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Introduction

B
oth Salmonella and Campy-
lobacter are major causes of 
food-borne disease outbreaks 
in both the USA and EU. Food-

borne outbreaks of Salmonellosis were 
reported to be responsible for illness in 
16.4 and 22.2 cases per 100,000 people 
in the USA and EU, respectively. In addition, 
outbreaks caused by Campylobacteriosis 
were at levels of 14.3 and 55.5 cases per 
100,000 people in the US and EU, respec-
tively. For instance, more than one million 
people are sickened by Salmonella in the 
United States each year with approximately 
200,000 cases arising from poultry sources 
alone,1 resulting in an average national cost 
for food-borne illness of up to US$93.2 bil-
lion.2 Campylobacter caused the largest 
number of food-borne bacterial illnesses in 
Denmark in 2014 at 3782 cases.

Current gold standards for Salmonella 
detection and characterisation rely on a 
series of pre- and selective enrichment 
procedures, followed by biochemical and 
serological confirmation all of which typically 
requires four to seven days. Rapid methods 
such as polymerase chain reaction (PCR) 
and enzyme-linked immunosorbent assay 
(ELISA) have been commercially available 
and applied to replace or facilitate con-
ventional microbiological tests. Still, how-
ever, alternative techniques such as optical 
methods are being pursued to characterise 
pathogens to the serotype level in a reason-
ably short period of time at reduced costs.

Since hyperspectral imaging (HSI) tech-
nologies were introduced early 1980s in 
earth remote sensing, the technique has 
been applied to many other fields includ-
ing medical, biological, environmental, 

food and agricultural areas for research 
and development and practical uses. In 
terms of food applications, different HSI 
platforms have been developed for quality 
and safety evaluation in food processing. 
Many researchers have demonstrated that 
HSI techniques have the potential to evalu-
ate quality and safety in foods in real-time. 
Our research group in the US Department 
of Agriculture, Agricultural Research Ser-
vice (USDA, ARS) in Athens, Georgia has 
expanded this technique through its appli-
cation at a microscopic level to detect food-
borne pathogenic bacteria in food matrices 
such as poultry carcass rinsate. This same 
group has developed an acousto-optic 
tunable filter (AOTF)-based hyperspec-
tral microscope imaging (HMI) platform to 
detect food-borne pathogens at cell level.3

Since the significance of food-borne 
pathogens in public health and in food 
industry products calls for rapid and accu-
rate analytical methods to be used for 
both detection and classification in routine 
inspection as well as during a food-borne 
outbreak, the HMI technique will be useful 
for food safety research and development.

Hyperspectral microscope 
imaging technology
Thus, hyperspectral microscope imaging 
(HMI) for bacterial detection and identifi-
cation at the cell level is another emerging 
area of HSI applications. The HMI method 
enables us to identify bacteria with micro-
colony samples grown on selective agar 
media in about 8 h.4 ARS researchers have 
developed this HMI technique to enhance 
the limit of detection by identifying spectral 
signatures of bacteria from microcolonies.

The ARS HMI system (Figure 1) consists 
of a Nikon upright microscope, acousto-
optic tunable filters (AOTF), a high-perfor-
mance cooled electron multiplying charge 
coupled device (EMCCD) camera and dark-
field illumination lighting sources for scatter-
ing image acquisition from the single cell. 
For the image acquisition from live cells, 

immobilisation of cells and image acquisi-
tion time is crucial to obtain high-quality 
spectral images. The AOTF-based HMI 
has advantages in terms of high-speed, 
high-throughput, random-access optical 
filter with high rejected light levels and area 
scan ability. AOTF delivers diffraction-limited 
image quality with variable bandwidth reso-
lution down to within 2 nm in the spectral 
range from 450 nm to 800 nm. AOTF-based 
HMI employs an instrumental technology 
with no moving parts, capable of high scan 
speeds and random access to any number 
of pre-selected wavelengths.

With HMI techniques, food-borne patho-
genic bacteria such as shiga toxin pro-
ducing E. coli (STEC) serogroups and Sal-
monella serotypes can be identified with 
high detection accuracy using appropriate 
chemometric procedures.5 Using this tech-
nique, gram-positive and gram-negative 
bacteria from chicken carcass rinsate can 
be classified with 99% accuracy.6 Currently, 
ARS researchers are developing a database 
by collecting spectral signatures from many 
bacterial samples and food matrices to gen-
erate a spectral library “fingerprint” for each 
microorganism and allow the identification 
of unknown samples by a HMI technique.
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Figure 1. ARS hyperspectral microscope 
imaging system for bacteria detection.
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HMI for Salmonella
ARS researchers have developed early 
and rapid optical methods to identify Sal-
monella serotypes by HMI.7 Hyperspectral 
microscopic images from S. Typhimurium 
serotype (Figure 2) demonstrated that the 
spectral signatures between inner and outer 
cell walls (Figure 2a) were not significantly 
different over the spectral range between 
450 nm and 800 nm although scattering 
intensity changed with wavelength (Figure 
2b). From the results of principal compo-
nent analysis, the score plot demonstrated 
well-separated clusters from each Salmo-
nella serotype tested (Figure 2c).

Using a support vector machine (SVM) 
classification method, a classifica-
tion accuracy of up to 99.5% using 89 
selected wavelengths was obtained for 
Salmonella serotypes. As shown in Table 
1, if selected wavelengths were reduced 
down to 20, 12 and 7 to facilitate faster 
and therefore more economical spectral 
image acquisition and processing, the 
classification accuracies were reduced 
but generally still over 90%; when only 
three bands were used, classification 
accuracy decreased to 84.3%. Thus, this 

HMI technique has the potential to identify 
Salmonella serotypes on the basis of their 
spectral signatures (scattering intensity 
from live cells).

HMI for Campylobacter
Similarly, three Campylobacter species 
including C. coli subsp. (Cc), C. fetus 
subsp. fetus (Cf) and C. jejuni subsp. jejuni 
(Cj) were tested using stock cultures of 
isolates from chicken carcass rinses. Cul-
tures were grown on microaerophilic agar 
in a specialised atmospheric chamber. After 
incubation, sample slides were prepared for 
HMI acquisition.3

In order to obtain spectral signatures from 
Campylobacter serotypes such as C. coli. 
(Figure 3a), a single cell region of interest 
(ROI) (Figure 3b) extraction method was 
used to calculate mean spectra (Figure 3c) 
for individual Campylobacter cells. For this 
study, image processing was done through 
the use of the Environment for Visualizing 
Images (ENVI) software. Campylobacter 
cells are corkscrew-shaped and visually 
offer greater cell size and shape variance 
than other rod- or cocci-shaped bacteria 
such as Salmonella or Staphylococcus.8 

Because of this variance and difficulties 
associated with precision border defini-
tion of cell wall boundaries, a two-step ROI 
method was used. First, a spatial ROI is 
selected around a cell. Then minimum and 
maximum pixel intensity thresholds are 
determined at 650 nm by examination of 
a histogram of all pixels in the image. Indi-
vidual cell ROIs are exported from ENVI into 
the R software program, where thresholding 
values are applied, removing background 
pixels and calculating the mean spectrum 
per cell.

Minimal preprocessing steps were used 
and consisted of normalising each cell’s 
mean spectrum to the tungsten halogen 
light source, followed by applying multipli-
cative scatter correction (MSC). MSC was 
implemented to account for changes in the 
spectra due to physical influences such as 
stage positioning, hot or cold spots caused 
by distribution of the light source’s photons, 
while maintaining inherent biological differ-
ences between cells.

A mean-centred principal component 
analysis (PCA) was then applied to visual-
ise the interclass relationship of cells from 
the three species (Figure 3d). Euclidean 
distances (EDs) were calculated from each 
data point in the PC scores space to the 
centroid of its respective cluster to quantify 
cell-to-cell variance within an HMI. A princi-
pal component linear discriminant analysis 
(PC-LDA) was performed on the first five 
principal components to calculate the clas-
sification accuracy of the three species from 
the resulting confusion matrix.

The cumulative variance shown in Figure 
3d shows that the first and second PCs 
explain the majority (99%) of the PCA’s 

Figure 2. HMI from Salmonella Typhimurium (a) regions of interest (ROIs); (b) spectral signature of the cells with a metal-halide lighting source; and (c) PCA 
score plots for five serotypes (S. Enteritidis, S. Typhimurium, S, Infantis, S. Heidelberg, S. Kentucky).

a b c

Overall 
 accuracy (%)

Spectral 
range (nm) Number of bands

Band number 
 reduction (%)

99.5 450–800 89 0

96.5 586–662 20 77.5

95.3 586–630 12 86.5

91.5 590–614 7 92.1

84.3 590–598 3 96.6

Table 1. Classification accuracy for Salmonella serotypes.
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variance. C. coli and C. jejuni are closely-
related with a large number of common 
genes, thus presenting problems in phe-
notypic and biochemical differentiation 
between the two species.9 From the ED 
values listed in Table 2, we see that C. fetus 
has the largest cell-to-cell variance. This 
could be attributed to differences in cell 
size or curvature of the corkscrew-shaped 
cell wall. The overall PC-LDA classification 
accuracy was 98.9% showing potential 
for HMI to differentiate between Campylo-
bacter species.

In this study, image collection of HMIs 
required about 20 minutes. After this acqui-
sition, ROI extraction and data analysis 
can be automated to take several minutes. 
The method shows promise as a candi-
date for a sensitive and rapid identification 
of Campylobacter species. Here, the trial 
data set shows that it is capable of dis-
criminating between the three species but 

any inferences or causality should be made 
after future repetitions for validation.

Future HMI research
Continuing research for near infrared (NIR) 
HMI technology development is being 
conducted on the study of biochemical 
constituents in food-borne bacteria to 
better understand genotyping and sero-
typing using optical measurements from 
food-borne pathogenic bacterial cells 
non-destructively. Also, HMI techniques 
are being used to characterise nanoscale 
substrates for further research on food-
borne bacterial detection with high sensi-
tivity and specificity. Further HMI research 
will be conducted to detect multiple bac-
teria simultaneously with multiplex fluo-
rescence in situ hybridisation (m-FISH). 
In addition, prototype hyperspectral sen-
sors with selective bands will be devel-
oped for near real-time rapid detection 

and characterisation applications for food 
industry.
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Figure 3. HMI from (a) Campylobacter coli; (b) regions of interest (ROI); (c) mean spectra from ROIs 
of Campylobacter species (C. jejuni, C. coli, C. fetus); and (d) PCA score plot.

a b

c d

Species Sample size ED x–  ± s
PC-LDA  

accuracy (%)

C. coli 74 3.307 ± 2.221 100

C. fetus 64 4.504 ± 2.731 100

C. jejuni 55 2.831 ± 2.030 96.4

Table 2. Classification accuracy for Campylobacter subspecies.
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