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ABSTRACT
Objective: Foodborne illnesses in Australia, including
salmonellosis, are estimated to cost over $A1.25 billion
annually. The weather has been identified as being
influential on salmonellosis incidence, as cases
increase during summer, however time series
modelling of salmonellosis is challenging because
outbreaks cause strong autocorrelation. This study
assesses whether switching models is an improved
method of estimating weather–salmonellosis
associations.
Design: We analysed weather and salmonellosis in
South-East Queensland between 2004 and 2013 using
2 common regression models and a switching model,
each with 21-day lags for temperature and
precipitation.
Results: The switching model best fit the data, as
judged by its substantial improvement in deviance
information criterion over the regression models, less
autocorrelated residuals and control of seasonality. The
switching model estimated a 5°C increase in mean
temperature and 10 mm precipitation were associated
with increases in salmonellosis cases of 45.4% (95%
CrI 40.4%, 50.5%) and 24.1% (95% CrI 17.0%,
31.6%), respectively.
Conclusions: Switching models improve on
traditional time series models in quantifying weather–
salmonellosis associations. A better understanding of
how temperature and precipitation influence
salmonellosis may identify where interventions can be
made to lower the health and economic costs of
salmonellosis.

Salmonellosis is a major foodborne illness
globally, incurring substantial health and eco-
nomic costs. Salmonellosis is a bacterial
infection typically acquired through con-
sumption of contaminated poultry meat and
eggs, although cases have been linked to raw
milk and fresh produce including melons
and sprouts.1–3 Gastrointestinal symptoms
present within 6–72 h of infection, and
persist for an average of 3–7 days. While
symptoms typically resolve spontaneously,

salmonellosis can have severe health out-
comes including chronic arthritis and
postinfectious irritable bowel syndrome.
Salmonellosis caused eight deaths and con-
tributed to a further 24 deaths in Australia in
2013.4

There are approximately 12 900 notified
salmonellosis cases in Australia annually.
Cases are greatly under-reported in surveil-
lance data as medical attention is not often
sought for the common, self-limiting symp-
toms. Incidence is reportedly seven times the
number of notified cases,5 putting the likely
number of salmonellosis cases in Australia at
approximately 90 300 annually. Foodborne
gastroenteritis, including salmonellosis, is
estimated to cost over $A1.25 billion annually
in healthcare, absenteeism and monitoring
and controlling outbreaks.6 Reducing sal-
monellosis incidence would substantially
reduce the health and economic costs of
foodborne disease in Australia.
Weather is a key influence on salmonel-

losis. Higher temperatures enable quicker
replication of Salmonella, increasing the

Strengths and limitations of this study

▪ Strong associations were identified between
higher temperatures, increased precipitation and
salmonellosis, which is a valuable information
for developing prevention strategies.

▪ Switching models can overcome common issues
with traditional time series models of weather–
disease associations, such as managing
outbreaks.

▪ Daily salmonellosis notifications and weather
were slightly misaligned, potentially reducing the
estimates of weather–salmonellosis associations.

▪ Disease notification data under-reports disease
incidence, and may obscure important social and
environmental patterns, or introduce artificial
patterns in salmonellosis incidence.
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contamination risk throughout the paddock-to-plate
chain. Two potential risks arise through colonisation of
broiler flocks on warm days and food-handling mistakes
during meal preparation, such as leaving meat at room
temperature. Precipitation also increases salmonellosis
risk as run-off over land increases pathogen loads in
water sources. Individuals may then contract salmonel-
losis through recreational contact with contaminated
water, or drinking rainwater from household tanks, and
outbreaks have been linked to the use of contaminated
water in producing papaya and cantaloupe.1 7–9

The influence of weather on salmonellosis is not
always immediate but most often delayed after a weather
event. Studies have found delays of 2–4 weeks between a
hot day or high precipitation, and a corresponding
increase in salmonellosis cases.10 11 These delays reflect
how, for example, a hot day may facilitate colonisation of
Salmonella in a broiler flock, however, the consequent
human salmonellosis cases will not occur until those
chickens are consumed days or weeks later.
Seasonal fluctuations in salmonellosis cases also result

from indirect effects of season. For example, patterns of
food consumption change seasonally as leafy green vege-
tables, an increasingly common source of salmonellosis,
are eaten in larger quantities in warmer months.12 Food
safety campaigns are also run throughout summer
which raises awareness of symptoms and subsequent
rates of seeking medical attention, generating an artifi-
cial peak in summer case numbers. These examples
demonstrate how seasonal factors can introduce both
genuine and artificial fluctuations in disease
notifications.
The common practice in time series studies of food-

borne illness to statistically control seasonality, aims to
reduce the effect of artificial influences, however, also
serves to eliminate the genuine influences. Analyses
have resorted to using the immediate past to predict
the future by including autoregressive or moving
average terms.10 13 Others included splines or random
effects to remove unexplained variance, or fit omnibus
terms for season, but did not explain what season
is.11 14 15 These models may produce well-behaved resi-
duals, but such techniques may obscure the effects of
temperature and precipitation on salmonellosis and
hinder our understanding of the aetiological processes
through which weather affects salmonellosis.
Consequently, we need specialised methods to filter out
extraneous seasonal factors while retaining the causal
effects of temperature and precipitation on
salmonellosis.
Markov switching models may be one method of

obtaining better estimates of the independent effects of
weather variables by focusing on outbreaks.
Salmonellosis may be contracted sporadically by an indi-
vidual consuming contaminated food, or in an outbreak
where multiple people are infected in temporal proxim-
ity due to a common food source. Sporadic cases are of
more interest than outbreak cases in examining the

effect of weather, as weather may instigate an outbreak,
for example, a restaurant not refrigerating its eggs is
riskier in summer when room temperatures are higher,
but the high case numbers result from the common
point of contamination rather than from temperature
directly. Previous studies have attempted to reduce the
effect of outbreak cases by removing known outbreak
cases or by truncating case numbers at an upper
limit,10 16 however, these methods are not infallible, as
outbreak cases cannot always be identified, and the
upper limits used are often arbitrary.
Switching models simultaneously fit two models to a

time series, and alternate between modelling sporadic
and outbreak cases.17 Outbreak cases are modelled
using an AR-1 autoregressive term, reflecting the nature
of outbreaks as inter-related, while sporadic cases are
modelled using temperature and precipitation predic-
tors. In modelling outbreak and sporadic cases separ-
ately, the extraneous influence of outbreak cases can be
removed from estimates of the association between
weather and sporadic cases which eliminates the need to
make further adjustments for season and provides esti-
mates of the independent effects of temperature and
precipitation.
This study serves to assess the capability of switching

models to improve on traditional approaches to time
series studies of weather and foodborne disease by com-
paring two traditional lagged regression models to a
lagged switching model. We hypothesise that tempera-
ture and precipitation will increase salmonellosis cases
in all three models, and that the switching model will
provide more accurate weather–disease associations by
removing the influence of outbreaks.

METHODS
Study region
We analysed South-East Queensland (SEQ), a region
with strong seasonal patterns of salmonellosis with inci-
dence peaking in summer. SEQ has a subtropical
climate with mild winters and hot, humid summers
(December–February) when most precipitation occurs.
On average, 1480 notified cases of salmonellosis occur
in SEQ annually, approximately 10 360 cases annually
after adjusting for under-reporting.5 SEQ includes the
state capital Brisbane and has 3.2 million residents.

Weather data
The Bureau of Meteorology (BOM) compiles high-
quality weather data for thousands of Australian sites.
We obtained recordings of daily minimum and
maximum temperatures, and precipitation from BOM
weather stations in SEQ for 1 January 2004 to 31
December 2013. A station’s data were included if there
were no missing data for precipitation, or <6% missing
data for temperature. These thresholds optimally
balanced the geographic spread of stations with toler-
able levels of missing data. Fifteen temperature and 60
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precipitation stations had suitable data (see online sup-
plementary technical appendix, figure A1). Missing tem-
perature data were imputed using the RClimTool
(Colombian Climate and Agriculture, Colombia). We
calculated regional daily precipitation, and minimum,
mean and maximum temperatures by averaging record-
ings across all stations (see online supplementary tech-
nical appendix, table A1, figures A2 and A3).

Notifications data
Notified cases under-represent salmonellosis incidence
as attrition occurs throughout the notification process if
an ill person does not see a doctor, a stool sample is not
viable, or a sample returns a false negative for a patho-
gen. Salmonellosis is a legally notifiable disease in
Queensland, so although under-reporting occurs, con-
firmed cases are reliably reported.5 Under-reporting is
believed to be stable across 2004–2013, and so should
not influence estimates of weather–salmonellosis associa-
tions (R Stafford, personal communication, 30 April
2015). In August 2013, Queensland Health introduced a
more sensitive test for salmonellosis which likely
increased the number of notifications recorded (R
Stafford, personal communication), and we adjusted for
this step change in our models (see below).
The daily number of notified salmonellosis cases in

SEQ from 1 January 2004 to 31 December 2013 was sup-
plied by Queensland Health. The case date is the date a
patient’s stool sample was collected, which is the closest
date to symptom onset available. The date of symptom
onset would allow a more precise alignment of daily
weather and cases, however, the high number of cases
makes it infeasible to interview each patient to deter-
mine when their symptoms began. For the same reason,
cases could not be identified as outbreak related or spor-
adic, nor whether the case was acquired locally or
outside of Queensland or Australia.

STATISTICAL ANALYSES
We examined descriptive statistics for all variables, and
calculated correlation coefficients between temperature,
precipitation and salmonellosis cases. We fitted three
models: a standard regression, an autoregressive regres-
sion, and a switching model, all with smoothed lags for
temperature and precipitation. We calculated the per
cent change in salmonellosis risk per 5°C increase in
temperature and 10 mm increase in daily precipitation,
together with Bayesian 95% credible intervals.

Standard regression model
We fitted a Poisson regression model for daily salmonel-
losis cases with distributed lags of 21 days for daily mean
temperature and precipitation using natural splines with
3 degrees of freedom as predictors. Using a spline for
temperature and precipitation reduced the collinearity
between the lag terms, improving the accuracy of the
model.18 We decided a priori to examine a lag of

21 days because this represented a biologically plausible
time frame in which Salmonella could be transmitted to
humans from an animal or the environment. In all
models, we included quadratic and linear terms for time
to control for the upward trend in salmonellosis inci-
dence over time due to population growth and
non-weather-related factors. We identified effects of day
of the week and public holidays, which we modelled
using categorical variables, and a binary variable for days
after 1 August 2013, to control for the change in path-
ology tests. The regression model was:

st � Poisson(mt); t ¼ 1; . . . ;n;

log (mt) ¼ aXt þ btemperaturet þ gprecipitationt

where st is the number of cases on day t and X a design
matrix that fits the intercept, day of the week, public
holiday, trend and change in pathology test. We tried
minimum, mean and maximum temperatures, however,
the results were similar, so we used mean temperature,
as this gave the best fit.

Autoregressive regression model
Autocorrelation between daily counts of salmonellosis
cases was observed. Ignoring this autocorrelation would
incorrectly assume that observations are independent
and potentially underestimate the model’s SEs.19 As
such, the first model is likely to be naïve, however, it pro-
vides useful information about the change in parameter
estimates and residuals when an autoregressive term is
added. We used an AR-1 term as this lag showed the
strongest autocorrelation. This model was the same as
the standard regression model with the inclusion of the
autoregressive term:

log (mt) ¼ rst�1 þ aXt þ btemperaturet

þ gprecipitationt

The autoregressive term uses yesterday’s case numbers,
so when yesterday’s case numbers are high the expected
number of cases today is also high (assuming ρ>0). We
experimented with using the log number of yesterday’s
cases, and using the identity link in place of the log link,
but neither gave as good a fit to the data as the above
model.

Switching model
Switching models alternate between two methods of
modelling cases based on whether cases are outbreak or
sporadic. During outbreak phases when there are a high
number of related cases, the switching model includes
an AR-1 autoregressive term to predict the daily number
of cases. During sporadic phases, the daily cases are
modelled using the weather variables (and other pre-
dictor variables described for the standard regression
model) with no autoregressive term. The phase is deter-
mined through shifts in the daily case numbers, with
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large changes incurring a phase change.17 The two
regression equations are:

log (mt) ¼
rst�1 þ aXt;

aXt þ btemperaturet
þ Yrainfallt;

8<
:

t [ outbreak;

t [ sporadic:

The model switches between the sporadic and outbreak
phases using a Markov process with two states: outbreak
and sporadic. The probability of switching at time t
depends on the state at time t−1. The switching prob-
abilities and states are unknown parameters which are
estimated together with the regression parameters.
All three models were fitted using a Bayesian para-

digm, and results are presented as the per cent change
in cases and 95% credible intervals. Estimates were
made using two Markov chain Monte Carlo with 3000
iterations, using R V.3.1.1 and JAGS V.3.4.0 (R Core
Team. R: a language and environment for statistical com-
puting. Vienna: Austria: R Foundation for Statistical
Computing, 2014; Plummer M. rjags: Bayesian graphical
models using MCMC. 2015. R package version 3–15.
http://CRAN.R-project.org/package=rjags). We visually
examined the coalescence of the two chains to check for
convergence. To assess performance and compare
models, we calculated each model’s deviance informa-
tion criterion (DIC), and examined the residuals using
an autocorrelation function (ACF) and cumulative peri-
odogram plots (see online supplementary technical
appendix, figures A4 and A5). We also conducted sensi-
tivity analyses on the switching models to assess the effect
of precipitation and temperature separately (see online
supplementary technical appendix, table A2 and figure
A6). R and JAGS code for two models is available in the
online supplementary technical appendix (Part 2).

RESULTS
There were 14 800 salmonellosis cases notified in SEQ
during 2004–2013. More cases occurred in summer than
in winter, and cases were positively correlated with daily
mean temperature (0.4) and precipitation (0.04).
The standard regression model estimated that a 5°C

increase in mean temperature was associated with a
59.4% increase in salmonellosis cases (95% CrI 55.1%,
63.7%), while a 10 mm increase in precipitation
increased cases by 14.6% (95% CrI 9.2%, 20.3%). After
adding an autoregressive term to the standard model, a
5°C increase in mean temperature was associated with a
50.6% increase in cases (95% CrI 46.3%, 55.1%), and
10 mm of precipitation increased cases by 11.4% (95%
CrI (6.3%, 16.8%). As expected, consecutive days’ cases
were positively correlated (r=0.41). The switching model
estimated a 45.4% increase in cases (95% CrI 40.4%,
50.5%) after a 5°C increase in mean temperature and
24.1% increase (95% CrI 17.0%, 31.6%) following
10 mm of precipitation (figure 1). The switching model
estimated 77% of days (2831) as sporadic cases,
meaning the predictor variables were used to model

most days, with the remaining 23% of days modelled as
outbreaks using the autoregressive term. Parameter esti-
mates are available in online supplementary table A3 in
the technical appendix.
All three models exhibited similar risk patterns for the

overall effects of temperature and precipitation and over
the lag period (figure 2). Higher temperatures steadily
increased the risk of salmonellosis, and the risk steadily
increased in the 5–21 days following a high temperature.
Salmonellosis risk also increased with greater precipita-
tion, with the risk increasing from 2 to 12 days after a
heavy rainfall event, then decreasing slightly over the
remaining days.
We examined each model’s ACFs, cumulative periodo-

gram and DIC to assess which model achieved the best
fit. The residuals of the switching model showed substan-
tially less autocorrelation than those from the regression
models, indicating that the outbreak phase of the model
managed the autocorrelation between cases. As
expected, the autoregressive model had less autocorre-
lated residuals than the standard regression, but still
more than the switching model. We plotted each
model’s residuals annually and found the years 2007 and
2009 were consistently the least well fit across all models.
We observed no anomalous behaviour in notifications
data and no changes to the notification system in these
years. However, both years broke Queensland tempera-
ture records with maximum temperatures in autumn
2007 and winter 2009 2.0°C and 4.3°C above average,
respectively.20 21 Precipitation was also greatly above
average in autumn 2009, then the lowest recorded in
winter 2009.21 These unusual weather events may have
influenced salmonellosis cases, resulting in a poorer fit
of the models for these years.
The cumulative periodograms showed that residual

seasonal patterns were unaccounted for by both regres-
sion models, however, no seasonal patterns remained
evident for the switching model showing that seasonality

Figure 1 Estimates of the per cent change in cases per 5°C

increase in temperature and 10 mm increase in precipitation

for each model.
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has effectively been controlled for by removing the influ-
ence of outbreaks. The switching model also recorded
the lowest DIC at 313 and 90 points lower than the
standard and autoregressive regression models, respect-
ively. As 10 points is considered a substantial improve-
ment, these statistics affirm that the switching model
had the best fit. ACF plots and cumulative periodograms
are in the online supplementary technical appendix
figures A4 and A5.
We further validated the switching model by compar-

ing its outbreak phases with the outbreaks reported by
government surveillance to test its ability to detect
known outbreaks (see online supplementary technical
appendix, figure A7 and table A4). The model detected
most of the government-reported outbreaks, although
the model’s outbreaks often persisted longer than those
reported by the government, as the government requires
environmental or epidemiological evidence to link a case
to an outbreak. The model has no such requirements,
and so may associate earlier and more cases with an out-
break, reporting longer outbreak durations. However,
the substantial alignment between outbreaks reported by
the model and the government demonstrates the ability
of the switching model to control for outbreaks.

DISCUSSION
Summary and comparison with previous estimates
This study found that higher daily mean temperature
and precipitation increase the risk of contracting sal-
monellosis. Previous studies using autoregressive models
estimated that salmonellosis cases in Brisbane rose by
5.8% per 1°C increase in minimum temperature 2 weeks
previously,10 or 62% per 5°C rise in the previous
month’s mean temperature.11 The current study’s
regression models made comparable estimates of 59.4%
and 50.6% increases in cases per 5°C increase in mean
daily temperature. Another study using an autoregressive
model found salmonellosis cases in Brisbane increased
by 0.2% 2 weeks after a heavy precipitation event.10 All
three models estimated positive associations between
precipitation and salmonellosis, however, the strength of
the association was much higher, with cases estimated to
increase by between 11.4% and 24.1% per 10 mm pre-
cipitation. This discrepancy could be due to different
study periods and geographic regions examined
between studies.
Previous studies may have inaccurately estimated

weather–salmonellosis associations through the use of
autoregressive and seasonality terms, as such terms are
likely to explain variance in case numbers that would be
due to temperature and precipitation. Switching models
use autoregressive terms more sparingly, allowing
weather to explain more of the variation in cases, and
producing higher, and likely more accurate, estimates of
weather–salmonellosis associations.
Contamination of broiler flocks is one possible mech-

anism through which higher temperatures increase sal-
monellosis cases. Heat stress can induce enteritis in
chickens with Salmonella present in their guts, and the
bacteria are more likely to spread to other organs.22

During processing, spills of visceral material containing
Salmonella may contaminate the meat. In Queensland,
approximately 44% of chicken carcases postslaughter
are contaminated with Salmonella, and viscerally contami-
nated meat was linked to a 196% increase in salmonel-
losis cases in northern Queensland during 2011.23 24

The results of our study support this transmission
pathway as the delayed increase in salmonellosis cases
may occur due to lags between colonisation of flocks on
warm days and case onset following processing and
human consumption. The more acute effects of high
temperatures on salmonellosis incidence are likely due
to food handling mistakes closer to the time of con-
sumption, combined with delays in symptom onset and
seeking medical attention.
Precipitation likely increases salmonellosis incidence

shortly after a rainfall event by increasing pathogen
loads in household rainwater tanks through run-off from
gutters or in surface waters which individuals may have
recreational contact with.7 8 The delayed effect of rain-
fall on salmonellosis is also likely to be through
increased pathogen loads in surface water which is then
used to irrigate or process fresh produce later consumed

Figure 2 Overall per cent change in cases by daily mean

temperature and by days of lag following a day with a mean

temperature of 30°C, and per 1 mm change in daily

precipitation and by days of lag after a day with 75 mm

precipitation.
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raw, as was the suspected source of an Australian out-
break linked to papaya.1 9 Produce grown in open fields
may also be directly contaminated, as precipitation
splashes water and soil containing pathogens onto
produce which is later eaten raw.25 These results support
previous findings that temperature and precipitation
exert a strong influence on salmonellosis incidence in
Queensland.

Assessment of switching models as an improved method
This study demonstrates that switching models improve
on traditional techniques of modelling salmonellosis.
The switching model achieved a substantially lower DIC
than the regression models, had less autocorrelated resi-
duals, and showed no confounding residual seasonal pat-
terns. We also validated the model by showing that it
accurately predicted most outbreaks reported by govern-
ment surveillance.
The switching model’s better fit likely stems from its

improved control of outbreaks. Traditional techniques of
modelling weather–salmonellosis often manage out-
breaks through imperfect means such as truncating case
numbers or discarding outbreak cases.10 16 Similarly,
multiple temperature splines or moving average terms
are often included to control for unexplained seasonal
patterns,10 11 which produces well-behaved residuals, but
does not explain what aspect of season influences sal-
monellosis. Our switching model required no such tech-
niques to control for seasonality and inherently
managed outbreaks by modelling them separately to
sporadic cases. The results of this study indicate that
adequately controlling outbreaks, as the switching model
does but regression models do not, accounts for extrane-
ous seasonal patterns, and produces a better fit.
The switching model’s results are, therefore, likely

more accurate estimates of weather–salmonellosis associa-
tions. The smaller temperature effect and larger precipi-
tation effect in the switching model (figure 1) suggests
that ineffectively removing the influence of outbreaks
overestimates the effect of temperature and underesti-
mates the effect of precipitation on salmonellosis.

Limitations and future directions
Reliance on notification data is a common limitation of
weather–disease studies. Notification data under-report
cases,5 and severe cases are likely over-represented.
Although under-reporting is believed to be consistent
across the study period and unlikely to influence the
weather–disease relationship, under-reporting may
obscure important social or environmental patterns, or
generate artificial patterns in salmonellosis incidence.
For example, negative associations were observed
between weekends and salmonellosis, however, this likely
occurs as individuals are less likely to see a doctor and
have their case notified on a weekend. Another limitation
is the slight misalignment between infection and weather
due to each case’s date being the date a stool sample was
taken, not the date of symptom onset. This potentially

reduces the estimates of weather–salmonellosis associa-
tions. Further, this study obtained regional weather data
by averaging recordings from several stations which could
also reduce estimates of associations by dampening
weather extremes and misaligning the location of cases
with weather. However, it is worth noting that our esti-
mates were strongly statistically significant, and larger
than previous estimates in the literature.
Models which achieve good statistical fit enable accur-

ate prediction of case numbers, as such lagged switching
models could be used in surveillance of foodborne dis-
eases. Indeed, switching models are currently applied in
influenza surveillance in Spain.17 However, while pre-
dicting infectious disease cases is useful in allocating
resources to manage outbreaks, understanding the
causes of foodborne diseases can direct resources
towards prevention. This study provides evidence for
general pathways through which weather influences sal-
monellosis, future studies may then identify potential
interventions to these pathways to aid prevention.

CONCLUSIONS
Understanding the aetiology of weather–salmonellosis
associations is integral to implementing preventative
strategies to reduce the impact of salmonellosis. This
study identifies switching models as a means of achieving
a better understanding of these relationships, and likely
provides more accurate estimates of the effects of tem-
perature and precipitation on salmonellosis. These find-
ings are directly applicable in preventative strategies to
reduce the cost of salmonellosis in Australia.
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