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Summary

Chitosan, an aminopolysaccharide biopolymer, has
a unique chemical structure as a linear polycation
with a high charge density, reactive hydroxyl
and amino groups as well as extensive hydrogen
bonding. It displays excellent biocompatibility,
physical stability and processability. The term ‘chi-
tosan’ describes a heterogenous group of polymers
combining a group of physicochemical and biologi-
cal characteristics, which allow for a wide scope of
applications that are both fascinating and as yet
uncharted. The increased awareness of the poten-
tials and industrial value of this biopolymer lead
to its utilization in many applications of technical
interest, and increasingly in the biomedical arena.
Although not primarily used as an antimicrobial
agent, its utility as an ingredient in both food and
pharmaceutical formulations lately gained more
interest, when a scientific understanding of at least
some of the pharmacological activities of this
versatile carbohydrate began to evolve. However,
understanding the various factors that affect its anti-
microbial activity has become a key issue for a
better usage and a more efficient optimization of chi-
tosan formulations. Moreover, the use of chitosan in
antimicrobial systems should be based on sufficient
knowledge of the complex mechanisms of its anti-
microbial mode of action, which in turn would help
to arrive at an appreciation of its entire antimicrobial
potential.

Introduction

Chitosan is primarily produced from chitin, which is widely
distributed in nature, mainly as the structural component
of the exoskeletons of arthropods (including crustaceans
and insects), in marine diatoms and algae, as well as in
some fungal cell walls. Structurally, chitin is an insoluble
linear mucopolysaccharide (Fig. 1) consisting of N-acetyl-
D-glucosamine (GlcNAc) repeat units, linked by b-(1→4)
glycosidic bonds (Tharanathan and Kittur, 2003). Techni-
cally, the structure of chitin is highly related to that of
cellulose and may be regarded as cellulose where the
hydroxyl [—OH] at the C-2 position is replaced by an
acetamido [—NHCOCH3] group (Suzuki, 2000).

Resources of chitin for industrial processing are
crustacean shells and fungal mycelia (Shigemasa and
Minami, 1995). However, its commercial production is
usually associated with seafood industries, such as
shrimp canning, where the processing of crustacean
shells mainly involves the removal of proteins (deprotein-
ization in a hot basic solution, usually sodium or potas-
sium hydroxide) and calcium carbonate (demineralization
with diluted acid), both present in crustacean shells in
high concentrations, encasing the chitin microfibrils
(Kumar, 2000). Chitin has aroused great interest not only
as an underutilized resource, but also as a new functional
material of high potential in various fields (Kumar, 2000).
Several chitin derivatives have been prepared, but none
was as commonly studied, on both the academic and
industrial level, as chitosan.

One area of intense research activity has been the use
of natural compounds, including chitosan, for preservation
purposes; it has evolved from a need for safer and eco-
nomically priced control of microbial stability of food and
pharmaceutical systems, which is fast becoming a new
research frontier (Roller, 2003). The present review will
therefore report on some of the major aspects of chitosan
as a promising and versatile biopolymer, including its
physicochemical and biological properties, recent devel-
opments related to its applications, as well as economic
aspects of its industrial utilization. Since a thorough inves-
tigation of the antimicrobial potential of chitosan is of
significant importance in the design of antimicrobial
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systems of industrial value, particular attention will be
made to its in vitro antimicrobial activity and to its mode of
action. Where possible or feasible, we will concentrate on
aspects that could gain practical importance while devel-
oping antimicrobial systems that can be implemented into
industrial applications.

Nature and sources

Chitosan, discovered by Rouget (1859), is a technologi-
cally important polysaccharide biopolymer. Chemically,
it is a high-molecular-weight linear polycationic het-
eropolysaccharide consisting of two monosaccharides,
GlcNAc and D-glucosamine (GlcN), linked together by
b-(1→4) glycosidic bonds (Fig. 1). The relative amount of
the two monosaccharides in chitosan may vary, giving
samples of different degrees of deacetylation (75–95%),
molecular weights (MWs) (50–2000 kDa), viscosities, pKa

values, etc. (Singla and Chawla, 2001; Tharanathan and
Kittur, 2003).

The production of chitosan from chitin primarily takes
place through exhaustive alkaline deacetylation (Fig. 1):
this involves boiling chitin in concentrated alkali for
several hours (40–45% sodium hydroxide, 120°C, 1–3 h).
Since this N-deacetylation is almost never complete, chi-
tosan is considered as a partially N-deacetylated deriva-
tive of chitin. Consequently, a sharp distinction between

chitin and chitosan on the basis of the degree of
N-deacetylation cannot be drawn (Kumar, 2000; Rabea
et al., 2003).

Chitosan is also found in nature, such as in cell walls of
fungi of the class Zygomycetes, in the green algae Chlo-
rella sp., yeast and protozoa as well as in insect cuticles
(Singla and Chawla, 2001; Pochanavanich and Suntorn-
suk, 2002). Advances in fermentation technology suggest
that the cultivation of fungi (Aspergillus niger) can provide
an alternative source of chitosan (Rabea et al., 2003).
However, chitosan from both sources differs slightly:
whereas the acetyl groups in chitosan produced from
crustacean chitin are uniformly distributed along the
polymer chain, a chitosan of similar degree of deacetyla-
tion (DD) isolated from fungal cell walls would possess
acetyl residues that are grouped into clusters. In contrast
to most of the naturally occurring polysaccharides, e.g.
cellulose, dextran, pectin, alginic acid, agar, agarose and
carragenans, which are neutral or acidic in nature, chito-
san is an example of a highly basic polysaccharide, with a
nitrogen content varying between 5% and 8%, depending
on the extent of deacetylation (Kumar, 2000).

Physicochemical aspects

Chitosan is commercially available from a number of sup-
pliers in various grades of purity, MWs and MW distribu-

Fig. 1. Chemical structure of chitosan, its
production from chitin and the specificity of
chitosanases. Chitosan is a (1→4)-linked
2-amino-2-deoxy-b-D-glucan, prepared from
chitin through alkaline hydrolysis of the
N-acetyl groups. Upon further hydrolysis, for
example, with the help of chitosanases
(indicated by black arrows), low-MW
oligosaccharides are produced.
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tions, chain lengths, degrees of deacetylation, charge
densities and charge distributions, salt-forms, viscosities
and water retention values. These properties greatly
affect its physicochemical characteristics, which in turn
govern almost all of its applications. Therefore, the choice
of the most suitable grade for use is related to the appli-
cation intended.

Molecular weight

Although the chemical and physical processes underlying
some of the applications of chitosan and its derivatives
are still not known in detail, considerable evidence has
been gathered indicating that most of their physiological
activities and functional properties depend on their MW
(Rabea et al., 2003). The MW distribution of a raw chito-
san preparation is influenced by variable conditions
employed in the deacetylation process; weight-average
MWs (Mw) of several hundreds to over one million Dalton
are common, with a mean molecular mass of up to 1 MDa,
corresponding to a chain length of approximately 5000 U
(Rhoades and Roller, 2000). Because of the influence of
polymer composition and MW range on the various physi-
cochemical properties of chitosan, it is very important to
adequately characterize each batch of polymer produced.
The MW of chitosan can be determined by several
methods, such as light scattering spectrophotometry, gel
permeation chromatography and viscometry (Kumar,
2000). Unlike monodisperse substances, no exact MW is
indicated, but rather a number of different means are
defined, to describe the sample statistically.

Degree of deacetylation

An important parameter to examine closely is the DD of
chitosan, i.e. the ratio of GlcNAc to GlcN structural units.
The DD of chitosan is influenced by the preparation
procedure; for example, increasing proportionally with
increasing treatment time. It has an impact on the extent
of moisture absorption, charge distribution, intrinsic vis-
cosity and chitosan solubility in aqueous solutions (Singla
and Chawla, 2001). A number of analytical tools have
been used to define the DD, such as FTIR spectroscopy,
UV spectrophotometry, 1H-NMR and 13C solid-state NMR
spectroscopy, various titration methods, equilibrium dye
adsorption, elemental analysis, acid degradation followed
by HPLC, as well as thermal analysis (Kumar, 2000).

Solubility and solution properties

The main difference between chitin and chitosan lies in
their solubility; chitosan is therefore said to be chitin that
has been N-deacetylated to such an extent that it
becomes soluble in dilute aqueous acids. Pure, native

chitosan (pKa ~ 6.3) is insoluble in water, in alkaline
medium and even in organic solvents. However, water-
soluble salts of chitosan may be formed by neutralization
with organic acids (e.g. 1–10% aqueous acetic, formic,
succinic, lactic, glutamic and malic acids) or inorganic
acids such as hydrochloric acid (Henriksen et al., 1996;
Singla and Chawla, 2001). The pH-dependent solubility of
chitosan is attributed to its amino groups (—NH2), which
become protonated upon dissolution at pH 6 or below to
form cationic amine groups (—NH3

+), increasing intermo-
lecular electric repulsion and resulting in a polycationic
soluble polysaccharide, with a large number of charged
groups on a weight basis. Upon dissolution, chitosan
forms viscous solutions, which could function as thicken-
ers, stabilizers or suspending agents. In addition, chitosan
solutions show pseudoplastic and viscoelastic properties;
their viscosity is affected by chitosan’s DD, MW and con-
centration, concentration and types of solvents, the
prevailing solution pH and ionic strength, as well as
temperature (Chen and Tsaih, 1998; Singla and Chawla,
2001). The viscosity range of commercial chitosans [1%
(w/v) in 1% acetic acid at 25°C] is from 10 to 1000 mPa·s
(Kumar, 2000).

Chemical reactivity and derivatization

Chitosan possesses three types of reactive functional
groups: an amino group at the C-2 position of each
deacetylated unit, as well as primary and secondary
hydroxyl groups at the C-6 and C-3 positions, respec-
tively, of each repeat unit (Fig. 1). These reactive groups
are readily subjected to chemical derivatization under mild
conditions, to allow for conjugation with some drugs, as
well as the manipulation of mechanical and physico-
chemical properties, for example, improving chitosan’s
solubility at neutral pH range (Singla and Chawla, 2001).

Miscellaneous properties

Chitosan is a promising cationic mucoadhesive polysac-
charide at pH < 6.5. Several factors affect the mucoadhe-
sive properties of chitosan, including its concentration,
MW, DD and cross-linking, in addition to contact time,
environmental pH and ionic strength (Henriksen et al.,
1996). Moreover, the superior solubility makes chitosan
more easily manageable than chitin. It could be simply
processed into a variety of useful forms such as gels,
membranes, sponges, films, fibres and beads, by control-
ling factors such as acid solvent, DD and MW, to address
a variety of applications. Chitosan-based films and
gels also display good oxygen/moisture transmission
coefficients and substantivity (Hirano et al., 1991). In
addition, chitosan and its derivatives are endowed with
permeation- and absorption-enhancing effects, are able
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to enhance the dissolution and bioavailability of poorly
absorbable drugs, and are capable of strongly binding
transition metals in vitro through a chelation process, thus
lending themselves to a variety of applications (Singla and
Chawla, 2001; Smith et al., 2004).

Biological properties

Much of the recent commercial interest in chitosan and its
derivatives arises from the fact that they combine several
favourable biological characteristics, including biode-
gradability, biocompatibility and non-toxicity, making them
valuable materials for pharmaceutical, biomedical as well
as industrial applications.

Biodegradation

Whereas chitosan solutions are highly stable over a long
period (Cuero, 1999), there is sometimes a need for
degrading chitosan to a level suitable for a particular
application, or as a way to confer solubility to chitosan at
neutral pH. Several methods for producing chitosan oli-
gomers (‘chitosanolysis’) have been described in litera-
ture, including radiation (ionizing radiation or ultrasound)
(Ulanski et al., 2000), chemical (acid hydrolysis or
oxidative-reductive degradation) (Kendra and Hadwiger,
1984) and enzymatic methods, of which the latter are
preferred, since reaction and thus product formation could
be controlled by means of pH, temperature and reaction

time (Rhoades and Roller, 2000). Chitosan is susceptible
to enzymatic degradation by non-specific enzymes
from a variety of sources, such as lysozymes, chitinases,
cellulases or hemicellulases, proteases, lipases and
b-1,3-1,4-glucanases (Vårum et al., 1997; Rhoades and
Roller, 2000; Kumar et al., 2005). In addition, it is hydroly-
sed by chitosanases (chitosan N-acetyl-glucosamino-
hydrolases, EC 3.2.1.132), enzymes that attack chitosan
but not chitin, catalyzing the endohydrolysis of b-(1→4)-
glycosidic linkages between GlcN residues in partly acety-
lated chitosan (Rivas et al., 2000; Kimoto et al., 2002)
(Fig. 1).

Chitosanase activities with different substrate specifici-
ties have been reported in a variety of microorganisms,
including bacteria (an estimated 1–7% of heterotrophic
soil bacteria) and fungi as well as plants; genes encoding
chitosanases have also been identified in some viruses.
They have been found to belong to five glycoside hydro-
lase families: 5, 8, 46, 75 and 80 (Table 1). Interestingly,
the majority of the sequenced chitosanases are produced
by Gram-positive microorganisms; the crystal structures
of Streptomyces sp. N174 (Marcotte et al., 1996) and
Bacillus circulans MH-K1 (Saito et al., 1999) chitosanases
are available.

Fukamizo and colleagues (1994) proposed the classifi-
cation of chitosanases into three distinct classes accord-
ing to their substrate specificities: (i) class I chitosanases
split the GlcNAc–GlcN linkage in chitosan, e.g. Bacillus
pumilus BN262 (Fukamizo et al., 1994), Penicillium

Table 1. Examples of identified chitosanases.

Sources
Chitosanase
family References

Gram-positive microorganisms
Amycolatopsis spp. 46 Okajima et al. (1994)
Bacillus spp. 46 Saito et al. (1999); Rivas et al. (2000)

8 Izume et al. (1992); Mitsutomi et al. (1998)
N/A Fukamizo et al. (1994); Omumasaba et al. (2000)

Nocardia spp. N/A Sakai et al. (1991)
Nocardioides spp. 46 Masson et al. (1995)
Paenibacillus spp. 8 Kimoto et al. (2002)
Streptomyces spp. 46 Fukamizo et al. (1995)

5 Tanabe et al. (2003)
N/A Ohtakara (1988)

Gram-negative microorganisms
Acinetobacter spp. N/A Shimosaka et al. (1995)
Burkholderia spp. 46 Shimosaka et al. (2000)
Enterobacter spp. N/A Yamasaki et al. (1993)
Matsuebacter spp. 80 Park et al. (1999)
Myxobacter spp. N/A Pedraza-Reyes and Gutierrez-Corona (1997)
Pseudomonas spp. N/A Yoshihara et al. (1992)
Sphingobacterium spp. 80 Matsuda et al. (2001)

Fungi
Aspergillus spp. 75 Cheng and Li (2000)
Fusarium spp. 75 Shimosaka et al. (1996)
Penicillium spp. N/A Fenton and Eveleigh (1981)

Viruses
Chlorella virus 46 Sun et al. (1999)

N/A, not available.
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islandicum (Fenton and Eveleigh, 1981) and Streptomy-
ces sp. strain N174 (Fukamizo et al., 1995), (ii) class II
chitosanases, where cleavage specificity is exclusively
restricted to the GlcN–GlcN linkage, e.g. Bacillus sp.
No.7M (Izume et al., 1992), and (iii) class III chitosanases,
which can split both GlcN–GlcN and GlcN–GlcNAc link-
ages, such as Streptomyces griseus HUT 6037 (Tanabe
et al., 2003), B. circulans MH-K1 (Saito et al., 1999),
Nocardia orientalis (Sakai et al., 1991) and B. circulans
WL-12 (Mitsutomi et al., 1998).

Biocompatibility

One of the most important biological properties of any
implantable biomaterial is its biocompatibility; i.e. it should
not be affected by the host and at the same time should
not elicit any undesirable local or systemic effects. Chito-
san is well tolerated by living tissues, including the skin,
ocular membranes, as well as the nasal epithelium, and
has thus been proven valuable for a wide range of bio-
medical applications (Shigemasa and Minami, 1995; Felt
et al., 1999).

Safety

The low toxicity profile of chitosan compared with other
natural polysaccharides is another of its many attractive
features. It has been reported that the purity of chitosan
influences its toxicological profile, yet its safety in terms of
inertness and low or no toxicity has been demonstrated by
in vivo toxicity studies. Its oral LD50 (median lethal dose) in
mice was found to be in excess of 16 g day-1 kg-1 body
weight, which is higher than that of sucrose. Nonetheless,
it is contraindicated for people with shellfish allergy
(Singla and Chawla, 2001).

In their review article, Ylitalo and colleagues (2002)
reported the absence of significant side-effects following
chitosan ingestion in human studies (for up to 12 weeks).
However, Tanaka and colleagues (1997) cautioned that
special care should be taken in the clinical use of chitosan
over a long period of time, due to possible disturbances in
intestinal microbial flora. Concerns have also been raised
that chitosan could cause the loss of fat-soluble vitamins,
decrease mineral absorption and bone mineral content
and block absorption of certain medicines (Deuchi et al.,
1995). We were unable to identify any epidemiological
studies or case reports investigating the association of
chitosan exposure and cancer risk in humans, any carci-
nogenicity studies on chitosan in animals and any in vitro
or in vivo studies evaluating chitosan for mutagenic
effects in the available literature.

Applications

Although extensive resources were involved in both
research and development of processes and applications

for chitosan, only the last two decades have witnessed
serious developments in a variety of technologies aiming
for the commercial utilization of chitosan and its deriva-
tives. Chitosan, its oligomers and a number of its deriva-
tives emerged as new biomaterials for a number of
applications ranging from pharmaceutical, cosmetic,
medical, food and textile to agricultural applications, rep-
resentative examples of which are summarized in Table 2.
Due to the wide scope of applications, only a number of
them will be further discussed in this section.

Introduced to the market in the 1990s, chitosan has
been the subject of much research regarding its potential
as a useful and promising pharmaceutical excipient in
various pharmaceutical formulations. Next to the more
traditional formulations, chitosan has found use in novel
applications such as vaccine delivery, peptide and gene
delivery, in addition to its use in tissue engineering (Singla
and Chawla, 2001). One of the most recent applications of
chitosan involves targeted delivery for biological applica-
tions, where it is used in the preparation of magnetic
nanofactories, which allow the local synthesis and deliv-
ery of active cargo at a target site, thus minimizing non-
specific effects (Fernandes and Bentley, 2009).

In spite of the promising use of chitosan in the pharma-
ceutical industry, most of the chitosan researches are
directed towards medical applications. For example,
some studies showed that chitosan, whether it is used as
an immune adjuvant, drug delivery agent or dietary fibre,
could effectively promote local immune response and
enhance antigen presentation (Porporatto et al., 2005;
Xie et al., 2007).

Probably one of the most prominent commercial appli-
cations of chitosan is its use as a hemostatic. Several
chitosan-based wound dressings are available on the
market for clinical use, including HemCon® Bandage and
ChitoFlex wound dressings (HemCon Medical Tech-
nologies, UK), as well as CELOX™ (Medtrade Products,
England); both of which stated to be FDA approved (www.
hemcon.com and www.celoxmedical.com, respectively).

Moreover, chitosan is implicated as a component of
host–fungal interactions; it acts as a potent elicitor of plant
defence responses, activating the expression of plant
defensive genes and inducing the production of
pathogen-related proteins, such as chitinases and other
hydrolytic enzymes. These enzymes can hydrolyze chitin
and chitosan in fungal cell walls, consequently leading to
growth inhibition and/or death (Doares et al., 1995;
Mason and Davis, 1997). The induction of chitosanases
and chitinases through genetic engineering has also been
proposed (Cuero, 1999). Moreover, Beauséjour and
colleagues (2003) suggested the use of chitosan together
with a biocontrol strain exhibiting chitosanolytic activity as
a promising biocontrol tool against plant pathogens,
claiming that the presence of a chitosan-hydrolyzing
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Table 2. Applications of chitosan.

Applications Benefits/advantages References

Pharmaceuticals and cosmetics
Conventional formulations

Tablet manufacture Binder; disintegrant; coating; lubricant; diluent Nunthanid et al. (2004)
Gels Sustained drug release; enhanced absorption Kofuji et al. (2004)
Films and membranes Controlled drug release Yan et al. (2001)
Emulsions Stabilizer Hino et al. (2000)

Microspheres, microcapsules Mucoadhesive; increased bioavailability; sustained drug
delivery; penetration enhancement

Dias et al. (2008)

Ophthalmic formulations Ocular tolerance; mucoadhesive; wetting and
penetration-enhancing properties; antibacterial; prolonged
precorneal drug residence

Felt et al. (2000)

Transdermal delivery systems Enhancement of penetration across epithelia; controlled drug
release

He et al. (2008)

Colon-specific drug delivery Biodegradable by colonic bacteria Yamamoto et al. (2000)
Targeted cancer therapy Antitumour; long systemic retention and tumour accumulation,

due to enhanced permeability and retention (EPR) effect
Dass and Choong (2008)

Vaccine delivery
Mucosal vaccination Induction of mucosal and systemic immune responses;

penetration into intestinal and respiratory mucosae
Illum et al. (2001)

Oral vaccination Protection of antigens from gastric juice, bile acids and salts
and from proteolytic enzymes of the gastrointestinal tract

van der Lubben et al. (2001)

Peptide drug delivery Improving oral bioavailability of peptides and proteins Bernkop-Schnürch (2000)
Gene/nucleic acid delivery Safe, non-viral system Fernandes et al. (2006)
Deodorant formulations Dermatological compatibility; non-irritating; enhancing fragrance

adhesion; deodorizing
Hohle and Griesbach (1999)

Hair and skin care products Preservative; emulgator; thickener; moisturizer; soothing effect
on skin

Pittermann et al. (1997)

Medical and biomedical
Antacid and anti-ulcerogenic Demulcent and protective effect on stomach mucosa Anandan et al. (2004)
Hypoglycaemic, antihypertensive Lowering of blood glucose level; increasing glucose tolerance

and insulin secretion
Lee et al. (2003)

Antioxidant Scavenging of radicals and chelation of divalent metals Xie et al. (2001)
Antitumour Induction of apoptosis in tumour cells Hasegawa et al. (2001)
Anticoagulant – Park et al. (2004b)
Haemostatic Biological adhesive for soft tissues Malette et al. (1983)
Spermicidal Strong binding to mammalian cells Shigemasa and Minami (1995)
Hypocholesterolaemic; nutritional

aid for weight loss
Prevention of fat absorption; reduction of blood lipid levels Hossain et al. (2007)

Wound dressings; products for
wound treatment

Inhibition of fibroplasia; promotion of tissue regeneration and
wound-healing with minimal scar formation

Mi et al. (2002)

Contact and bandage lenses Optical clarity; wound-healing; antimicrobial; mechanical
stability; immunological compatibility; optical correction; gas
permeability; wettability

Kumar (2000)

Dentistry and oral medicine Bioadhesive; viscosity-enhancer; prolonged drug release in
buccal cavity; permeabilizer; antimicrobial; anti-adhesive;
anti-dental caries; treatment of periodontal diseases/oral
candidiasis/tooth mobility; reduction of plaque formation

Decker et al. (2005)

Anti-inflammatory – Shigemasa and Minami (1995)
Immunopotentiator Augmenting immunogenicity of co-administered antigens;

stimulation of immune system
Okawa et al. (2003)

Surgical sutures and implants Biodegradable Suzuki (2000)
Haemodialysis membranes; coating

for biomedical devices
Thromboresistance; compatibility with blood; anti-biofilm

properties
Shigemasa and Minami (1995);

Carlson et al. (2008)

Tissue engineering
Scaffold for tissue engineering

applications
Promoting tissue growth and differentiation Kawase et al. (1997)

Artificial skin grafts Non-antigenic; biodegradable template for synthesis of
neodermal tissue

Kumar (2000)

Agriculture
Soil and plant revitalizer Preventing microbial infection; promoting growth of plants Mulawarman et al. (2001)
Preservative coating and

biofungicide
Sprayed on seeds to extend their storage life Hirano (1996)

Food industries
Food processing Enhances safety, quality and shelf life of food; clarification of

liquids; preservative; thickener
Rhoades and Roller (2000); Roller

(2003)
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activity is virtually synonymous with resistance towards
chitosan. However, we found little evidence to support this
assumption, since we were unable to detect a direct cor-
relation between the chitosanolytic ability of 28 test strains
(Bacillus and related strains) and their in vitro susceptibil-
ity to the antimicrobial activity of chitosan (our unpub-
lished data). Nonetheless, chitosan-based plant growth
stimulators found their way into the market (e.g.
ChitoPlant® and SilioPlant®; ChiPro GmbH, Germany).
They presumably stimulate the plant immune response
against pathogens and have a growth-promoting activity.

Unfortunately, a survey of the available literature
revealed that there are only relatively few specific and
objective research studies to support claims ascribing a
range of rather impressive pharmacological properties to
chitosan; most of these studies are indeed very difficult to
verify. For example, chitosan is often being heralded, and
sold, as a ‘revolutionary’ weight loss supplement, a ‘fat
magnet’, although this presumptive property is often dis-
credited in recent studies (Mhurchu et al., 2004; Gades
and Stern, 2005). Given the large number of proclaimed
medicinal benefits of chitosan, it comes as no surprise
that the literature is filled with conflicting reports.

Economic aspects and regulatory status

Since a large amount of the crustacean exoskeleton is
readily available as a by-product of the seafood process-
ing industry, the raw material for chitosan production is
relatively inexpensive, and thereby the production of chi-
tosan on a large scale from this renewable bio-resource is
economically feasible (Rabea et al., 2003). Chitosan is
commercially produced in different parts of the world
(North America, Poland, Italy, Russia, Norway, Japan and
India) on a large scale (with an estimated 109–1010 tons
annually produced in nature); it is also widely used in

foods in Italy, Finland, Korea and Japan (Peter, 1997;
Singla and Chawla, 2001). Another important aspect to be
considered is that utilizing the shellfish waste for chitin
production provides a solution for the waste disposal
problem, and provides an alternative for the use of this
oceanic resource.

‘Generally Recognized As Safe (GRAS)’ is a designa-
tion used by the FDA to indicate that a chemical or sub-
stance added to foods and beverages is considered safe.
Chitosan has not been officially proclaimed GRAS by the
FDA, although it has approved chitosan for medical uses
such as bandages and drug encapsulation. However, one
Norwegian company (Primex Ingredients ASA), which
manufactures shrimp-derived chitosan, has announced in
2001 that its purified chitosan product (ChitoClear®) has
achieved a GRAS self-affirmed status in the US market.

Chitosan’s antimicrobial activity

The modern era of chitosan research was heralded by
publications in the 1990s describing the antimicrobial
potentials of chitosan and its derivatives, which exhibit a
wide range of activities towards human pathogens as well
as food-borne organisms (Muzzarelli et al., 1990; No
et al., 2002; Savard et al., 2002; Rabea et al., 2003). In
fact, a number of commercial applications of chitosan
benefit from its antimicrobial activity, including its use
in food preservation, in dentistry and ophthalmology, as
well as in the manufacture of wound-dressings and
antimicrobial-finished textiles (Table 2).

In recent years, there was a growing demand for a more
rational use of chemicals in food preparations, thus shift-
ing the attention to natural substances that might function
as preservatives. In that respect, much attention has
focused on the safety and efficacy of chitosan as a natural
preservative to be included in pharmaceutical as well as

Table 2. cont.

Applications Benefits/advantages References

Coatings for vegetables, fruits and
fish

Improving shelf life; preventing moisture loss; delaying fungal
growth

Cagri et al. (2004)

Edible antimicrobial films for food
packaging

– Durango et al. (2006)

Textile industries
Finishing of textiles Antimicrobial; moisture control and dye absorptive properties El Tahlawy et al. (2005)
Novel fibres for textiles – Kumar (2000)

Wastewater treatment
Food and beverage processing

plants
Coagulation and flocculating agent; resulting dried sludge used

in animal feeds
Chi and Cheng (2006)

Industrial waste Removal of heavy metal ions through adsorption and chelation Babel and Kurniawan (2003)
Textile effluents Sorption of dyes (high affinity to many classes of dyes) Crini and Badot (2008)

Miscellaneous
Photographic paper Resistance to abrasion; favourable optical characteristics;

film-forming ability
Kumar (2000)

Paper finishing Imparts wet strength to paper Kumar (2000)
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food preparations (Rhoades and Roller, 2000; Helander
et al., 2001; No et al., 2002). For instance, Jumaa and
colleagues (2002) suggested chitosan’s use as an antimi-
crobial preservative in emulsion formulations for mucosal
as well as for parenteral applications. Similarly, Sagoo
and colleagues (2002) proposed its use as an adjunct in
the potentiation of the biocidal efficacy of antimicrobial
compounds such as benzoates. Moreover, we have pre-
viously demonstrated using a challenge test that chitosan
displayed adequate preservative efficacy, for up to 28
days, with respect to potential bacterial contaminants,
which might allow its use as an antimicrobial preservative
in pharmaceutical preparations. In addition, it was
capable of potentiating the antimicrobial activity of a
number of preservatives, including phenethyl alcohol,
benzoic acid and phenylmercuric acetate against a
number of test strains (Raafat, 2004). Therefore, investi-
gations of the antimicrobial potential of chitosan and its
derivatives have recently gained momentum.

Antimicrobial spectrum

The spectrum of antimicrobial activity of chitosan and its
derivatives extends to include filamentous fungi, yeasts
and bacteria, being more active against Gram-positive
than Gram-negative bacteria (Muzzarelli et al., 1990;
Rhoades and Roller, 2000; Jeon et al., 2001; No et al.,
2002). More interestingly, chitosan seems to hold some
promise in dentistry, since it was shown to exhibit a potent
plaque-reducing action as well as in vitro antibacterial
activity against several oral pathogens implicated in
plaque formation and periodontitis, including Actinobacil-
lus actinomycetemcomitans, Streptococcus mutans and
Porphyromonas gingivalis (Choi et al., 2001; İkinci et al.,
2002). However, chitosan’s activity is mostly growth-
inhibitory, where resistant subpopulations might emerge,
as a result of physiological adaptation of the cells to
chitosan stress (Raafat et al., 2008). When Jarry and
colleagues (2001) tested the antimicrobial activity of chi-
tosan against several microorganisms, they found that the
bacteria could rapidly grow after separation from the chi-
tosan solution by membrane filtration. Therefore, this bac-
teriostatic activity, with regrowth of bacterial cultures
treated with chitosan, might be explained by the irrevers-
ible binding of chitosan to microbial cells or medium par-
ticles, which renders it inactive against the remaining
unbound microorganisms (Rhoades and Roller, 2000).

Factors affecting the activity

There are numerous reports on the antimicrobial potency
of different chitosans and chitosan derivatives, from
various sources and tested under diverse conditions. In
many instances discrepancies in the results obtained were

observed, which were not surprising, since chitosan’s in
vitro antimicrobial activity is influenced by various intrinsic
and extrinsic factors, related to both chitosan itself (type,
MW, DD, viscosity, solvent and concentration) and the
environmental conditions (test strain, its physiological
state and the bacterial culture medium, pH, temperature,
ionic strength, metal ions, EDTA, organic matter) respec-
tively. Underestimation of any of these factors would inevi-
tably lead to false conclusions regarding the potency of the
chitosan preparation under test. In the following part we
will present a general account of the main criteria that
should be closely observed while developing antimicrobial
systems to be implemented into industrial applications.

It is presently impossible to pinpoint the influence of
MW or DD on the antimicrobial activity of chitosan; reliable
methods must therefore first solve the task of accurately
determining these values. For instance, the antimicrobial
activity of chitosan was found to be greatly influenced by
its MW; oligosaccharides and D-glucosamine possessed
weak or no antibacterial activity (Rhoades and Roller,
2000; No et al., 2002). Jeon and colleagues (2001) even
went as far as to suggest that a MW of more than 10 kDa
is required for proper inhibition of microorganisms. Inter-
estingly, we have found in a previous study after testing a
large number of chitosan preparations that they did not
differ appreciably in their antimicrobial activity at a
molecular size above 10 kDa (Raafat et al., 2008). There-
fore, there seems to be a minimum degree of polymeriza-
tion required for antimicrobial activity. Moreover, chitosans
with a high DD were more effective than those with a low
degree in inhibiting bacterial growth, probably due to
the higher percentage of protonated amine groups
(Shigemasa and Minami, 1995; Liu et al., 2001).

The antimicrobial activity of chitosan is inversely
affected by pH, with higher activity observed at lower pH
value; on the other hand, it increases with increasing
temperature, and in presence of EDTA (Tsai and Su,
1999; Jumaa et al., 2002; No et al., 2002; Raafat, 2004).
Results regarding the effect of ionic strength on chitosan’s
activity are still contradictory. While Chung and colleagues
(2003) propose that higher ionic strength might enhance
the solubility of chitosan and thus increase its antibacterial
activity, regardless of the test strain, Tsai and Su (1999)
suggest that the presence of sodium ions (100 mM)
reduces chitosan’s activity against Escherichia coli. We,
however, observed no detectable effect of NaCl (10 or
25 mM) on the antimicrobial activity of chitosan against
several indicator strains (our unpublished data). More
importantly, the addition of metal ions results in a dramatic
reduction in chitosan’s antibacterial activity, probably due
to complex formation between chitosan and these metal
ions (Tsai and Su, 1999; Bhatia and Ravi, 2003). Analo-
gous findings have been made for plant cells (Glycine
max), where chitosan-induced permeability changes were
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strongly inhibited by divalent cations (Young et al., 1982).
The lone pair electrons present on the amino nitrogen can
establish coordinate covalent bonds with transition metal
ions. In addition, deprotonated hydroxyl groups can par-
ticipate in coordination with metal ions, thus functioning as
second donors (Micera et al., 1985; Udaybhaskar et al.,
1990). On the other hand, the choice of chitosan’s
solvent, whether inorganic (HCl) or organic acids (HAc),
had no significant effect on the antimicrobial activity of
chitosan (our unpublished data).

It is still unclear at which physiological state bacterial
cells are most susceptible to the antimicrobial activity
of chitosan. Whereas we found that chitosan-treated
Staphylococcus simulans 22 cells exhibited lower viable
counts at the stationary phase (our unpublished data),
Tsai and Su (1999) observed that E. coli cells were most
susceptible in the late exponential phase.

In an in vitro setting, the potency of an antimicrobial
agent may be assessed through an estimation of the MIC
(minimum inhibitory concentration). In preliminary studies
we found evidence that the experimental setting used for
susceptibility assessment could account for variations in
the reported MIC values of chitosan in the available litera-
ture (our unpublished data). We reached the conclusion
that the broth microdilution technique would be the most
suitable for such a purpose, as opposed to agar-based
methods (Hirano and Nagao, 1989; No et al., 2002), and
that the bacterial growth medium should be well chosen,
in order to prevent unfavourable interaction with chitosan.

These examples serve to illustrate the reasons for the
vast variability in reported data, and underline the need for
vigorous criteria to be applied in any study that is aimed at
elucidating the efficacy of chitosan as an antimicrobial
agent in any given system, such as food or pharmaceuti-
cal formulations. Therefore, conclusions relying solely on
in vitro investigations, which are dependent on a number
of variables in the experimental methodology, should
always be treated with caution. Investigations should
rather take into consideration the specific environmental
context in which this biopolymer is to be used, by paying
attention to changes in chitosan sensitivity that might
accompany the respective methodological setting.

Antimicrobial mode of action

The overall mechanism(s) of action of an antimicrobial
may be defined according to the target component of the
bacterial cell against which it has its main activity. Thus,
three levels of interaction can be described: (i) interaction
with outer cellular components, (ii) interaction with the
cytoplasmic membrane and (iii) interaction with cytoplas-
mic constituents. The mechanisms underlying the anti-
microbial activity of chitosan have only been studied
comparatively recently and the amount of information

available is limited, although increasing. Several studies
purport to have identified such mechanisms; but only few
were supported by experimental evidence. In this section
we will highlight the main mode of action mechanisms
suggested, and discuss some of them in more detail. We
would like to reiterate that these mechanisms of action are
not mutually exclusive, since microbial inhibition by chito-
san is thought to be a result of a sequence of molecular
processes, resulting in random multiple detrimental
events that ultimately lead to cell inhibition/killing.

The properties and structure of the bacterial cell
envelope play an important role in chitosan’s antimicro-
bial activity. As stated above, Gram-positive bacteria
are markedly more sensitive to the antimicrobial activity
of chitosan, compared with Gram-negative ones
(MIC � 1000 mg ml-1, our unpublished data). This differ-
ence in sensitivity is largely ascribed to the different archi-
tectures of their cell envelopes – an issue that will be
considered below, on the level of the mode of action of
chitosan. Therefore, we will discuss in this section chito-
san’s mode of action, with reference mainly to staphylo-
cocci, occasionally pointing out fundamental differences
to Gram-negative bacteria.

Structure of the staphylococcal cell envelope

The term cell envelope comprises both the cell wall and
the cytoplasmic membrane of a bacterial cell; it also
includes the semi-permeable lipid bilayer (outer mem-
brane) of Gram-negative bacteria, which acts as an addi-
tional diffusion barrier. The staphylococcal cell wall is
composed of multilayers of murein, where glycan strands
of alternating b-1→4-linked GlcNAc–MurNAc disaccha-
rides are cross-linked by short peptides. Extending to the
surface of the peptidoglycan layer are teichoic acids,
which are essential polyanionic polymers found only in the
cell wall of Gram-positive bacteria that contribute to the
negative charge of the cell wall (Fig. 2); similar polymeric
structures, referred to as lipopolysaccharides (LPS), are
found in the outer membrane of Gram-negative bacteria.
The Staphylococcus aureus cell membrane consists
of three major phospholipid (PL) species: negatively
charged phosphatidylglycerol and cardiolipin, and posi-
tively charged lysyl-phosphatidylglycerol (LPG), the latter
accounting for 14–38% of the total PL content of the S.
aureus cytoplasmic membrane (Peschel et al., 2001).

Interaction of chitosan with the bacterial cell surface

The mode of action of cationic antibacterial agents is
widely believed to be the interaction with and disruption of
the cell envelope. Electron microscopical examinations of
various chitosan-treated microorganisms suggest that
its site of action is indeed at the microbial cell surface
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(Muzzarelli et al., 1990; Cuero, 1999; Savard et al., 2002;
Raafat et al., 2008). It is generally assumed that the poly-
cationic nature of chitosan, conveyed by the positively
charged —NH3

+ groups of glucosamine, might be a fun-
damental factor contributing to its interaction with nega-
tively charged surface components of many fungi and
bacteria, causing extensive cell surface alterations,
leakage of intracellular substances, and ultimately result-
ing in impairment of vital bacterial activities (Helander
et al., 2001; Zakrzewska et al., 2005; Je and Kim, 2006).
This hypothesis is backed by several lines of evidence,
including:

(i) Chitosan loses its antimicrobial activity at pH 7.0,
assumably due to the deprotonation of amine groups,
as well as poor solubility in water at this pH (Sudar-
shan et al., 1992; Liu et al., 2001).

(ii) The antimicrobial activity of chitosan was found to be
directly proportional to its DD, which in turn is related
to the number of its protonated amine groups (Liu
et al., 2001; Park et al., 2004a).

(iii) The N-acetylation of chitosan oligomers effectively
destroyed their fungistatic activity, since the 2-amino

groups could no longer become protonated (Torr
et al., 2005).

(iv) Mutants of Salmonella typhimurium with strongly
reduced negative cell surface charge were found to
be more resistant to chitosan than the parent strains
(Helander et al., 2001). This mirrors data generated
from our laboratory using various staphylococcal
mutants displaying different overall cell surface
charges, where we could establish that a highly
anionic bacterial surface greatly enhances the anti-
microbial activity of chitosan against S. aureus
(Raafat et al., 2008).

(v) The fact that a stable chitosan-resistant S.
aureus variant, with more than 50¥ reduced
susceptibility compared with the wild-type, displayed
an increased content of positively charged mem-
brane PLs (our unpublished data) led us to hypoth-
esize that the overall surface charge of a
microorganism plays an important role in chitosan’s
activity.

In sum, all these findings are consistent with the
above-mentioned hypothesis; they also add weight to the

Fig. 2. The staphylococcal cell envelope. The staphylococcal cell wall is composed of multilayers of glycan strands of alternating
N-acetylglucosamine (GlcNAc) and N-acetylmuramyl-pentapeptide (MurNAc-PP), cross-linked by pentaglycine side-chains. For clarity, only one
layer of peptidoglycan is depicted here. Teichoic acids, polyanionic surface polymers extending through the peptidoglycan layer, contribute to
the negative charge of the cell wall. The cytoplasmic membrane is a selectively permeable membrane lying internal to the cell wall.
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conclusion that the cell envelope charge does contribute
to chitosan’s antimicrobial activity.

However, the nature of the surface components
involved in this interaction with chitosan was rarely accu-
rately defined. While working with plants, Young and col-
leagues (1982) suggested that chitosan might bind to
polygalacturonate, a component of plant cell walls,
thereby increasing the membrane permeability of plant
cells. Regarding bacteria, on the other hand, several
research groups later hypothesized that an electrostatic
interaction takes place between chitosan and either (i)
negatively charged cell membrane components (i.e.
phospholipids or proteins) (Liu et al., 2004), (ii) amino
acids in the Gram-positive bacterial cell wall (Kumar et al.,
2005), or (iii) various lipopolysaccharides in the outer
membrane of Gram-negative bacteria (Davydova et al.,
2000; Helander et al., 2001), thereby affecting membrane
integrity and permeability. Morimoto and colleagues
(2001) reported the specific binding of a chitosan deriva-
tive to a receptor on the cell surface of Pseudomonas
aeruginosa. In a previous investigation, we showed that
the initial contact between the polycationic chitosan mac-
romolecule and the bacterial cell is most probably medi-
ated through electrostatic interaction with the negatively
charged teichoic acids of Gram-positive bacteria (Raafat
et al., 2008). This finding is consistent with the much lower
activity of chitosan against Gram-negative bacteria, since
a possible binding of chitosan to LPS would not signifi-
cantly influence the dynamics of the cell envelope, since
these molecules are confined to the outer membrane.

Chitosan is considered by several researchers to be a
membrane-perturbing compound (Helander et al., 2001;
Zakrzewska et al., 2005; Je and Kim, 2006), although we
do not consider membrane destabilization to result from a
direct interaction of chitosan with the membrane itself,
since chitosan was unable to induce the efflux of small
marker molecules from liposomes; membrane effects
rather constitute a secondary event triggered by interfer-
ence with cell wall dynamics via immobilization of anionic
cell wall polymers (Raafat et al., 2008). The interaction of
chitosan with cell surface polymers, e.g. membrane-
anchored lipoteichoic acids, may interfere with dynamic
processes within the cytoplasmic membrane and hence
alter its optimal functioning, causing a partial dissipation
of the membrane diffusion potential and a generalized
disruption of membrane-associated functions, finally
resulting in leakage of small cellular components from
staphylococci, without pore formation (Raafat et al.,
2008). The transition from sublethal injury, caused by
disruption of the cell permeability barrier and leakage, to
cell death might be mediated by metabolic imbalance and
impaired ionic homeostasis following chitosan challenge.
While some researchers observed a frayed cell wall
(Muzzarelli et al., 1990), and even the appearance of

protoplasts (Didenko et al., 2005) upon chitosan treat-
ment, we observed no effect on cell wall integrity (Raafat
et al., 2008).

As opposed to our own data, Kumar and colleagues
(2005) claimed that the binding of chitosan to cell surface
structures of Bacillus cereus resulted in pore formation.
An analogous hypothesis was put forward by Young and
colleagues (1982), who suggested that quite large ‘pores’
can be induced in the plant membrane by chitosan,
through displacing cations (such as Ca2+) from complexes
that stabilize the cell membrane of G. max cells, resulting
in destabilization of the membrane and leakage of low-
and high-MW proteins, arguing that large polycations
such as DEAE-dextran do penetrate the cell wall to inter-
act with the plasma membrane. They further hypothesize
that polyanions (polygalacturonate) on plant cell walls
help protect the plasma membrane, the actual target of
chitosan action, by binding to the polycationic chitosan,
thus preventing the contact with the cell membrane.

Intracellular chitosan targets?

It was suggested that the positively charged chitosan (or
its oligosaccharides) might be taken up by cells, where
they interact with cellular DNA of fungi and bacteria, con-
sequently inhibiting DNA transcription, as well as RNA
and protein synthesis (Tarsi et al., 1997; Liu et al., 2001;
Rabea et al., 2003). It has also been previously reported
that chitosan can penetrate plant cells, being detected
15 min after its application to the surface of the plant
tissue within the plant cytoplasm and conspicuously
detectable within the plant nucleus (Hadwiger et al.,
1981). If this same logic were to be applied to the situation
with bacteria, for instance, staphylococci, this contention
would be provocative, because it would imply that
chitosan is able to circumvent two barriers, namely the
multilayered staphylococcal cell wall and the plasma
membrane (Fig. 2), to afford access to the intracellular
space. However, a consideration of the molecular size of
a native chitosan molecule (up to 1000 kDa; Fig. 3) would
render such a notion rather unlikely. Moreover, we have
found no evidence that chitosan is broken down by sta-
phylococci into smaller fragments, which might pass the
cell wall (Raafat et al., 2008).

Other mechanisms of action

The chelating activity of chitosan has also been implicated
in its antimicrobial mode of action; for instance, it might
selectively bind essential trace metals and thereby inhibit
the production of toxins and microbial growth (Chung
et al., 2003). Moreover, growth inhibition through block-
age of nutrient flow has been suggested by several
researchers (Sudarshan et al., 1992; Tokura et al., 1997;
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Kumar et al., 2005), who attribute the antibacterial activity
of chitosan to its deposition (stacking) onto the surface of
bacteria, thereby impeding mass transfer and suppress-
ing the metabolic activity of bacteria.

Future prospects

Food and pharmaceutical industries are increasingly con-
fronted with fundamental challenges regarding the appro-
priate choice of preservative systems. The discovery of
new preservatives, and the refinement of traditional ones,
is creating unprecedented excitement in the field of
applied sciences.

Nowadays, one might attest that a gap has been
bridged between basic and applied research in the field of
natural polymers. There is now a growing body of work
demonstrating the utility of chitosan in antimicrobial
systems, aimed for industrial use. For instance, it could be
used in conjunction with classical preservatives to provide
microbial stability to food and pharmaceutical systems.

This review might therefore help to clarify what may
have been considered disparate conclusions about the
antimicrobial activity of chitosan in the literature, and
might thereby extend our understanding of this industrially
important natural polymer. A noteworthy fact is that a
major source of these dissimilarities is the lack of stan-
dardized microbiological procedures when dealing with
this natural biopolymer. The potential value of chitosan as
a preservative for pharmaceutical and food preparations
would open a new avenue for the use of this natural
product. However, the detailed application setting has to

be well defined, in order to avoid unfavourable interac-
tions, or loss of its activity.
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