx2c, stx2d stx2e, stx2f) using published

HUS-Associated EHEC in the Czech Republic
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PCR protocols [15,16]. Genes encoding other toxins (cdt-V,

EHEC-hlyA, a-hlyA), the EHEC serine protease EspP (espP), and

adhesins (eae, efa1, lpfAO26, lpfAO157OI-141, lpfAO157OI-154, iha) were

PCR detected as described previously [15,33–38]. eae genes were

subtyped according to Zhang et al. [39] (eae b, c, e) and Blanco

et al. [40] (eae c2/h). espP genes were subtyped according to

Brockmeyer et al. [36]. terE and ureD used as markers for the ter

and ure gene clusters, which encode tellurite resistance urease

production, respectively, were amplified as described previously

[41,42]. Genes within the O island (OI) 122 of EHEC O157:H7

strain EDL933 (efa1, sen, nleE, nleB, pagC) were detected using

published PCR protocols [25,43].

Phenotypic Characteristics
Utilization of sorbitol was tested on SMAC. Moreover,

utilization of sorbitol, rhamnose and production of lysine

decarboxylase (LDC) was evaluated according to the API 20E

test kit (bioMérieux). Production of b-D-glucuronidase was

investigated using COLItest (Erba Lachema, Brno, Czech

Republic). Production of EHEC hemolysin and a hemolysin was

sought using enterohemolysin agar and Columbia blood agar

(Oxoid), respectively. Production of Stx was tested using a Vero

cell cytotoxicity assay [2]. The Stx titer was defined as the highest

dilution of culture supernatant that caused cytotoxicity in 50%

cells after 3 days of incubation. The Stx types (Stx1, Stx2) were

identified using VTEC-RPLA assay (Denka Seiken) according to

the manufacturer’s instructions. Resistance to tellurite was

determined based on the ability of the strains to grow on CT-

SMAC. Urease production was determined using the API 20E

test.

Antimicrobial Susceptibility Testing
Susceptibility to ampicillin, cefotaxime, ceftazidime, gentami-

cin, trimethoprim/sulfamethoxazole, ciprofloxacin, amikacin,

meropenem, piperacillin/tazobactam, tigecycline, chlorampheni-

col, and nitrofurantoin was tested using the disk diffusion method

according to EUCAST breakpoints [44] and standard recom-

mendations [45].

Multilocus Sequence Typing (MLST)
MLST was performed by sequencing internal fragments of

seven housekeeping genes (adk, fumC, gyrB, icd, mdh, purA, and recA)

as described previously [3]. Sequences were analyzed and the

minimum-spanning tree was constructed using the SeqSphere

software version 0.9 beta.1 (Ridom GmbH, Münster, Germany).

All alleles and sequence types (ST) were assigned in accordance

with the MLST website (http://mlst.ucc.ie/mlst/dbs/Ecoli).

Results

Clinical Features
Among the 56 patients investigated, 52 (92.9%) had prodromal

diarrhea, which was bloody in 31 (59.6%). HUS was diagnosed

between 2 and 15 days (median, 6 days) after the onset of diarrhea.

The median length of hospitalization was 17 days (range, 4 to 55

days). Three patients (5.4%) died during acute phase of HUS. The

causes of the deaths were neurological complications (cerebral

edema) in two patients (girls, 18 and 25 months old, both infected

with EHEC O26:H11), one of whom also developed lung edema;

one patient (boy, 30 months old, infected with sorbitol-fermenting

(SF) EHEC O157:NM) died of acute renal failure. Deaths

occurred between 3 and 6 days (median, 3 days) after HUS

development.

Serotypes and fliC Genotypes of EHEC Isolates
Stool samples from 39 of 56 patients (69.6%) were positive in

screening for stx1a and/or stx2a genes using PCR. EHEC strains

were isolated from all of these 39 stx-positive stool samples. Thirty-

seven isolates belonged to eight different serotypes and two were

non-typeable (Orough) (Table 1). The most common serotype was

O26:H11/NM (non-motile), which accounted for 16 (41%) of 39

isolates (Table 1). The second most common serotype was

O111:NM (six of 39 isolates; 15.4%). NSF EHEC O157:H7/

NM were isolated from five (12.8%) patients and an additional five

patients (12.8%) were positive for SF EHEC O157:NM strains

(Table 1). One isolate belonged to serotype O172:NM, which has

been rarely isolated from patients with HUS [25].

Seven of 10 O157 isolates (two NSF and all five SF), six of 16

(37.5%) O26 isolates, and all O111, O55, O172 and Orough

isolates were non-motile, making conventional H typing impossi-

ble (Table 1). Subtyping of fliC genes encoding the flagellar subunit

of the H antigens demonstrated that the non-motile O157 and

O26 isolates contained fliCH7 and fliCH11, respectively, which was

also present in motile isolates of these serotypes. The non-motile

isolates of serogroups O111, O55 and O172 contained fliCH8,

fliCH7, and fliCH25, respectively (Table 1), allowing rapid molecular

H typing. fliCH25 was also present in both Orough:NM isolates

(Table 1).

None of the 39 patients from whom EHEC strains were isolated

had other intestinal bacterial pathogens (Salmonella spp., Shigella

spp., Y. enterocolitica, C. jejuni) in their stools.

Seasonal Distribution of EHEC Serotypes
Most EHEC strains (29 of 39; 74.4%) were isolated during the

warm period of the year (May to September) (Figure 1). However,

no clear seasonality in occurrence of particular serotypes was

observed. NSF O157:H7/NM strains were isolated from January

through August and SF O157:NM from February to June.

O26:H11/NM isolates were almost equally distributed throughout

the year (Figure 1).

stx Genotypes
stx genes were present in all 39 EHEC isolates upon isolation,

but one strain (SF O157:NM) lost its stx gene during laboratory

subcultures before stx subtyping could be performed. Three

different stx alleles (stx1a, stx2a, stx2c), which through different

combinations gave rise to five stx genotypes, were identified among

the remaining 38 strains (Table 1). The stx2a genotype was the

most frequent, being present in 27 of 38 (71.1%) strains. The stx2a

genotype was identified in all strains of serotypes O157:NM (SF),

O55:NM, O145:H28, O172:NM, Orough:NM, and in the

majority (15 of 16) of O26:H11 strains (Table 1). Only one of

five NSF EHEC O157 isolates contained the stx2a as the only stx

gene. The other four NSF O157 strains harbored stx2c in

combination with either stx1a or stx2a gene. stx2c did not occur in

any other serotype (Table 1). stx1a as the only stx gene was found in

three of 38 strains (7.9%) including one of 16 EHEC O26:H11

and two of six O111:NM strains (Table 1).

Non-stx Virulence Genes
Strains of all but one serotype (O55:NM) contained genes

encoding non-Stx toxins including cytolethal distending toxin V

(Cdt-V) and/or EHEC hemolysin (Table 1). Both cdt-V and

EHEC-hlyA genes were present in four of five SF O157:NM strains

and in one NSF O157:H7 strain (Table 1). EHEC-hlyA, but not

cdt-V, was present in all strains of serotypes O26:H11/NM,

O145:H28, O172:NM, and Orough:NM, and in four NSF

HUS-Associated EHEC in the Czech Republic
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O157:H7/NM and four O111:NM isolates (Table 1). None of the

39 strains contained a-hlyA gene encoding a hemolysin (Table 1).

All or most strains of serotypes O157:H7/NM (NSF), O26:H11/

NM, O145:H28, O172:NM and Orough:NM contained the espP

gene encoding the plasmid-encoded serine protease EspP [36].

Subtyping of the espP genes demonstrated that the O157:H7/NM,

O26:H11/NM and O145:H28 strains contain espPa, whereas the

O172:NM and Orough:NM strains contain espPc; each of these

espP alleles encodes proteolytically active EspP [36]. espP was

absent from all strains of serotypes O157:NM (SF), O55:NM, and

O111:NM (Table 1).

All 39 EHEC isolates contained the eae gene encoding intimin,

the major adhesin of EHEC. Four different eae subtypes (ß, c, c2/

h, e) were identified, which were associated with particular

serotypes. The eae c allele was broadly distributed (being present in

all O157, O55, and O145 strains), whereas the other eae alleles (ß,

c2/h, e) were usually restricted to one serotype (Table 1). In

addition to eae, genes encoding other established or putative

adhesins were found in the EHEC isolates. The efa1 gene encoding

the EHEC factor for adherence (Efa-1) [34] was present in strains

of all serotypes (Table 1), but it was truncated in NSF O157:H7/

NM and in one of O145:H28 strains as reported previously for E.

coli O157:H7 [34]. In contrast, loci encoding other adhesins

(lpfAO26, lpfAO157OI-141, lpfAO157OI-154, iha) were restricted to only

some serotypes (Table 1).

Other Loci
All NSF O157:H7/NM, O26:H11/NM, and O145:H28

strains, and five of six O111:NM strains contained terE and ureD

genes, which were used as markers for the gene clusters encoding

tellurite resistance and urease production, respectively. These loci

were found in none of the strains of the other serotypes (Table 1).

The irp2 and fyuA genes, which are components of the iron-uptake

system encoded in the high pathogenicity island (HPI) identified in

EHEC by Karch et al. [46] were present only in strains of serotype

O26:H11/NM (Table 1).

Table 1. Serotypes and genotypic characteristics of EHEC strains isolated from patients with HUS in the Czech Republic, 1998–
2012.

Virulence locusa Serotype (number of strains)b

O157:H7/NM
(NSF)

O157:NM
(SF) O55:NM O26:H11/NM O111:NM O145:H28 O172:NM Orough:NM

fliCH7 (n = 5) fliCH7 (n = 5) fliCH7 (n = 2) fliCH11 (n = 16) fliCH8 (n = 6) fliCH28 (n = 2) fliCH25 (n = 1) fliCH25 (n = 2)

stx1a 2c – – + (1)c + (2) – – –

stx2a + (1) + (4)d + + (15) – + + +

stx1a+stx2a – – – – + (4) – – –

stx1a+stx2c + (2) – – – – – – –

stx2a+stx2c + (2) – – – – – – –

cdt–V + (1) + – – – – – –

EHEC–hlyA + + (4) – + + (4) + + +

a–hlyA – – – – – – – –

espPe + (a) – – + (a) (9) – + (a) (1) + (c) + (c)

eaef + (c) + (c) + (c) + (ß) + (c2/h) + (c) + (e) + (e)

efa1 +g + + + + +g + +

lpfAO26 – – – + + – – –

lpfAO157/OI–141 + + + – – + – –

lpfAO157/OI–154 + + + – – – – –

iha + – – + + (5) + – –

terE + – – + + (5) + – –

ureD + – – + + (5) + – –

irp2 – – – + – – – –

fyuA – – – + – – – –

aThe genes encode the following proteins: fliC, flagellar subunit of H antigen; stx, Shiga toxin; cdt-V, cytolethal distending toxin V; EHEC-hlyA, EHEC hemolysin; a-hlyA,
a hemolysin; espP, serine protease EspP; eae, intimin; efa1, EHEC factor for adherence; lpfAO26, major subunit of long polar fimbriae of EHEC O26; lpfA O157/OI-141 and
lpfAO157/OI-154, major subunit of long polar fimbriae of EHEC O157 encoded on O island OI 154 and OI 141, respectively; iha, iron-regulated gene A homologue adhesin;
terE, marker for tellurite resistence-encoding cluster; ureD, marker for ure cluster encoding urease production; irp2 and fyuA, markers for the high pathogenicity island
(HPI) encoding iron uptake system.
bSerotypes were determined using conventional and molecular serotyping; the fliC genes indicated were present in both motile and non-motile strains of each
respective serotype; NSF, non-sorbitol-fermenting; SF, sorbitol-fermenting.
c2, the gene was absent; +, the gene was present (if the gene was not present in all strains of the respective serotype, the numbers of positive strains are indicated in
parenthesis).
done strain lost stx gene before subtyping.
eespP subtypes are indicated in parentheses.
feae subtypes are indicated in parentheses.
ga truncated efa1 gene [34] was present in EHEC O157:H7 and one O145:H28 isolate; complete efa1 was present in all other strains.
doi:10.1371/journal.pone.0073927.t001
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Presence of OI 122 in EHEC Isolates
The presence of OI 122 in EHEC strains, and the gene content

of this genomic island (i.e. the presence of pagC, nleE, nleB, sen, and

efa1 loci) correlate with virulence of EHEC strains [25,43]. In

accordance with their origin from patients with HUS, the EHEC

strains characterized in this study contained a complete OI 122

(serotypes O157:H7/NM, O55:NM, O111:NM, and one

O145:H28 strain) or an incomplete OI 122 which lacked only

pagC (serotypes O26:H11, O172:NM, Orough:NM, and one

O145:H28 strain) (Table 2).

Phenotypes
All but one strain (SF O157 which lost stx gene) expressed Stx as

demonstrated by cytotoxicity of their culture supernatants to Vero

cells (Table 1). The Stx type produced by each strain determined

using a latex agglutination assay correlated with stx genotype.

Specifically, strains harboring stx1a only produced Stx1a only,

those harboring stx2a only produced Stx2a only, and those

harboring stx1a+stx2a produced both Stx1a and Stx2a (Table 1,

Table 3). Stx2c produced by O157:H7 strains with stx genotypes

stx1a+stx2c or stx2a+stx2c was detected using the Stx2 latex reagent

(Table 3). EHEC hemolysin was expressed by all EHEC-hlyA-

harboring strains of serotypes O157:H7/NM (NSF), O111:NM,

O145:H28, and by 15 of 16 EHEC-hlyA-containing O26:H11/

NM. No EHEC hemolysin production was observed in EHEC-

hlyA-positive SF EHEC O157:NM strains or in strains of serotypes

O172:NM and Orough:NM (Table 3). In accordance with the

absence of a-hlyA gene (Table 1), none of the 39 EHEC isolates

produced a hemolytic phenotype on blood agar (Table 3) Tellurite

resistance was expressed in all strains of serotypes O157:H7/NM

(NSF), O26:H11/NM, O111:NM, and O145:H28 which con-

tained the terE gene, as demonstrated by their ability to grow on

CT-SMAC. In contrast, none of the above strains, which also

contained ureD, produced urease (Table 3). Sorbitol was utilized by

all strains except for NSF O157:H7/NM, O172:NM, and

Orough:NM as demonstrated by the appearance of their colonies

Figure 1. Seasonal distribution of EHEC strains of different serotypes isolated from patients with HUS in the Czech Republic, 1998–
2012.
doi:10.1371/journal.pone.0073927.g001

Table 2. Presence of OI 122 among EHEC isolates from HUS patients.

Locus of
OI 122 Serotype (number of strains)

O157:H7/NM
(NSF) O157:NM (SF) O55:NM O26:H11/NM O111:NM O145:H28 O172:NM Orough:NM

fliCH7 (n = 5) fliCH7 (n = 5) fliCH7 (n = 2) fliCH11 (n = 16) fliCH8 (n = 6) fliCH28 (n = 2) fliCH25 (n = 2) fliCH25 (n = 1)

pagC + + + – + + (1)a – –

nleE + + + + + + + +

nleB + + + + + + + +

sen + + + + + + + +

efa1 + + + + + + + +

OI-122b C C C I C C (1)
I (1)

I I

apagC was present in one strain.
bC, complete OI 122 (all genes tested present); I, incomplete OI 122 (pagC absent).
doi:10.1371/journal.pone.0073927.t002
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on SMAC and using API 20E test. Rhamnose was utilized by all

NSF O157:H7/NM, O111:NM, and O145:H28 strains, but not

by strains of the other serotypes (Table 3). All strains except those

belonging to serotypes O111:NM, O172:NM and Orough:NM

produced lysine decarboxylase (Table 3). All strains but NSF

O157:H7/NM produced ß-D-glucuronidase (Table 3).

Antimicrobial Susceptibility
Nine of 39 EHEC isolates including five of 16 O26:H11/NM

strains, and four of six O111:NM strains were resistant to

ampicillin. One of these O26 isolates was also resistant to

trimethoprim/sulfamethoxazole. One additional isolate

(O145:H28) was resistant to chloramphenicol. All the other 29

strains including all 10 O157 isolates were susceptible to all 12

antimicrobials tested (ampicillin, cefotaxime, ceftazidime, genta-

micin, trimethoprim/sulfamethoxazole, ciprofloxacin, amikacin,

meropenem, piperacillin/tazobactam, tigecycline, chlorampheni-

col, and nitrofurantoin).

Phylogeny of EHEC Associated with HUS
MLST analysis of the 39 EHEC isolates resulted in nine

different STs. Whereas eight of the nine STs clustered into three

CCs (CC11, CC29, CC32), ST660 formed a separate clone not

clustering into any known CC (Table 4). All EHEC O157:H7/

NM (NSF) and O157:NM (SF) belonged, with a single exception

(ST1595, which is a single locus variant (slv) of ST11) to ST11

(CC11). Both O55:NM strains (ST335) grouped as a slv of ST11

into the same CC (CC11) as EHEC O157:H7/NM. EHEC

O26:H11/NM were equally distributed among two different STs,

ST21 and ST29, which clustered together into CC29. The ST29 is

composed of strains belonging to the new, highly virulent EHEC

O26 clone, which is widespread in Europe [7]. All six strains of

serotype O111:NM belonged to ST16 (a slv of ST29) and grouped

to CC29 together with EHEC O26 (Table 4). Both O145:H28

strains clustered into CC32 and belonged to ST32 and ST137,

respectively, which are slvs. The O172:NM strain and both

Orough:NM strains belonged to ST660, suggesting that they have

a similar genomic background. Accordingly, a PCR analysis for

the presence of the O172 biosynthetic cluster gave a positive result

in all three strains demonstrating that they are all genetically

O172. Phylogenetic relationships of the Czech HUS-associated

strains, the distribution of strains of different serotypes into CCs

and the comparison to the HUSEC collection [3] (www.ehec.org)

are shown in Figure 2. Interestingly, this comparison revealed the

presence of two STs that were not associated with HUS

previously, namely ST660 and ST1595.

Discussion

In this 15-year study we systematically investigated stools of

patients with HUS for the evidence of EHEC infection. We

demonstrate that approximately 70% of patients with D+ HUS

contained EHEC strains in their stool samples. Similar to other

European countries, EHEC associated with HUS in the Czech

Republic involved strains of serogroup O157 and also several non-

O157 serogroups. Notably, SF EHEC O157:NM, which were first

identified in Germany [47] and later in other European countries

[25,48–51], accounted for 50% of all EHEC O157 strains isolated

from HUS patients in the Czech Republic during 1998–2012. All

SF O157:NM isolates from the Czech Republic possessed stx2a

gene, similar to such strains from Germany, but not stx1a which

was identified in SF O157:NM isolated in Norway [50]. The most

prevalent EHEC serotype associated with HUS in the Czech

Table 3. Phenotypes of EHEC strains isolated from patients with HUS in the Czech Republic.

Phenotypea Serotype (number of strains)

O157:H7/NM (NSF) O157:NM (SF) O55:NM O26:H11/NM O111:NM O145:H28 O172:NM Orough:NM

fliCH7 (n = 5) fliCH7 (n = 5) fliCH7 (n = 2) fliCH11 (n = 16) fliCH8 (n = 6) fliCH28 (n = 2) fliCH25 (n = 1) fliCH25 (n = 2)

Vero cell titerb 32–128 16–512 32–64 16–128 64–2048 256–1024 128 512

Stx 1c –d – – + (1)d + (2) – – –

Stx 2c + (3) + (4) + + (15) – + + +

Stx1+Stx2c + (2) – – – + (4) – – –

EHEC–Hly + – – + (15)e + (4) + –e –e

a–Hly – – – – – – – –

CT–SMAC growth + – – + + (5) + – –

Urease – – – – – – – –

SMAC – + + + + + – –

SOR – + + + + + – –

RHA + – – – + + – –

LDC + + + + – + – –

GLR – + + + + + + +

aEHEC-Hly, EHEC hemolysin production; a-Hly, a hemolysin production; growth on CT-SMAC, indicator of tellurite resistance; urease, urease production; SMAC,
utilization of sorbitol on sorbitol MacConkey agar; SOR, utilization of sorbitol (API 20E); RHA, utilization of rhamnose (API 20E); LDC, production of lysine decarboxylase;
GLR, production of ß-D-glucuronidase.
bThe highest dilution of culture supernatant which caused cytotoxicity in 50% Vero cells after 3 days.
cProduction of Stx1 and Stx2 tested using the VTEC - RPLA kit.
d2, the phenotype was absent; +, the phenotype was present (the numbers in parentheses indicated numbers of positive strains in the case that not all strains
expressed the respective phenotype).
eone O26:H11 and O172:NM and Orough:NM strains did not express EHEC-hlyA gene.
doi:10.1371/journal.pone.0073927.t003
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Republic is O26:H11/NM, a situation similar to that reported

from Italy [26]. Our ability to isolate EHEC strains from all stool

samples that tested positive for stx genes in the initial PCR

screening demonstrates that the EHEC isolation procedure used in

this study enables to identify reliably both O157 and non-O157

EHEC strains. In accordance with other studies [3,37,49], the

large percentage of the Czech EHEC isolates were non-motile.

This suggests that non-motility might either be an inherent

characteristic of EHEC, in particular of some serogroups, or that

such strains rapidly lose their motility in vitro, after they have left

the host gastrointestinal tract. This observation underlines the

importance of the fliC genotyping as an easy, rapid and reliable

procedure for molecular H typing of EHEC isolates.

All EHEC isolated from HUS patients in the Czech Republic

were eae-positive as are also most HUS-associated EHEC in other

studies [5,8,15,17]. It has been shown in different studies that the

rate of eae-negative strains among HUS EHEC isolates is low

[3,17,28]. Mellmann et al. [3] reported that only 16 from 524

(3.1%) EHEC isolates from HUS patients were eae-negative.

Among them was E. coli O104:H4 strain (HUSEC41) [3], which is

closely related to the E. coli O104:H4 strain that caused the largest

ever recorded outbreak of HUS in Germany in 2011 [52,53], with

many secondary cases having occurred worldwide including the

Czech Republic [54]. The O104:H4 outbreak strain isolated in

2011 from an American tourist with diarrhea who traveled to

Prague from North Germany [54] is the only eae-negative EHEC

isolated in this country from humans until now. Because stx-

positive/eae-negative strains would have been detected using our

PCR screening system, we assume that the absence of eae-negative

strains among EHEC isolated from HUS patients in the Czech

Republic in this study is due to low number of isolates resulting, in

Figure 2. Phylogeny of EHEC associated with HUS in the Czech Republic. Minimum-spanning tree illustrating the clonal relationship
between HUS-associated EHEC from the Czech Republic (green) and the HUSEC collection [3] (red) based on MLST allelic profiles. Each MLST
sequence type (ST) is represented by a node named with its ST. The size of the node is proportional to the number of isolates reported in this study
sharing the same ST. The number on the connecting lines indicates the number of alleles that were different between the two connected nodes. In
addition, for the major serogroups (e.g. O157, O26) the STs and their corresponding clonal complexes (CC) were given and shaded in grey.
doi:10.1371/journal.pone.0073927.g002

Table 4. Phylogeny of EHEC isolated from HUS patients in the
Czech Republic determined by MLST.

Serotype
Total no.
of strains ST (no. of strains) CC

O157:H7/NM (NSF) 5 11 (4)
1595 (1)

11
11

O157:NM (SF) 5 11 (5) 11

O55:NM 2 335 (2) 11

O26:H11/NM 16 21 (8) 29a (8) 29
29

O111:NM 6 16 (6) 29

O145:H28 2 32 (1)
137 (1)

32
32

O172:NM 1 660 n.a.

Orough:NM 2 660 (2) n.a.

ST, sequence type; CC, clonal complex; n.a., not assigned.
aST29 strains belong to the new EHEC O26 clone [7].
doi:10.1371/journal.pone.0073927.t004
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turn, from a low number of HUS cases that occur in this country

(4–5 per year).

SF EHEC O157:NM caused several HUS outbreaks through-

out Europe, the largest of which involved Germany [55,56],

Scotland [57] and Norway [58]. Such strains differ from O157:H7

phenotypically, in particular by their ability to ferment sorbitol

and produce b-D-glucuronidase, susceptibility to tellurite, lack of

EHEC hemolysin expression and non-motility [41,47], and by

expression of non-Stx toxins that may contribute to the

pathogenesis of EHEC-mediated diseases. Specifically, Cdt-V,

which causes irreversible injury to microvascular endothelial cells

[59], the major targets affected during HUS, is produced by the

majority of SF EHEC O157:NM strains [35], but only by a small

subset of EHEC O157:H7, which belong to particular phage types

[59]. Accordingly, all SF EHEC O157:NM and one NSF

O157:H7 strain analyzed in this study harbored the loci encoding

Cdt-V (Table 1). EHEC hemolysin, another toxin with a potential

endothelium-injuring capacity [60], was regularly expressed by

EHEC O157:H7, but not by SF O157:NM strains analyzed in this

study (Table 3). Several studies suggest that infections with SF

EHEC O157:NM more often progress to HUS [56–58] than those

with NSF O157 [61] and that patients infected with SF O157:NM

have a higher risk of death [56–58] than those infected with

EHEC O157:H7 [61]. In both German large outbreaks caused by

SF EHEC O157:NM strains the case-fatality ratio was 11%

[55,56] compared to ,1% reported for outbreaks caused by NSF

EHEC O157:H7 [61]. In agreement with the high virulence of SF

EHEC O157:NM strains, this strain was the cause of death in one

patient in our study. The other two fatal cases were associated with

infection by EHEC O26:H11, one of which belonged to the new

highly virulent clone, which has emerged in Europe [7] and

accounted for 50% of all O26 EHEC O26 isolated in this study.

EHEC O157:H7 have evolved from an E. coli O55:H7 ancestor

possessing the locus of enterocyte effacement (LEE) by acquisition

of Stx-encoding bacteriophages, virulence plasmid and transition

of somatic antigen from O55 to O157 [62–64]. Leopold et al. [63]

and others [65,66] provided evidence of limited diversity in SF

O157:NM, much unlike the large biodiversity of EHEC O157:H7.

We show that the NSF and SF O157 isolates described here all

belong to the same clonal complex (CC11); multilocus variable

number tandem repeat analysis (MLVA) and single nucleotide

polymorphism (SNP) analysis of the Czech strains is underway to

more extensively compare the phylogenetic relationships of these

strains and to compare them with strains from other countries

[63,67,68].

Tellurite resistance is a diagnostically important feature

enabling isolation of EHEC strains from CT-SMAC where

normal intestinal flora are suppressed. In our study tellurite

resistance occurred in all NSF EHEC O157, all O26 and both

O145 isolates and in five of six O111 strains. All these strains also

contained the ure cluster encoding urease production but none of

them produced urease, in accordance with observations that ure

genes are usually not expressed in EHEC strains [42]. The absence

of both ter and ure loci in one O111:NM strain (Table 1) suggest

that the strain have lost these loci, as have been previously

reported for EHEC O157:H7 and attributed to deletions within

OIs 43 and 48 that harbor these loci [69].

Antimicrobial susceptibility testing demonstrated resistance to

one (9 isolates) or two (1 isolate) antimicrobials in 25.6% of the

Czech EHEC strains studied. The resistance was associated with

non-O157 EHEC serogroups. This situation is similar to that in

Finland and Belgium where antimicrobial resistance was reported

in 21.4% and 44.7% of EHEC patients isolates, respectively, and it

was more frequent in non-O157 than in O157 strains [70,71]. As

in our study, none of the isolates from these countries was resistant

to meropenem or imipenem, ciprofloxacin and amikacin. In

contrast to our findings, multidrug resistance occurred in 24.1% of

the Belgian [71] and in 7.1% of the Finnish EHEC isolates [70], as

well as in an EHEC O145:H- strain that caused a multistate

outbreak of diarrhea and HUS in the United States [72]. The

extended-spectrum b-lactamase (ESBL) phenotype, which was

identified in an EHEC O26 human isolate in another Belgian

study [73], and which is one of the typical features of the EHEC

O104:H4 strain that caused the large 2011 outbreak in Germany

[53,74] was not tested in the Czech EHEC HUS isolates in this

study. Compared to EHEC, E. coli strains isolated from urine of

patients with urinary tract infections or from blood cultures of

patients with sepsis are more often multiresistant [75] or express

the ESBL phenotype [76,77].

The spectrum of EHEC serotypes associated with HUS in the

Czech Republic raises the question about reservoirs of these

pathogens and sources of human infections in this country.

Prevalence of EHEC in cattle feces in the Czech Republic was

investigated by Alexa et al. [78]. EHEC shedding was observed in

70% to 100% animals in three different diary farms. EHEC

isolates belonged to serogroups O26, O103, O157, O128, and

O54, the former three being isolated from HUS patients in our

study. Čı́žek et al. [79] studied the occurence of EHEC O157 in

diary farms in the Czech Republic. EHEC O157 strains harboring

stx1, stx2, eae, and EHEC-hlyA genes were detected in four of 192

in-line filters examined. Several additional studies identified

various animal species as sources of outbreaks or sporadic cases

of EHEC infections in this country. In 1995, four cases of HUS in

children caused by EHEC O157:H7 were associated with

consumption of unpasteurised milk from a farm goat who shed

the causative EHEC O157:H7 strain in its feces [80]. Three years

later, SF EHEC O157:NM strains were isolated from two siblings

(one with HUS and the other with diarrhea) and an epidemio-

logically associated cow, and a direct contact with the animal was

implicated as a possible infection transmission route [81]. This was

the first evidence that cattle can be a reservoir of SF EHEC O157

and a source of human diseases [81]. Altogether, these studies

demonstrate that similar to other countries [27,40,61], cattle and

other domestic animals are reservoires of EHEC in the Czech

Republic and can be sources of the infection for humans.

We conclude from our data that EHEC strains including

O157:H7/NM and a spectrum of non-O157 serotypes are

important causes of pediatric D+ HUS in the Czech Republic.

Although the spectrum of EHEC serotypes resembles that found in

other European countries, the finding of serotypes

O172:NM[fliCH25] and Orough:NM[fliCH25], which are not

members of the German HUSEC collection [3] (www.ehec.org)

indicates the need for creating an European collection of HUS-

associated EHEC. This collection would enable complex studies of

virulence characteristics, mechanisms of adaptation to the human

host and evolution of these pathogens, as well as development of

optimized methods for their detection.
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Institute, Ostrava), Mgr. Eva Krejčı́ (Public Health Institute, Ostrava),
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4. Espié E, Grimont F, Mariani-Kurkdjian P, Bouvet P, Haeghebaert S, et al.

(2008) Surveillance of hemolytic uremic syndrome in children less than 15 years

of age, a system to monitor O157 and non-O157 Shiga toxin-producing

Escherichia coli infections in France, 1996–2006. Pediatr Infect Dis J 27: 595–601.

5. Käppeli U, Hächler H, Giezendanner N, Beutin L, Stephan R (2011) Human

infections with non-O157 Shiga toxin-producing Escherichia coli, Switzerland,

2000–2009. Emerg Infect Dis 17: 180–185.

6. Zieg J, Dusek J, Marejkova M, Limrova P, Blazek D, et al. (2012) Fatal case of

diarrhea-associated hemolytic uremic syndrome with severe neurologic involve-

ment. Pediatr Int 54: 166–167.

7. Bielaszewska M, Mellmann A, Bletz S, Zhang W, Köck R, et al. (2013)
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