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In the last decade, atypical Listeria monocytogenes and L. innocua strains have been detected in food and the environment. Because
of mutations in the major virulence genes, these strains have different virulence intensities in eukaryotic cells. In this study, we
performed phenotypic and genotypic characterization of atypical L. monocytogenes and L. innocua isolates obtained from swine
slaughterhouses and meat markets. Forty strains were studied, including isolates of L. monocytogenes and L. innocua with low-
hemolytic activity. The isolates were characterized using conventional phenotypic Listeria identification tests and by the detection
and analysis of L. monocytogenes-specific genes. Analysis of 16STRNA was used for the molecular identification of the Listeria
species. The L. monocytogenes isolates were positive for all of the virulence genes studied. The atypical L. innocua strains were
positive for hly, plcA, and inlC. Mutations in the InlC, InlB, InlA, PI-PLC, PC-PLC, and PrfA proteins were detected in the atypical
isolates. Further in vitro and transcriptomic studies are being developed to confirm the role of these mutations in Listeria virulence.

1. Introduction

Listeria monocytogenes and L. innocua are closely related
species of the Gram-positive genus Listeria. They are widely
distributed in the environment and frequently isolated from
food. L. monocytogenes is the causative agent of listeriosis,
a foodborne disease with a high fatality rate (20-30%)
that mostly affects the elderly, neonates, and immunocom-
promised individuals [1, 2]. L. monocytogenes cannot be
distinguished from other Listeria species using conventional
isolation methods. Standard biochemical methods and selec-
tive and differential media are used for the identification of L.
monocytogenes [3, 4]; however, some L. ivanovii, L. innocua,

and L. seeligeri strains generate similar results to L. mono-
cytogenes in these tests [5-7]. Therefore, it is necessary to
confirm the virulence characteristics of L. monocytogenes to
distinguish the Listeria species.

The best-characterized L. monocytogenes virulence fac-
tors are listeriolysin O (LLO), phosphatidylinositol phospho-
lipase C (PI-PLC), and the internalins A and B (InlA and
InlB). LLO and PI-PLC are encoded by the hly and plcA
genes, respectively, which belong to the virulence gene cluster
Listeria pathogenicity island 1 (LIPI-1), which contains the
major virulence genes of L. monocytogenes [8]. Few atypical
L. innocua strains have been reported to contain L. monocy-
togenes-specific genes and exhibit phenotypic characteristics



similar to L. monocytogenes such as weak hemolysis [6, 7, 9].
Furthermore, certain low-hemolytic L. monocytogenes strains
retain their virulence despite the presence of mutations in
major virulence genes [10-12]. The existence of these atypical
strains indicates that traditional phenotypic and genotypic
characterization methods must be used with care and that
further studies are required to improve the identification of
Listeria isolates.

This study used phenotypic and genotypic methods to
characterize atypical L. monocytogenes and L. innocua isolates
obtained from swine slaughterhouses and meat markets in
Sao Paulo State, Brazil.

2. Material and Methods

2.1. Bacterial Strains and Culture Conditions. Forty Listeria
sp. isolates were studied. Of these, 25 were isolated from pork,
slaughterhouses, and markets (15 isolates of L. monocytogenes
and 10 of L. innocua), 11 isolates of L. monocytogenes were
obtained from human infections, and four were control
strains (L. monocytogenes ATCC 19115 and ATCC 19111 and
L. innocua ATCC 33090 and CLIP 12612) (Table1). The
environmental and pork isolates were isolated as described
by Moreno et al. [13]; the clinical strains and Listeria controls
were obtained from the Public Health Laboratory (School of
Public Health, University of Sao Paulo) and Laboratory of
Swine Health (School of Veterinary Medicine and Animal
Science, University of Sao Paulo) collections. The environ-
mental and pork isolates were obtained from different swab
samples taken from the slaughterhouses environment and
carcasses from Sao Paulo State; the clinical isolates were
obtained from the blood, placenta, and cerebrospinal fluid
samples of different patients from different Brazilian states
(Tables 1 and 2).

The isolates were maintained in a stock medium con-
taining glycerol at —80°C. The isolates were reactivated in
brain-heart infusion (BHI) medium (Difco, Sparks, MD,
USA) and plated on tryptone soy agar supplemented with
yeast (TSAYE) (Oxoid, Lenexa, USA) to isolate pure colonies
before use.

2.2. Conventional Listeria Identification Tests. The isolates
were serotyped using polyclonal antisera produced against
Listeria somatic and flagellar antigens in rabbits, accord-
ing to the method described by Seeliger and Hohne
[14]. The isolates were also characterized by catalase,
motility, and biochemical tests including acid production
from D-xylose, D-mannitol, L-rhamnose, and a-methyl-D-
mannoside. Cultivation in selective agar Listeria according
to Ottaviani and Agosti (ALOA) (Biolife, Milan, Italy) was
used to identify L. monocytogenes isolates, and f3-hemolysis
was assessed by sting inoculation on 5% sheep blood
agar.

2.3. Detection of L. monocytogenes-Specific Genes. Genomic
DNA extraction was performed as described by Ausubel et
al. [15]. All isolates were screened for the inlA, inlB, inlC,
inl], hly, prfA, plcA, and plcB genes. The primers described
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by Johnson et al. [6], Liu et al. [16], and Jung et al. [17]
were used for detection of prfA, inlC and inl], and inlA,
respectively. Specific primers were designed for the complete
amplification of the virulence genes (Table 3). The PCRs were
performed using an Eppendorf Mastercycler gradient thermal
cycler. Each reaction (25uL) contained 5ul of genomic
DNA, MilliQ water, 10X PCR buffer, 1.5 mM MgCl, 200 uM
of dNTPs (Fermentas, Burlington, Canada), 200 4uM of each
primer, and 1.25 U of Taq DNA polymerase (Promega). The
PCR programs were as follows: 30 cycles of denaturation at
94°C for 1 min, annealing at primer-specific temperature for
1-1.5 min, elongation at 72°C for 1 min per 1Kb, and final
extension at 72°C for 10 min. The amplified products were
separated by electrophoresis on 1.5% agarose gels and stained
with ethidium bromide (1 ug/mL). The molecular weights
of the products were determined using the 1Kb Plus DNA
Ladder (Fermentas, Burlington, Canada).

2.4. DNA Sequencing. The amplified fragments were purified
using the Illustra GFX PCR DNA and Gel Band Purification
kit (GE Healthcare) according to the manufacturer’s protocol
and sequenced directly at Genomic (Genomic Engenharia
Molecular, Sao Paulo, Brazil). DNA sequencing was per-
formed on an Applied Biosystems 3130x] DNA analyzer using
the BigDye Terminator v3.1 cycle sequencing kit.

2.5. Detection of Mutations in L. monocytogenes Viru-
lence Genes. Sequence analysis was performed using the
BIOEDIT Sequence Alignment Editor 7.0.9 [18]. The obtained
sequences of the virulence genes were compared to pre-
viously published L. monocytogenes sequence accessions
from GenBank (NCBI, Bethesda, USA). The sequencing
products were edited and compared with the sequences
available in the GenBank database by manual alignment and
using the ClustalW application. The nucleotide sequences
obtained were translated into their corresponding amino acid
sequences by the Nucleotide Translate application. Subse-
quently, the amino acid sequences were analyzed to identify
changes in the compositions of their respective proteins,
which might modify or eliminate protein functions.

2.6. Identification of Protein Domains and Prediction of Sec-
ondary Structures. The domains of InlC, InlB, InlA, PI-PLC,
PC-PLC, and Hly from reference strain L. monocytogenes
EGD-e were determined using the PROSITE database [19]
of the ExPASy server (SIB, Swiss Institute of Bioinformatics).
The locations of these domains were compared to the muta-
tions identified in the studied isolates.

2.7, Species-Level Identification by 16S rRNA Amplification and
Phylogenetic Analysis. Species identity was confirmed using
16S rRNA analysis. The primers and amplification protocol
described by Thompson et al. [20] were used to amplify
complete 16S rRNA genes. The fragments were sequenced
and phylogenetic analysis was performed using the Mega 5.10
software [21]. The dendrogram was constructed using the
maximum-likelihood method with the Tamura-3-parameter
model.
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TABLE 3: Primers designed in this study for the amplification of the L. monocytogenes virulence genes.

Primer Sequence 5'-3' Target Product (bp)
inlA ext Fw CGGCTCCGTAGACAGATTAG 2884
inlA ext Ry GTGATAGTCTCCGCTTGTAC

inlA In,-Fw GTGAGAAGAAAACGA inlA 1200
inlA Detec-Rv TGGTGTAAGATCGCT

inlA Detec-Fw AAGTGATATAACTCC —
inlB ext Fw GCTAGATGTGGTTTTCGGACT 2146
inlB ext Ry TAAGCAGCGCAAAGGTGATTCCTAC

inIB In-Fw GTGAAAGAAAAGCAC iniB -
inlB Seqs-Rv ATTCCCGCGAATATA

inIB Seq,-Fw TGATGGAACGGTAAT 900
inlB End,-Rv TNATTTCTGTGCCCT

plcB ext Fw CCATACGACGTTAATTCTTGCAATG PIcB 1039
plcB ext Rv TATCCACCCGCTAACGAGTG

plcA ext Fw GAGGTTGCTCGGAGATATAC 1100
plcA ext Ry CTGCTGTCCCTTTATCGTCG plcA

plcA Detec-Fw AACCATTATTATGCG 396
plcA Detec-Ry TGCAGCATACTGACG

hly ext Fw CGATAAAGGGACAGCAGGACT 1796
hly ext Rv AGCCTGTTTCTACATTCTTCACAA

hly Detec-Fw TAACAACGCAGTAAA hly 566
hly Detec-Ry CGTAAGTCTCCGAGG

hly End-Fw CCTCCTGCATATATC 795
hly End-Rv TTATTCGATTGGATT

inlC In,-Fw ATGCTAGTNTTAATTGTA inlC 852
inlC End,-Ry CTAATTCTTGATAGGTTGTG

prfA Detec-Fw CTGCTAACAGCTGAGCTATG 404
prfA Detec-Ry GCTACCGCATACGTTATC prfA

prfA End Ry ATGAACGCTCAAGCA —

In: primers corresponding to the beginning of the gene; End: primers corresponding to the end of the gene; Detec: internal primers designed for gene detection;

ext: external primers; Seq: internal primers designed for sequencing.

2.8. Nucleotide Sequence Accession Numbers. All DNA
sequences from this study were deposited in GenBank under
the accession numbers KC618415-KC618420, KC666995-
KC667019, KC808518-KC808549, and KC808567-KC808583.

3. Results

3.1. Conventional Listeria Identification Tests. The phenotypic
characterization of Listeria sp. isolates is shown in Tables 1
and 2. Five atypical L. innocua isolates (Lin5-9) and six low-
hemolytic L. monocytogenes (Lm4, Lm33, and Lm28-31) iso-
lates were observed. The atypical L. innocua isolates exhibited
phenotypic characteristics similar to L. monocytogenes with
weak hemolysis and subtle halo in ALOA cultivation. These
isolates could be distinguished only by serotyping, which
revealed that the atypical isolates were L. innocua serotype 6a.

3.2. Detection and Analysis of L. monocytogenes Virulence
Genes. The detection and complete amplification of the inlB,
inlC, plcA, plcB, hly, and prfA genes were performed using

previously published primers and primers designed in this
study. The inlA and inl] genes were only partially amplified
using the primers inlA In-Fw/inlA Detec-Rv, designed in this
study,and inlJ-Fw/inlJ-Rv, which were described by Liu et
al. [16]. All L. monocytogenes isolates including the six low-
hemolytic isolates (Lm4, Lm33, and Lm28-31) contained the
studied genes. The five atypical L. innocua isolates (Lin5-
9) contained inlC and plcA and fragments of the hly gene
(Table 4).

Nucleotide substitutions were detected in inlC, inlB,
inlA, plcA, plcB, and prfA, only in the six low-hemolytic L.
monocytogenes isolates (Lm4, Lm33, and Lm28-3I). Seven
substitutions were detected in the inlC gene; however, only
the transition of adenine to cytosine and the inversion of
thiamine to adenine at codon 10 led to the mutation Ilel0His,
and the transition of thiamine to cytosine at codon 12 resulted
in the mutation Met12Thr. Ten substitutions were detected
in plcA, leading to the mutations Ilel7Val and Phell9Tyr
in the PI-PLC. In the plcB sequence, only two transitions
of thiamine to cytosine were identified at codon 13, which
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TABLE 4: Distribution of the results of the virulence gene amplification from Listeria species.
Primer Species Positive Negative
N (%) N (%)
inlC._Lit L. monocytogenes 28 (100.0) 0
L. innocua 0 12 (100.0)
inlC In-End L. monocytogenes 28 (100.0) 0
L. innocua 5(41.7) 7 (58.3)
rfA Johnson-End L. monocytogenes 28 (100.0) 0
L. innocua 0 12 (100.0)
orfA Johnson? L. monocytogenes 28 (100.0) 0
- L. innocua 0 12 (100.0)
prfA Detec L. monocytogenes 28 (100.0) 0
L. innocua 0 12 (100.0)
pleA ext L. monocytogenes 28 (100.0) 0
L. innocua 5(41.7) 7 (58.3)
plcA Detec L. monocytogenes 28 (100.0) 0
L. innocua 5(41.7) 7 (58.3)
DIcB ext L. monocytogenes 28 (100.0) 0
L. innocua 0 12 (100.0)
inlB In-Se L. monocytogenes 28 (100.0) 0
B L. innocua 0 12 (100.0)
inlB Seq,~End L. monocytogenes 28 (100.0) 0
: L. innocua 0 12 (100.0)
inlA In-Detec L. monocytogenes 28 (100.0) 0
L. innocua 0 12 (100.0)
inlAB_Jung® L. monocytogenes 28 (100.0) 0
JUng L. innocua 5(41.7) 7 (58.3)
hly ext L. monocytogenes 28 (100.0) 0
L. innocua 0 12 (100.0)
hly End L. monocytogenes 28 (100.0) 0
L. innocua 5 (41.7) 7 (58.3)
hiy_Border* L. monocytogenes 28 (100.0) 0
L. innocua 5(41.7) 7 (58.3)
hly Detec L. monocytogenes 28 (100.0) 0
L. innocua 5(41.7) 7 (58.3)
inl] Li L. monocytogenes 28 (100.0) 0
L. innocua 0 12 (100.0)
inl] ext L. monocytogenes 23 (82.1) 5(17.9)
L. innocua 0 12 (100.0)

'Primers described by Liu et al. [16]. primers described by Johnson et al. [6]. 3Primers described by Jung et al. [17]. 4Primers described by Border et al. [22].

resulted in the mutation Ilel3Thr. Seven substitutions were
detected in inlB; however, only the transitions of adenine
to guanine at codons 117 and 132 resulted in the mutations
Alal17Thr and Val132Ile (Figures 1 and 2).

A deletion of five nucleotides was also detected in the
prfA sequence, leading to the deletion of codons 236 and 237
in the Lm4, Lm33, and Lm28-31 isolates. Eight substitutions
were detected in the inlA fragments of the low-hemolytic L.
monocytogenes isolates, resulting in the mutations Thr51Ala
and Ilel57Leu (Figure 3). The Lm4, Lm33, and Lm28-31
isolates also contained 15 substitutions in the hly sequence,
whereas the Lin5 and Lin6-9 isolates only contained 14 and
13 of these substitutions, respectively. However, all these

atypical isolates contained only the mutations Val438Ile and
Lys523Ser (Figure 3).

3.3. Identification of Protein Domains. Of the identified muta-
tions, only Alall7Thr and Vall32Ile in InlB and Ilel57Leu in
InlA were located in the leucine-rich repeat (LRR) domains
that are characteristic of these proteins. The Phell9Tyr
mutation in PI-PLC was also located in the PI-PLC X-box
domain. The thiol-activated cytolysin signature motifs in Hly
and the zinc-dependent phospholipase C domain in PC-PLC
presented distinct locations of the mutations identified in the
respective proteins.
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inlB CNL895795
inlB A23

inlB Lm28
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FIGURE I: Nucleotide substitutions detected in the inlC, plcA, plcB, and inlB genes. The Lm28-31, Lm4, and Lm33 isolates were aligned with
L. monocytogenes EGDe and the previously described mutant strains. Asterisks indicate the start and stop codons, dots represent identical
nucleotides, and numbers indicate the positions of the substitutions.

3.4. Species Confirmation by 16S rRNA Phylogenetic Analysis. L. rocourtiae, and the third group consisted of clusters of L.
From the amplification and analysis of the 16S rRNA genes,a  monocytogenes and L. marthii, L. innocua, L. welshimeri, L.
dendrogram was constructed, which allowed the distinction  seeligeri, and L. ivanovii (Figure 4). The isolates Lin5-9 and
of L. monocytogenes and L. innocua species. The dendrogram  Linll were grouped with the standard strains of L. innocua,
contained three major groups; the first group consisted  whereas the isolates Lm28-31, Lm4, and Lm33 were grouped
of L. grayi and L. murrayi, the second group contained  together with the standard strains of L. monocytogenes.
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FIGURE 2: Amino acids substitutions in the InlC, PI-PLC, PC-PLC, InlB, and PrfA proteins. The Lm28-31, Lm4, and Lm33 isolates were
aligned with L. monocytogenes EGDe and the previously described mutant strains. Asterisks indicate the start and stop codons, dots represent
identical amino acids, and numbers indicate the positions of the substitutions.
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FIGURE 3: Nucleotide substitutions detected in inlA and hly (a) and mutations identified in InlA and Hly (b). The Lm28-31, Lm4, Lm33,
and Lin5-9 isolates were aligned with L. monocytogenes EGDe and previously described mutant strains. Asterisks indicate the start and stop
codons, dots represent identical amino acids, and numbers indicate the positions of the substitutions. Gaps represent the regions that were

not amplified.

4. Discussion

Studies on Listeria virulence mechanisms have become
important in recent decades because this microorganism is
used as a model of intracellular infection. L. monocytogenes
virulence factors have been described, and their mecha-
nisms of action and respective genes have been studied
using distinct molecular techniques and in vivo and in vitro

experiments. In addition to the use of Listeria as a model
organism, there is great interest in studying this organism
because of the increasing incidence of listeriosis in the United
States of America (USA) and Europe [23, 24].

Our results using conventional Listeria identification
tests are consistent with the subjectivity and ambiguity of
phenotypic tests that have been discussed in the last decade
[6,7]. Although these conventional methods are still utilized,
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FIGURE 4: Dendrogram showing the evolutionary relationships among the Listeria isolates based on the 16S rRNA nucleotide sequences.
The dendrogram was constructed using the maximum-likelihood method (Tamura-3-parameter model) with the MEGA 5.10 software. The
bootstrap values presented at corresponding branches were evaluated using 500 replicates.

biochemical and phenotypic tests yield variable results during
the identification of Listeria species and serotypes, and the
emergence of atypical isolates has further increased the
uncertainty of the application of these tests. From a public
health perspective, a drastic measure could be adopted to
classify all isolates with doubtful hemolytic status as L.
monocytogenes or as isolates with pathogenic risk without
major efforts to identify the species and serovars. However,

for better epidemiological, microbiological, and evolutionary
understanding, it is important to identify and characterize the
phenotypes and molecular features of these atypical isolates.

This study aimed to detect the hly, picA, plcB, prfA, inlA,
inlB, inlC, and inlJ genes in L. monocytogenes and L. innocua
isolates. These genes are characteristic of L. monocytogenes
and are essential for intracellular infection. The presence
of these genes in isolates from meat and the environment
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suggests the pathogenic potential of these isolates and a risk
to human health. We detected these virulence genes in all
L. monocytogenes isolates including the six low-hemolytic
isolates (Lm4, Lm33, and Lm28-31); additionally, the five
atypical L. innocua isolates (Lin5-9) contained the inlC, hly,
and plcA genes.

Our results are consistent with the data of Johnson et
al. [6] and Volokhov et al. [7], who identified some L.
monocytogenes virulence genes in L. innocua strains with
atypical hemolysis. Therefore, the use of traditional PCR
methods based mostly on the detection of hly and plcA
for the distinction of Listeria pathogenic species should
be reconsidered because these methods do not enable the
distinction of atypical isolates. Accurate identification of
Listeria species was possible only by the complete sequenc-
ing and phylogenetic analysis of the 16S rRNA gene (Fig-
ure 4). We propose that the detection of prfA, plcB, and
inIB might be a better and reliable alternative to enable the
rapid distinction of L. monocytogenes and L. innocua. We
also suggest that analysis of the complete 16S rRNA gene
sequences is important for the accurate identification of
Listeria species.

The inlC and plcA genes from the atypical L. innocua iso-
lates did not contain nucleotide substitutions and mutations
in their respective proteins. The only mutations identified in
these isolates were the Val438Ile and Lys523Ser in Hly. The hly
gene could not be completely amplified, but this might be due
to insertions or deletions between the detected fragments.
However, the hemolytic phenotypes of these atypical isolates
suggest that despite the difficulty in amplifying this locus
there were no gross alterations in Hly function. Further
studies will be carried out to confirm and quantify hly
expression.

Because the atypical L. innocua isolates presented the
low-hemolytic phenotype and halo in ALOA cultivation, we
concluded that these isolates produce at least Hly and PI-
PLC. Since the only detected mutations were not located in
the thiol-activated cytolysin signature motifs in Hly, the low
expression of the hly and plcA genes might be due to altered
promoter activity. As the prfA gene was also not detected in
these isolates, we suggest that a secondary promoter might
activate the expression of hly and plcA and originate the
observed phenotype. However, further in vitro and proteomic
studies are necessary to verify the activity and integrity of
these virulence factors.

The mutations detected in InlB and PI-PLC in the
low-hemolytic L. monocytogenes isolates (Lm4, Lm33, and
Lm28-31) are consistent with results from previous studies
on low-virulent L. monocytogenes field strains [10-12]. The
mutations Alall7Thr and Vall32lIle in InlB are located in
the LRR domains of this protein, which are directly related
to the interaction of this internalin with the Met cellular
receptor and might compromise the adhesin function of
InlB [11, 12]. The Ilel7Val and Phell9Tyr mutations in PI-
PLC are located in the signal sequence and the X-box
domain, respectively, whereas the Thr262Ala mutation causes
the introduction of an amino acid with different physic-
ochemical properties, which might inhibit PI-PLC activity
(12].

1

The mutations identified in PC-PLC, InlC, InlA, PrfA,
and Hly are novel. The Ilel3Thr mutation in PC-PLC is not
located at the zinc-dependent phospholipase C domain of this
protein, and the Ilel0His and Metl2Thr mutations in InlC
are not located in the LRR domains of this internalin. The
Thr51Ala and Ilel57Leu mutations in InlA are also novel, and
although they do not cause the truncation of InlA [11, 12], they
are located in the LRR domains; therefore, these mutations
might compromise the internalization of L. monocytogenes
in epithelial cells. Further expression studies are required to
confirm whether these mutations affect the expression and
function of these virulence factors.

The low-hemolytic L. monocytogenes isolates contained
the same Hly mutations as the atypical L. innocua; theconse-
quence of this observation is unclear. The deletion in prfA in
the low-hemolytic L. monocytogenes isolates might underlie
the reduced hemolytic activity in these strains because PrfA
is the activator of the LIPI-1 cluster. However, the impairment
of prfA would result in the reduced expression of all LIPI-1
genes. Therefore, further transcriptomic studies are required
to completely characterize these atypical isolates, enhance our
knowledge of their evolution and impact on public health,
and develop more efficient methods for the identification and
distinction of Listeria species.
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