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ABSTRACT Salmonellosis, caused by members of the genus Salmonella, is responsible
for considerable global morbidity and mortality in both animals and humans.
In this review, we will discuss the pathogenesis of Salmonella enterica serovar Typhi
and Salmonella enterica serovar Typhimurium, focusing on human Salmonella infections.
We will trace the path of Salmonella through the body, including host entry sites, tissues
and organs affected, and mechanisms involved in both pathogenesis and stimulation of
host immunity. Careful consideration of the natural progression of disease provides an
important context in which attenuated live oral vaccines can be rationally designed and
developed. With this in mind, we will describe a series of attenuated live oral vaccines
that have been successfully tested in clinical trials and demonstrated to be both safe and
highly immunogenic. The attenuation strategies summarized in this review offer important
insights into further development of attenuated vaccines against other Salmonella for
which live oral candidates are currently unavailable.

INTRODUCTION
Salmonellosis, caused by oral infection with members of the genus Salmo-
nella, is responsible for considerable global morbidity and mortality, in both
animals and humans (1, 2). The genus Salmonella contains two species,
Salmonella enterica and Salmonella bongori, each of which contains multiple
serotypes of genetically distinct organisms (3). There are currently over 2,500
serotypes (referred to as serovars) of Salmonella as defined by immunologic
identification of somatic O and flagellar H antigens. In turn, S. enterica is
divided into six subspecies (subsp.), of which only one, S. enterica subsp.
enterica colonizes warm-blooded animals; the remaining subspecies are
typically isolated from cold-blooded animals and the environment (3). It
was recently reported that, worldwide, the highest morbidities from human
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infections resulting from food-borne diseases involved
food contaminated with S. enterica (1, 2).

In this review, we will focus on S. enterica subsp. enterica,
encompassing the majority of serovars identified thus far,
and limit our discussion to vaccine candidates developed
to prevent human disease that have been tested in hu-
man clinical trials. We will first describe the features of
S. enterica infections in humans, including the host entry
sites, tissues and organs affected, and mechanisms in-
volved in pathogenesis; this information will provide a
context for later description of vaccine candidates and
the genetic strategies employed to rationally attenuate
Salmonella. We will then describe general immune re-
sponses elicited by natural oral infection with Salmonella
and discuss how these responses originate in relation to
immunologically primed tissue. Finally, we will present
clinical data derived from studies involving S. enterica
serovars Typhi (the causative agent of typhoid fever) and
Typhimurium (which typically causes gastroenteritis in
humans). The pathogenic mechanisms explored here for
two clinically relevant serovars, and genetic strategies
employed to create attenuated but highly immunogenic
live oral mucosal vaccines, can be applied to other Sal-
monella serovars for which vaccines are urgently needed
(4).

PATHOBIOLOGY OF SALMONELLA
INFECTIONS IN HUMANS

Overcoming the Gastric Acid Barrier
Infection with Salmonella is initiated following oral in-
gestion of contaminated food or water (see Fig. 1A).
The minimum infectious dose required for establishing
a productive infection depends on several key microbio-
logical factors including the strain and serovar of Salmo-
nella involved, as well as important host factors including
the host mammalian species to be colonized and various
gastrointestinal barriers to infection.

In humans, one significant physiological barrier strongly
influencing the infectious dose is gastrointestinal acidity.
Salmonella must overcome potentially lethal levels of
inorganic acid (H+) which produce a pH as low as 2 in the
stomach of healthy adults (Fig. 1B) (5). In human chal-
lenge studies conducted in the early 1970s at the Uni-
versity of Maryland, ∼107 colony forming units (CFUs)
was the minimum infectious dose required to establish
infection in >50% of volunteers orally challenged with a

fully virulent S. Typhi Quailes strain given with milk (6);
however, in recent challenge studies conducted at the
University of Oxford, using the identical Quailes strain
administered to volunteers who first ingested bicarbonate
solution to neutralize stomach acidity, the dose required
to establish infection in >50% of volunteers was reduced
by a factor of 4 logs to 103 CFUs (7).

Encountering low pH is believed to provide an impor-
tant environmental signal to Salmonella for deploying a
cascade of virulence factors necessary for host cell inva-
sion (8). Salmonella is equipped with a variety of genetic
strategies that contribute to their survival and growth.
Two key proteins involved in reallocation of metabolic
resources to survive acid stress (called the acid tolerance
response [ATR]) are RpoS and OmpR. RpoS is an al-

Figure 1 Pathobiology of human Salmonella infections. Infection
with Salmonella is initiated following oral ingestion of contaminated
food or water (A). Salmonella must then overcome potentially lethal
levels of inorganic acid (H+) which produce pHs as low as 2 in the
stomach of healthy adults (B). Salmonella organisms surviving
the extreme acidic conditions of the stomach eventually drain into
the small intestine, the portal for invasion into deeper tissues and
development of systemic disease (C). Salmonella invade tissues of both
villus epithelial tissue as well as lymphoid Peyer’s patches. Following
transit of invading Salmonella out of the lumen and across the epi-
thelial barrier of the small intestine, bacteria eventually gain transient
access to the bloodstream to eventually colonize deep tissues including
the liver (D), spleen, and bone marrow. It is at this stage that infec-
tion with S. Typhimurium is typically halted and does not progress to
systemic disease in immunologically competent humans. However,
S. Typhi can be released from deep tissues back into the bloodstream,
triggering a more substantial secondary bacteremia which precedes
the onset of classic typhoid fever. In rare cases, typhoid fever can
progress to an asymptomatic chronic infection in which S. Typhi can
migrate down the hepatic ducts of the liver and into the gallbladder
(E), setting up a convalescent carrier state in which very high levels of
organisms can be intermittently released back into the small intestine,
passing through the large intestine (F) and being released in the feces
(G).
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ternate sigma factor used by RNA polymerase to enhance
cell survival under acidic conditions by switching RNA
transcription and subsequent protein synthesis during
exponential growth in nutrient-rich conditions to a much
slower stationary phase growth in which a variety of acid
resistance genes are induced (8). OmpR is also involved
in this ATR, and is the effector component of a two-
component environmental sensor, in which the sensor
EnvZ activates OmpR upon exposure to both acidity and
osmolarity (8). In addition to osmoregulation and acid
tolerance, OmpR is also involved in the induction of
intracellular survival factors required for survival of
Salmonella within intracellular vacuoles, following inva-
sion of permissive eukaryotic cells such as macrophages
and intestinal epithelial cells (9).

The central role of RpoS in the survival of Salmonella has
been exploited for the development of live attenuated
vaccines against typhoid fever. Several candidate vaccines
tested in clinical trials have been engineered from wild-
type S. Typhi Ty2 strains in which the rpoS gene has been
naturally inactivated (10). When attenuated vaccine
candidates derived from Ty2 were compared with iden-
tically attenuated candidates derived from wild-type
S. Typhi ISP1820 strains, in which rpoS was intact, these
RpoS+ strains were unacceptably reactogenic (11). It has
also been shown that the only licensed and well-tolerated
live oral vaccine against typhoid fever, Ty21a, which was
created by chemical mutagenesis of Ty2 resulting in mul-
tiple attenuating chromosomal lesions, is also deficient
in synthesis of RpoS; consequently, this vaccine requires
multiple doses to confer protection against disease and
displays no acid tolerance response (12).

Invasion of the Small Intestine
Salmonella organisms that can survive the extreme acidic
conditions of the stomach eventually drain into the small
intestine, the portal for invasion into deeper tissues and
development of systemic disease (Fig. 1C). It is at this
stage of infection that differences in the serovar-specific
progression of disease most clearly manifest themselves.
S. Typhi possesses several essential clusters of pathoge-
nicity genes, grouped into distinctly regulated chromo-
somal locations called Salmonella pathogenicity islands
(SPIs), which enable invading S. Typhi organisms to
reach deeper tissues of the human liver, spleen, and bone
marrow, and bypass innate immunity clearance mecha-
nisms (13, 14). In contrast, S. Typhimurium is not
equipped with several of these essential intracellular

survival mechanisms required for deep penetration of
human tissues; therefore, infection of immunocompetent
individuals with S. Typhimurium typically results only in
local tissue invasion and a self-limiting gastroenteritis (13).

It is believed that Peyer’s patches are important sites
involved in transepithelial migration for Salmonella ac-
ross the luminal surface of the small intestine, based on
murine experimental challenge studies with S. Typhi-
murium (15). While direct in vivo evidence supporting
invasion of Peyer’s patches by S. Typhi in humans is
lacking, several observations support this notion. Ex-
amination of intestinal mucosal biopsies from volunteers
orally challenged with 109 CFUs of the Quailes strain
showed granulomatous lesions throughout the small in-
testine including the duodenum, jejunum, and ileum,
accompanied by infiltration of inflammatory cells, and
coinciding with systemic clinical symptoms including
fever and positive blood cultures (16). Peyer’s patches
are present throughout the human small intestine, with
densities increasing through the jejunum and the largest
patches typically residing in the terminal ileum in both
children and adults (17, 18), and Salmonella is believed
to take advantage of this antigen-sampling compartment
of the gastrointestinal tract to invade deeper tissues (19).

In addition to invading Peyer’s patches, Salmonella is
also likely to invade villous epithelial tissue of the small
intestine. Salmonella are equipped with a molecular ar-
senal of pathogenicity factors, some of which are com-
mon to both S. Typhimurium and S. Typhi, enabling
rapid and efficient invasion of intestinal epithelial tissues.
One critical environmental signal orchestrating a cas-
cade of virulence factors that participate in the invasion
process at precisely the right time is osmolarity. Villi of
the small intestine possess a gradient of osmolarity that is
highest at the luminal surface of villi (∼700 mOsm kg−1

H2O) and decreases to physiological levels (∼300 mOsm
kg−1 H2O) in the lower crypts of the villus (20, 21). In-
coming luminal Salmonella sense the high osmolarity
of villus surfaces, which in turn signals induction of a
pathogenicity island common to all S. enterica serovars
capable of infecting mammals, called SPI-1. This locus
encodes a type III secretion apparatus that injects effec-
tor proteins into target eukaryotic cells, resulting in ruf-
fling of the outer membrane and engulfment of invading
bacteria (22).

The transition from extracellular to intracellular patho-
gen induces an extensive reorganization of both bacterial
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metabolism and virulence factors. Upon transitioning
across the epithelial barrier, the osmolarity of the sur-
rounding tissue drops to physiological levels, providing a
critical signal for Salmonella to downregulate SPI-1 while
inducing synthesis of intracellular survival proteins in-
jected into infected cells by a separate and distinct SPI-2
type III secretion system (23). At this stage of infection,
crucial genetic differences between invading S. Typhi-
murium and S. Typhi begin to strongly influence the
course and manifestation of disease (24). Although both
serovars possess fully functional SPI-2 and ancillary
effector virulence proteins, S. Typhi is also equipped with
several additional genomic modifications, allowing it to
avoid the host natural inflammatory response to invading
organisms, which is characterized by a massive and rapid
influx of neutrophils; this is not the case for S. Typhi-
murium, which causes acute gut inflammation.

S. Typhi has been characterized as an excellent example
of “reductive genomic evolution” of a human pathogen
(25). In contrast to S. Typhimurium, S. Typhi has evolved
to become an exclusive human pathogen, incapable of
establishing a productive natural infection in any other
mammalian species, and relying on the host to provide
multiple essential factors required for survival and
growth. In adapting exclusively to infection of humans,
S. Typhi has naturally accumulated a series of genetic
disruptions and inactivations involving approximately
5% of its genome (26). Such inactivations include both
loss of metabolic capacity and modifications to the bac-
terial outer membrane surface that reduce interaction
and signaling via Toll-like Receptors (TLRs) expressed
by innate immune cells. In contrast, recent data suggest
that S. Typhimurium may actually benefit from initiation
of an inflammatory response because incoming innate
immune cells inadvertently generate a critical metabolite
called tetrathionate from the oxidative burst; tetrathio-
nate is used exclusively by S. Typhimurium as an alter-
nate electron acceptor in anaerobic respiration, and
therefore becomes available for enhanced growth prior
to excretion from the colon (27, 28). Given that S. Typhi
spends relatively little time in the intestine prior to in-
vasion and systemic infection, it comes as no surprise
that S. Typhi has lost the ability to utilize tetrathionate for
anaerobic respiration (29).

Transepithelial migration and the accompanying drop
in osmolarity induces yet another pathogenicity island,
exclusive to S. Typhi, called SPI-7 (30, 31, 32), which
encodes an outer polysaccharide capsule called Vi (26).

The Vi capsule shields lipopolysaccharide (LPS) in the
bacterial outer membrane from signaling an inflamma-
tory sensor on the surface of phagocytic cells called Toll-
like receptor 4 (TLR4) (33). Signaling of TLR4 induces
the secretion of cytokines tumor necrosis factor alpha
(TNF-α) and interleukin (IL)-6, which are responsible
for recruitment of neutrophils and other inflammatory
cells to the site of infection (13). To further reduce TLR4
interaction and signaling by invading organisms prog-
ressing to systemic tissues, S. Typhi has acquired an
inactivating mutation in fepE, a gene controlling the
length of the repeating O antigen comprising S. Typhi
LPS. The result of losing fepE is that synthesis of ex-
tremely long LPS (>200 repeat units) is now blocked,
and LPS is no longer able to protrude through the pro-
tective layer of the Vi capsule (34). Surface expression of
the Vi capsule also interferes with neutrophil chemotaxis
and phagocytic killing of invading organisms by blocking
complement deposition onto the surface of S. Typhi; the
Vi capsule is composed of a homopolymer of saccharides
devoid of free hydroxyl groups required for deposition of
the complement component C3b, which in turn activates
the complement cascade through the alternative path-
way, thereby generating the chemoattractant C5a which
attracts neutrophils (35).

Remarkably, the SPI-7 locus also encodes a regulatory
protein called TviA, which, while upregulating expres-
sion of Vi, also downregulates expression of flagellin (31),
another powerful innate signaling protein that binds
to and activates TLR5 in the basolateral membrane of
intestinal epithelial cells (36, 37). Activation of TLR5 in-
duces secretion of another potent cytokine, IL-8, which
is also a powerful recruiter of neutrophils and other in-
flammatory cells to the site of invading pathogens. Im-
portantly, flagellin is not expressed once S. Typhi has
invaded macrophages, thereby reducing pyroptosis of
infected cells and further recruitment of neutrophils (38).
This strategy of reducing pyroptosis also prevents release
of S. Typhi from its protected intracellular niche, thus
facilitating systemic dissemination.

Transient Primary Bacteremia
Following transit of invading Salmonella out of the
lumen and across the epithelial barrier of the small in-
testine, bacteria eventually gain access to the bloodstream
for a brief period of time (39), facilitating a more sus-
tained infection of the liver, spleen, and bone marrow
(Fig. 1D). The passage of bacteria into the bloodstream
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involves intracellular persistence within human macro-
phages. The ability of Salmonella to survive and replicate
within these cells, thereby facilitating systemic infection,
clearly differentiates S. Typhi from S. Typhimurium.
Compared with S. Typhimurium, S. Typhi has up to 100-
fold higher survival rates in elutriated primary human
macrophages from peripheral blood, with intracellular
replication resulting in very little cell death (40); inter-
estingly, the rpoS+ strain ISP1820 survives better in hu-
man macrophages than the rpoS– strain Ty2 (40), again
suggesting a role for rpoS in host survival.

It has been reported that bacteremia can be detected by
PCR in volunteers challenged with the S. Typhi Quailes
strain within 12 hours after oral ingestion of organisms
(41). Culture positive detection of S. Typhi is observed in
the monocyte fraction of the peripheral blood cells re-
covered from naturally infected typhoid patients (42).
S. Typhi is present at very low levels of ∼2 CFU/ml in
blood from patients with uncomplicated enteric fever
during the first week of illness. This level drops to
∼1 CFU/ml during the second and third weeks, and
declines to ∼0.3 CFU/ml during the fourth week; blood-
borne S. Typhi is not usually present as extracellular
organisms, with approximately 63% of viable bacteria
residing intracellularly in peripheral blood cells (43).
Much higher levels of S. Typhi can be detected in the
bone marrow of patients with confirmed uncomplicated
typhoid fever, with ∼5 CFU/ml in bone marrow aspirate
recovered in the first week of illness and increasing to
∼160 CFU/ml during the third week; again most bacteria
are intracellular and therefore less susceptible to anti-
biotic treatment (44).

Establishment of the Carrier State and Shedding
Invading S. Typhi reaching the liver, spleen, and bone
marrow can replicate within resident macrophages, and
can then be released back into the bloodstream, trigger-
ing a more substantial secondary bacteremia that pre-
cedes the onset of classic typhoid fever (45, 46). However,
2 to 5% of typhoid cases (47, 48) eventually progress to an
asymptomatic chronic infection in which S. Typhi can
migrate through the hepatic ducts of the liver and into
the gallbladder (Fig. 1E), setting up a convalescent carrier
state in which very high levels of organisms can be in-
termittently released back into the small intestine, pass-
ing through the large intestine (Fig. 1F), and being shed
in the feces at levels as high as 106 to 1010 viable orga-
nisms per gram of stool (Fig. 1G) (49). This intermittent

shedding facilitates further spread of the disease to sus-
ceptible individuals through contaminated food or water.
Chronic infection of the gallbladder is often accompa-
nied by the presence of gallstones, upon which S. Typhi
are able to establish robust colonization through the
formation of biofilms. These biofilms are composed of
polysaccharides including Vi and LPS but only minor
amounts of flagellar proteins (50). S. Typhi residing in
biofilms is recalcitrant to antibiotic treatment regardless
of the inherent susceptibility of the pathogen. Further
direct infection of gallbladder epithelium by free S. Typhi
growing in the gallbladder lumen can take place via os-
motic activation of the SPI-1 invasion locus, resulting
in tissue damage and sloughing of epithelial cells down
the bile duct and back into the duodenum of the small
intestine (51, 52). Interestingly, although acute typhoid
fever does not elicit appreciable antibody responses against
Vi antigen, chronic carriers are able to mount a very high
Vi-specific serum antibody response, which has been shown
to be an excellent diagnostic marker for the carrier state (53,
54).

Late-Stage Complications and Death
Throughout the discussion of S. Typhi infections, we have
described the pathobiology of acute typhoid fever, without
the involvement or influence of life-threatening extrain-
testinal complications. However, while the vast majority
of typhoid cases resolve without life-threatening sequelae,
up to 10% of typhoid patients can develop serious com-
plications, including death from gastrointestinal hemor-
rhages and peritonitis from intestinal perforation (39).
The rate of intestinal perforations in patients with typhoid
fever worldwide has been estimated to be 3% (55). The
average case fatality rate for intestinal perforation was
reported to be 15%, with rates as high as 40% depend-
ing on geographic location (56). Of note, intestinal per-
forations usually occur within 45 cm of the ileocecal
valve (57), an area with the highest density of Peyer’s
patches and an important portal of invasion for S. Typhi
(17, 18).

STRATEGIES FOR ATTENUATION AND DESIGN OF
HUMAN LIVE ORAL SALMONELLA VACCINES

Immune Responses to Natural Infection
Understanding the progression of human Salmonella
infections and immune mechanisms that can control
infection greatly facilitates the rational design of effica-
cious live attenuated vaccines against these organisms.
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Unlike many other enteric pathogens, infection with Sal-
monella does not typically induce a long-lasting protective
immunity. Pathogen-specific antibodies, used as readouts
of pathogen exposure and immunological priming, are
important for clearance only while Salmonella is extracel-
lular or within the lumen of the intestines. These antibodies
block motility and facilitate complement-mediated lysis
or phagocytic killing. Studies in typhoid patients from
Bangladesh, where Salmonella is endemic, have shown
elevated serum IgA and IgG antibodies against LPS, whole-
cell extract, and membrane preparations, during infection
(58), although membrane preparation-specific IgA anti-
bodies were more prevalent than IgG. These responses are
highest in adults, yet children also develop IgA antibodies
specific for S. Typhi membrane antigens which decline
during late convalescence (59).

Although it is evident that both innate and humoral im-
mune responses are required for control of Salmonella
infections, cellular immunity is believed to play a crucial
role in the clearance of Salmonella residing intracellu-
larly. However, the exact roles of individual cell types and
mechanisms underlying protective immunity remain to
be elucidated. Upon infection of phagocytic and profes-
sional antigen-presenting cells (i.e., macrophages and
dendritic cells) Salmonella antigens are processed and
presented for stimulation of CD4 and CD8 T cells, re-
sulting in activation and differentiation of T helper (Th)
1, Th2, and Th17 cells (60, 61, 62), as well as T cytotoxic
(Tc) (63, 64) and T regulatory (Treg) cells (65), which are
believed to be essential for protection against disease (66).
Natural infection also results in the induction of Th1 type
CD4+ and CD8+ T cells that produce high levels of in-
terferon gamma (IFN-γ) during acute and convalescent
phases of infection (60). Peripheral blood cells isolated
from typhoid patients and stimulated with bacterial an-
tigens produced higher levels of other cytokines, includ-
ing IFN-γ, macrophage inflammatory protein-1β, soluble
CD40 ligand, TNF-β, IL-13, and IL-9 during convales-
cence, which are likely required for an effective immune
response that leads to bacterial clearance (62). Recent
studies have also shown that natural infection results in
the upregulation of the gut-homing integrin α4β7 on T
regulatory cells (65), which may play a role in downregu-
lating proinflammatory CD4 and CD8 T-cell responses.

General Strategies for Live Oral Vaccine Design
As discussed above, Salmonella possess specialized viru-
lence mechanisms that allow them to reach permissive

niches within the human host, establishing reservoirs
for subsequent replication. Therefore, genetically inacti-
vating one or more of these essential virulence factors
constitutes one highly successful approach for weakening
fully virulent organisms and constructing attenuated
live Salmonella vaccines intended for oral immunization
of humans. A more subtle but equally effective strategy
for attenuating pathogens targets metabolic pathways
required to sustain infection in the host, but this ap-
proach must be accomplished in such a way that the
resulting live vaccine remains metabolically fit enough
to reach immune inductive sites and elicit biologically
relevant protective immunity in the absence of overt
disease. Overattenuation of a candidate vaccine, while
resulting in a highly safe and nonreactogenic organism,
will require the administration of multiple oral doses to
achieve protective immunity, a requirement that com-
plicates deployment of the vaccine into the field. These
key concepts for designing live oral vaccine candi-
dates are particularly well illustrated with a select group
of attenuated candidate live oral vaccines that are sum-
marized in Table 1 and individually examined in detail
below.

Chemical Mutagenesis and Ty21a
The only licensed vaccine against human infections
caused by Salmonella is Ty21a, a typhoid fever vaccine
derived from the parental wild-type S. Typhi strain Ty2
by chemical mutagenesis using N-methyl-N′-nitro-N-
nitrosoguanidine (MNNG) (67). MNNG is an alkylating
agent that induces transition mutations (purine to pu-
rine or pyrimidine to pyrimidine base transitions) in
replicating DNA, causing pleiotropic mutations to arise
in multiple genes that can affect a wide variety of un-
related cell functions (68). Consequently, sequencing of
the chromosome of Ty21a has revealed that this vac-
cine contains multiple mutations in a metabolic pathway
controlling the incorporation of galactose into properly
synthesized LPS (69). Ty21a requires growth in the
presence of trace amounts (0.001%) of galactose to syn-
thesize full-length LPS, but growth in the presence of
higher concentrations (0.1%) leads to the intracellular
accumulation of toxic intermediates that causes prema-
ture lysis of the vaccine strain (69). Ty21a contains ad-
ditional metabolic mutations in amino acid synthesis
pathways, leading to a requirement for isoleucine and
valine (in addition to tryptophan and cysteine inherited
from the parent strain Ty2) for growth under nutrient
limiting conditions (69).
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As a result of multiple mutations in critical metabolic
pathways, Ty21a grows slower than the wild-type Ty2
in vitro (67), and cannot be recovered from the small
intestine of orally vaccinated humans regardless of the
number of organisms or vaccine doses administered (70).
For this reason, successful oral immunization of humans
requires a minimum of 3 doses to provide durable pro-
tection against challenge, with efficacy also depending on
growth conditions and specific formulation of the vac-
cine. Ty21a grown in the absence of galactose results in a
rough vaccine strain lacking O antigen that was poorly
immunogenic and failed to protect volunteers challenged
with 105 CFUs of the Quailes strain (70). In contrast,

3 oral doses of O-expressing Ty21a, administered orally
every other day in enteric-coated capsules, conferred 62%
protection in field trials over a 7-year period; 3 doses of a
liquid formulation, reconstituted from buffered lyophi-
lized sachets, elicited 78% protection over a 5-year period
(71). These data support the hypothesis that O-antigen-
specific immunity plays an important role in protection
against typhoid fever. Interestingly, the recurrence rate
for exposed individuals who recovered from a previous
episode of typhoid fever ranged from 20% in an endemic
region (72) to 23% in convalescent volunteers challenged
with 105 CFUs of the Quailes strain (73), suggesting that
natural infection does not necessarily elicit the robust

Table 1 Selected candidate live oral Salmonella vaccines against human disease tested in phase 1/phase 2 clinical trials

Attenuation strategy Vaccine strain
Serovar; strain;
relevant genotype Relevant phenotype References

Chemical mutagenesis Ty21a Typhi; Ty2; ΔrpoS ΔgalE
ΔgalK ΔilvD ΔvexD

Natural RpoS-dependent sensitivity to environmental
stressors; defective synthesis of LPS; auxotrophic for
isoleucine and valine; defective synthesis of Vi

69

Engineered deletions
in rpoS

χ9639a Typhi; Ty2; ΔrpoS Natural RpoS-dependent sensitivity to environmental
stressors

90

χ9640a Typhi; Ty2; rpoS+ Engineered RpoS-mediated resistance to environmental
stressors

90

χ9633a Typhi; ISP1820; rpoS+ Natural RpoS-mediated resistance to environmental
stressors

90

Engineered deletions
in phoP/phoQ

Ty800 Typhi; Ty2; ΔrpoS
ΔphoP ΔphoQ

Natural RpoS-dependent sensitivity to environmental
stressors; defective in pH and osmolarity induction of
invasion virulence factors

94

Ty1033b Typhi; Ty2; ΔrpoS
ΔphoP ΔphoQ

Natural RpoS-dependent sensitivity to environmental
stressors; defective in pH and osmolarity induction of
invasion virulence factors

96

LH1160b Typhimurium; ATCC
14028; ΔphoP ΔphoQ

Defective in pH and osmolarity induction of invasion
virulence factors

95

Engineered deletions
in ssaV

M01ZH09 Typhi; Ty2; ΔrpoS
ΔaroC ΔssaV

Natural RpoS-dependent sensitivity to environmental
stressors; auxotrophic for aromatic amino acids;
defective for proper secretion of SPI-2 effector proteins

97, 99, 100
101, 102

WT05 Typhimurium; TML;
ΔaroC ΔssaV

Auxotrophic for aromatic amino acids; defective for
proper secretion of SPI-2 effector proteins

97

Engineered deletions
in aroC, aroD, and
htrA

CVD 908 Typhi; Ty2; ΔrpoS
ΔaroC ΔaroD

Natural RpoS-dependent sensitivity to environmental
stressors; auxotrophic for aromatic amino acids

105

CVD 908-htrA Typhi; Ty2; ΔrpoS
ΔaroC ΔaroD ΔhtrA

Natural RpoS-dependent sensitivity to environmental
stressors; auxotrophic for aromatic amino acids;
sensitive to environmental heat shock

107

CVD 909 Typhi; Ty2; ΔrpoS
Ptac-tviA ΔaroC ΔaroD
ΔhtrA

Natural RpoS-dependent sensitivity to environmental
stressors; constitutive expression of TviA regulator
and Vi antigen; auxotrophic for aromatic amino acids;
sensitive to environmental heat shock

77, 108, 110

aThese vaccines were engineered as live vector vaccines, carrying additional chromosomal mutations, as well as carrying multicopy plasmids expressing a
pneumococcal foreign antigen. However, all candidate vaccines carried the same attenuating lesions and differed only with respect to parental strain used (Ty2
versus ISP1820) and the presence of rpoS.

bThese vaccines were engineered as live vector vaccines, carrying one additional chromosomal deletion in the purB gene, as well as carrying multicopy plasmids
encoding both purB and the foreign antigen urease fromH. pylori. However, both S. Typhi and S. Typhimurium candidate vaccines were isogenic for the attenuating
lesions tested in clinical trials.
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protective immune effector mechanisms against rein-
fection as observed in vaccinees receiving multiple oral
doses of Ty21a.

Both serum antibody titers and the frequency of circu-
lating antibody-secreting cells (ASCs) have historically
been the primary method to ascertain immunogenicity of
orally delivered live Salmonella vaccines (74). The B cell
responses induced by Ty21a include LPS-specific serum
IgG and IgA antibodies (75) and mucosally primed ASCs
bearing the α4β7 gut homing integrin (76). Among in-
dividuals who received the routine 4 doses of Ty21a in
the United States, half of the recipients developed strong
anti-LPS IgA B memory responses and 30 to 40% de-
veloped antiflagella IgG and IgA B memory responses
(77). Ty21a-induced antibodies have been shown to bind
to S. Typhi and enhance phagocytosis and bactericidal
activity (75, 78).

Ty21a has also been shown to induce IFN-γ-producing
CD4 and CD8 T terminal effector memory cells express-
ing α4β7 (79). Peripheral blood mononuclear cells from
Ty21a-vaccinated volunteers stimulated with S. Typhi
flagella produced cytokines required for clearance of in-
tracellular pathogens and cell-mediated cytotoxicity in-
cluding IFN-γ, TNF-α, IL-1β, IL-6, and IL-10 (80). In
an early study, >90% of Ty21a-vaccinated volunteers de-
veloped LPS- and flagella-specific antibodies (78). Inter-
estingly, when Salmonella-specific IgA antibodies were
incubated together with CD4 T cells, antibody-dependent
cellular cytotoxicity was observed against infected cells
(81). Ty21a vaccination has also been show to elicit IFN-γ-
secreting CD8 T cells that exhibited cytotoxic activity
against infected cells (82, 83, 84). Further analysis showed
that the vaccine-induced CD8 T cells were long-lived
memory cells with the capacity to produce multiple cyto-
kines including IFN-γ, TNF-α, IL-2, and IL-17 (64, 85).
Taken together, these data suggest that, in contrast to
natural infection, repeated vaccination with Ty21a appears
more effective than wild-type organisms at presenting a
variety of otherwise immunologically muted antigens such
as LPS, flagella, and other outer membrane proteins to
the immune system, thereby resulting in robust pathogen-
specific humoral and cellular immunity.

Genetically Engineered Vaccines
with Mutations in rpoS
In addition to mutations in genes controlling the syn-
thesis of tryptophan and cysteine, the parent strain Ty2

used to create the vaccine Ty21a also contains a natu-
rally occurring mutation inactivating rpoS (10, 86). The
role of rpoS in adapting to environmental stresses, in-
cluding its role in the acid tolerance response, was de-
scribed previously in the pathobiology of Salmonella
infections. However, rpoS also regulates the synthesis of
Vi capsular polysaccharide (87, 88), which plays a critical
role in the systemic survival of invading S. Typhi in
natural disease. 99.5% of 2,222 S. Typhi blood-borne
clinical isolates express the Vi polysaccharide (89), and
human clinical trials clearly demonstrate that Vi+ wild-
type S. Typhi challenge strains are more virulent than Vi–

strains (6). However, in other studies, 36% (15/41) of
S. Typhi clinical isolates were proven to carry defective
rpoS alleles; interestingly, no inactivating mutations were
identified in S. Typhimurium clinical isolates (86), sug-
gesting different roles for rpoS in the physiology and
resulting pathogenic potential of S. Typhimurium versus
S. Typhi in humans. It has also been shown in vitro
that RpoS– strains such as Ty2 express more Vi capsular
antigen than wild-type RpoS+ strains under inducing
osmolarity conditions (87, 88). The picture that emerges
is that, under the high-osmolarity conditions of the in-
testinal lumen, rpoS is upregulated, which represses syn-
thesis of Vi; this negative control is further strengthened
by the osmotic repression of tviA, which is a positive
activator of Vi synthesis. Since these conditions induce
SPI-1 and the invasion of the small intestine, trans-
epithelial migration results in a reduction of osmolarity
to physiological levels, thereby repressing rpoS and acti-
vating tviA for induction of Vi synthesis (Fig. 2).

It is therefore plausible that although RpoS– strains are
attenuated with respect to survival in environmentally
stressful conditions such as intragastric acidity (control-
ling successful passage into the small intestine), vaccines
derived from the RpoS– Ty2 parent might nonetheless
be more immunogenic versus isogenic RpoS+ strains
because of better intracellular survival within macro-
phages, allowing invading organisms to penetrate deeper
into the host and reach immune inductive sites at levels
high enough to elicit protective immunity. However, this
hypothesis was recently shown to be incorrect in a phase
1 clinical trial in which volunteers were orally immunized
with a single dose of 1010 CFUs of two isogenic vaccine
strains derived from Ty2 (χ9639 and χ9640, Table 1) (61,
90), one carrying the original mutated rpoS allele and
the other carrying a genetically engineered wild-type rpoS
allele. Although not achieving statistical significance,
a trend for higher serum IgA and IgA ASCs, specific for
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S. Typhi surface antigens, was observed for RpoS+ vac-
cines versus RpoS– strains (90). Interestingly, a third arm
of this study was included in which volunteers were orally
vaccinated with 1010 CFUs of an identically attenuated
S. Typhi vaccine strain, derived from ISP1820 and des-
ignated χ9633, which carried the endogenous wild-type
allele of RpoS. One subject from this group had a single
positive blood culture 5 days following vaccination

that spontaneously resolved without clinical intervention
(90). These results seem to suggest an important role
for RpoS in the early stages of vaccination with attenu-
ated strains of S. Typhi, in which limited invasion of the
host must be carefully balanced by additional chromo-
somal mutations in engineered vaccine strains to ensure
both safety and immunogenicity. It is likely that the
candidate vaccines included in this study may have
proven more immunogenic if given in more than a single
dose. Nonetheless, it was concluded from this trial that
future vaccine development by this group would focus on
RpoS+ Ty2 derivatives.

Engineered Vaccines with Deletions
Blocking Systemic Infection: phoPQ
The licensed and experimental vaccines discussed thus
far have relied on interference of essential metabolic
pathways for construction of safe live oral vaccines.
However, careful selection of virulence factors for inac-
tivation can also yield safe vaccines that are highly im-
munogenic. PhoP/PhoQ is a pleiotropic two-component
signal transduction system in which the environmental
sensor PhoQ (activated either by low pH or low con-
centrations of extracellular Mg2+) triggers the transcrip-
tional regulator PhoP to induce the synthesis of the SPI-2
locus controlling intracellular survival functions (91).
In addition, PhoP/PhoQ regulates expression of other
genes within unlinked pathogenicity islands such as SPI-
11, in which the pagC gene is involved with intracellular
survival of Salmonella within macrophages (92, 93).
Therefore, inactivation of PhoP/PhoQ would be expected
to interrupt the systemic phase of Salmonella infection.
When this attenuating strategy was used as the sole
means for construction of a single dose of live oral ty-
phoid vaccine, again derived from the parent strain Ty2
and designated Ty800 (Table 1), the resulting candidate
vaccine was shown in phase 1 clinical trials to be safe,
well-tolerated, and immunogenic after single oral doses
of up to 1010 CFUs (94). Humoral immunity was com-
parable to responses from a second cohort of the study
receiving 4 doses of Ty21a, and robust dose-dependent
S. Typhi LPS-specific IgA-secreting cell responses were
detected in 10 of 11 subjects (94).

Given that the PhoP/PhoQ regulon is highly conserved
between S. Typhi and S. Typhimurium, construction and
initial clinical testing of Ty800 offered an intriguing op-
portunity to specifically investigate the immunogenicity
in humans of two closely related serovars of Salmonella

Figure 2 Induction of villus invasion by Salmonella. Invasion of
Salmonella into deeper tissues of the human host occurs primarily in
the small intestine (A) and is triggered by environmental signals in-
cluding osmolarity. Villi of the small intestine possess a gradient of
osmolarity, which is highest at the luminal surface of villi and
decreases to physiological osmolarity in the lower crypts of the villus.
Incoming luminal Salmonella sense the high osmolarity of villus
surfaces that induce invasion (B). High osmolarity in the lumen
upregulates rpoS, which in turn represses synthesis of Vi in S. Typhi to
enhance invasion; this negative control is further strengthened by the
osmotic repression of tviA, which is a positive activator of Vi synthesis
(C). In addition, high osmolarity signals OmpR to upregulate Sal-
monella Pathogenicity Island 1 (SPI-1) to inject effector proteins into
target eukaryotic cells, resulting in ruffling of the outer membrane and
engulfment of invading bacteria. Transepithelial migration then
reduces the osmolarity to physiological levels, repressing rpoS and
activating tviA for induction of Vi synthesis. TviA is also a repressor of
flagellar synthesis; therefore, S. Typhi is motile in the intestinal lumen
when TviA is repressed (C, top left), but replaces flagella with the Vi
capsule upon entry into host tissue (C, bottom left).
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(i.e., S. Typhi versus S. Typhimurium) in which systemic
dissemination of the organism was now blocked in both
cases, and observed immunogenicity would therefore
theoretically depend only on local immune induction
sites. Two parallel phase 1 studies were performed in
which S. Typhi Ty1033 and S. Typhimurium LH1160
candidate vaccine strains (Table 1), similarly deleted for
PhoP/PhoQ, were administered to volunteers, with sub-
jects vaccinated orally with S. Typhi Ty1033 receiving
≥1010 CFUs (95) and those vaccinated with S. Typhi-
murium LH1160 receiving an oral dose of 5 to 8 × 107

CFUs (96). As expected, no bacteremia was observed for
either serovar, and both vaccines were highly immuno-
genic with no adverse reactions. However, despite the fact
that subjects immunized with the attenuated S. Typhi-
murium vaccine received a 3 log unit lower dose of
vaccine than those vaccinated with attenuated S. Typhi,
3 of 6 volunteers were durably colonized and excreted
vaccine organisms for up to 10 days (96). Despite the
absence of clinical symptoms, volunteers vaccinated with
LH1160 were treated prophylactically with antibiotics to
hasten complete elimination of this S. Typhimurium
vaccine. In contrast, shedding of S. Typhi Ty1033 vaccine
organisms was limited to no longer than 4 days in 9 of 9
volunteers, requiring no therapeutic intervention with
antibiotics. Interestingly, volunteers more durably colo-
nized with the S. Typhimurium vaccine mounted the
most robust vaccine-specific humoral (anti-LPS serum
IgA and IgG) and mucosal (anti-LPS ASCs) immune re-
sponses. Only 1 of 6 subjects immunized with S. Typhi-
murium LH1160 failed to mount significant mucosal or
serological responses against any S. Typhimurium anti-
gens, but this subject only excreted vaccine organisms for
2 days, suggesting that prolonged intestinal colonization
can enhance immunogenicity (96). This surprising dif-
ference in fecal shedding of vaccine organisms seems to
underscore the fact that S. Typhimurium is metabolically
adapted to survival and growth within the human intes-
tinal tract, whereas S. Typhi spends relatively little time in
this environment because it quickly invades into deeper
and more permissive tissues of the human host.

Engineered Vaccines with Deletions
Blocking Systemic Infection: ssaV
A similar study design was pursued in a separate in-
vestigation, this time involving a direct comparison in
a single phase 1 clinical trial of identically attenuated
S. Typhi versus S. Typhimurium vaccines, in which a
more narrowly focused deletion in ssaV targeted only

the SPI-2 secretion apparatus to again interrupt systemic
dissemination (Table 1). In this study, 18 volunteers were
randomly assigned to two groups and orally immunized
with a single escalating dose of either S. Typhi vaccine
M01ZH09 or S. Typhimurium vaccine WT05, in doses
ranging from 107 to 109 CFUs (97). Importantly, both
vaccines also carried an additional metabolic deletion
mutation in the aroC gene encoding chorismate synthase,
rendering both strains auxotrophic for the biosynthesis
of aromatic amino acids (98). As with the PhoP/PhoQ
vaccines, no bacteremia was observed after vaccination
with either serovar, and both vaccines were highly im-
munogenic with no adverse reactions. However, pro-
longed excretion of vaccine organisms for 12 to 23 days
was again observed in 5 of 6 subjects receiving either 108

or 109 CFUs of the S. Typhimurium vaccine, regardless
of the engineered auxotrophy for aromatic amino acids
(97). Despite the limitation of these amino acids within
the tissues of human hosts, enough of these nutrients are
freely available within the lumen of the intestinal tract to
support extended growth and excretion of S. Typhimu-
rium vaccines. Therefore, this strategy for metabolic at-
tenuation does not by itself ensure sufficient attenuation
for S. Typhimurium vaccines.

However, the S. Typhi vaccine M01ZH09, which carries
only these two deletion mutations in aroC and ssaV, has
been shown to elicit excellent mucosal and humoral
immunity. Next to Ty21a, M01ZH09 is the most exten-
sively evaluated typhoid vaccine to date, having suc-
cessfully completed four phase 1 clinical trials and two
phase 2 clinical trials, involving a total of 356 orally
immunized subjects from North American, Europe, and
endemic Asian populations (97, 99, 100, 101, 102). The
vaccine given orally as a single dose of up to 1010 CFUs is
safe, causes no bacteremia, and engenders both mucosal
and serum antibody responses comparable to those ob-
served in individuals immunized with 3 doses of Ty21a,
with aggregate S. Typhi LPS-specific seroconversions
between 50 and 92% for M01ZH09 versus 50 to 64% for
Ty21a and LPS-specific ASCs in 90 to 100% of vaccinees
receiving M01ZH09 versus 63 to 96% for Ty21a (102).

Engineered Vaccines with Deletions
Blocking Systemic Infection: htrA
Engineered auxotrophic dependence on supplementa-
tion with aromatic amino acids for growth was also ex-
ploited in another successful live oral typhoid vaccine
that underwent three iterations of refinements, each
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tested in phase1 or phase 2 clinical trials to guide further
development (Table 1). CVD 908 was first engineered
from wild-type Ty2 to carry deletion mutations in aroC
(encoding chorismate synthase) and aroD (encoding
3-dehydroxoquinate dehydrogenase), two independent
nonreverting mutations in the essential aromatic amino
acid biosynthesis pathway (11, 98). Following a single
oral dose of CVD 908, the majority of vaccine recipients
responded with LPS-specific serum IgG (83%) and all of
them with LPS-specific IgA ASCs (103). In the presence
of S. Typhi flagella and killed organisms, peripheral blood
mononuclear cells from vaccinated individuals prolifer-
ated and produced IFN-γ and IL-6 indicative of a Th1
type/proinflammatory response (104). However, despite
the presence of two distinct deletion mutations in aroC
and aroD (plus the rpoS mutation from Ty2), vaccine
organisms were still able to cross the intestinal epithelial
barrier and were detected in the blood of vaccinees re-
ceiving oral doses as low as 5 × 107 CFUs (105). Therefore,
it was deemed prudent to engineer additional chromo-
somal deletions to prevent this self-limiting bacteremia,
even though no symptoms were documented in any
of these volunteers and no therapeutic intervention was
required.

The resulting candidate vaccine, CVD 908-htrA, con-
tained a new deletion in htrA encoding a heat shock
protease (105); previous data obtained in vitro with
S. Typhimurium suggested that htrA enhanced survival
within macrophages (106), and thus deletion of this gene
might limit systemic spread of the vaccine. Indeed, phase
1 clinical trials of CVD 908-htrA conclusively dem-
onstrated that the desired balance between reactogenic-
ity and immunogenicity had been achieved. No vaccine
organisms were detected in the blood, and limited
shedding of vaccine organisms for less than 3 days was
seen in volunteers orally vaccinated with up to 5 × 109

CFUs of freshly harvested organisms. In addition, ex-
cellent mucosal, humoral, and cellular immune responses
were observed. One hundred percent (15/15) of volun-
teers vaccinated with 5 × 108 or 5 × 109 CFUs sero-
converted to serum IgG against S. Typhi LPS and 73%
(11/15) against flagella. IgA anti-LPS ASCs were detected
in all vaccinees receiving 5 × 108 or 5 × 109 CFUs as well,
and lymphoproliferative responses against flagella or in-
activated whole-cell antigen were detected in 69% (9/13)
and 77% (10/13) of subjects, respectively (105). Inter-
estingly, when lyophilized vaccine was further tested
in phase 2 clinical trials, mucosal ASC responses were
maintained (94 to 100% LPS-specific ASCs and 50 to 82%

flagella-specific ASCs) at doses of 4.5 × 108 CFUs (the
highest dose given orally), but serum antibody responses
declined slightly with only 49% of volunteers mounting
anti-LPS IgG responses and 41% generating antiflagella
responses; 63% of vaccinees had lymphoproliferative
responses to flagella, and 44% responded to particulate
inactivated whole cell (107).

CVD 908-htrA was then further genetically modified to
constitutively express Vi polysaccharide (108). This novel
approach was based on a hypothesis proposed by Levine
et al., who observed that Ty21a live oral vaccine and
a subunit parenteral vaccine composed of purified Vi
polysaccharide both confer substantial protection against
typhoid disease after multiple doses, despite the fact
that Ty21a does not synthesize Vi polysaccharide and
that the purified Vi vaccine is a monovalent vaccine
lacking other surface antigens from S. Typhi (108). This
suggested that immunity to typhoid disease may be
manifested by at least two distinct immune mechanisms,
one involving targeted antibody responses against Vi
and the other involving more broad humoral and cell-
mediated immunity against S. Typhi surface antigens
other than Vi. Given that all genetically engineered live
oral vaccines tested in clinical trials to date have elicited
very poor serum immunity to Vi, Levine et al. proposed
that perhaps a more broadly immunogenic vaccine could
be developed, eliciting immunity against surface anti-
gens including Vi, by further engineering constitutive
expression of Vi in CVD 908-htrA.

To accomplish this, the powerful constitutive promoter
Ptac was used to replace the highly regulated and osmot-
ically controlled PtviA promoter controlling expression of
the Vi operon viaB encoded within the SPI-7 pathoge-
nicity island. It was then confirmed in vitro that excellent
expression of Vi antigen in the resulting vaccine candi-
date CVD 909 (Table 1) was now independent of osmotic
induction. Interestingly, it was also demonstrated that
CVD 909 was less invasive for Henle 407 cells, a human
embryonic intestinal epithelial cell line, than the parent
CVD 908-htrA at low osmolarity (108); this observation
agrees with previously published in vitro data in which
induced high-level expression of Vi polysaccharide by
osmotic induction of wild-type S. Typhi Ty2 significantly
reduced invasion of intestinal epithelial cells (109).

CVD 909 proved to be safe and immunogenic in phase
1 clinical trials despite overexpression of the Vi poly-
saccharide virulence factor (77, 110). However, serum
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antibody responses against S. Typhi LPS and flagella were
lower in comparison with the parent vaccine CVD 908-
htrA. Only 2 of 6 (33%) volunteers orally vaccinated with
a single dose of 2.5 × 109 freshly harvested vaccine orga-
nisms mounted anti-LPS IgG serum antibody responses
(110) versus 8 of 8 vaccinated with a 10-fold lower dose
of 5 × 108 CFUs of CVD 908-htrA (105); similarly, only 1
of 6 CVD 909 vaccinated subjects had antiflagellar serum
IgG antibody responses versus 6 of 8 for CVD 908-htrA.
This reduction in surface antigen-specific antibody re-
sponses is consistent with strong expression of the reg-
ulator TviA, which downregulates flagellar expression
while upregulating synthesis of Vi capsule to mask sur-
face LPS (31, 38). Curiously, despite overexpression of
the capsular polysaccharide in CVD 909, Vi-specific se-
rum immune responses were not observed (110).

In a subsequent clinical trial, volunteers primed with a
single oral dose of 5 × 109 CFUs of CVD 909 and boosted
intramuscularly with 25 μg of the licensed Vi polysac-
charide vaccine Typhim Vi did not have Vi-specific IgM,
IgG, or IgA antibodies significantly elevated above vol-
unteers who received a placebo prime and boost with
Typhim Vi (77). Sixty-four percent of the CVD909 re-
cipients developed anti-LPS serum IgG and IgA while
only 18 to 27% developed antiflagella serum antibodies
(77). Importantly, these antibodies exhibited functional
opsonophagocytic activity against wild-type S. Typhi
(75). Over half (55%) of CVD909 primed individuals
developed anti-Vi IgA B memory cells, compared with
12.5% in the placebo-primed group. This vaccine strain
also resulted in the production of antiflagellar IgA B
memory cells that remained for at least 1 year postvacci-
nation (77). It remains puzzling that no Vi-specific anti-
body responses were observed in subjects primed with
a Vi overexpressing live vaccine prior to boosting with
a purified Vi subunit vaccine. The fact that robust Vi-
specific antibody responses are observed in asymptomatic
human carriers chronically colonized with S. Typhi
underscores the fact that much still remains to be eluci-
dated regarding induction of protective immunity against
Salmonella and how to exploit this information in the
rational design of efficacious live oral vaccines.

CONCLUSIONS AND FUTURE DIRECTIONS
Herein, we have summarized the pathogenesis of human
Salmonella infections, contrasting S. Typhi and S. Typhi-
murium with regard to niches colonized and immune
responses elicited by wild-type organisms. Understand-

ing the natural progression of disease provides an im-
portant context in which attenuated live vaccines can
be rationally designed and developed. With this in mind,
we have reviewed a series of attenuated live vaccines that
have been tested in clinical trials, and demonstrated to be
both safe and highly immunogenic in the case of S. Typhi
typhoid vaccines. However, we have also pointed out
that correlates of protection against enteric fever have
yet to be adequately defined. Therefore, at this point,
immune responses elicited by candidate vaccines remain
only suggestive of protective efficacy in the absence of
challenge studies conducted with vaccinated volunteers.
However, it is encouraging that a human typhoid chal-
lenge model has now been reestablished (7), offering the
opportunity to compare the various attenuation strate-
gies for currently available S. Typhi vaccine candidates,
and their ability to induce immune responses that can
protect against disease. Given the paucity of data rele-
vant to mechanisms involved in disease clearance, it is
entirely possible that some vaccines clinically proven to
be safe and highly immunogenic will nonetheless fail to
offer significant protection when administered orally as
a single dose. Such future challenge studies may specifi-
cally inform the development of more efficacious vaccine
schedules involving two or more doses, without having to
reengineer further vaccine candidates, to elicit durable
protective immunity.

Although there are now multiple examples of attenuated
oral S. Typhi vaccines that have been clinically demon-
strated to be safe and immunogenic, all S. Typhimurium
vaccine candidates tested to date have displayed un-
acceptable safety profiles, with prolonged colonization of
human volunteers leading to unacceptable shedding of
viable vaccine organisms over several weeks (96, 97). It
became evident from these important studies that strat-
egies proven successful for attenuation of S. Typhi do not
necessarily guarantee success when applied to S. Typhi-
murium. This is undoubtedly related, at least in part, to
the differences in metabolic niches exploited by these two
serovars, with S. Typhimurium typically thriving extra-
cellularly in the gastrointestinal lumen, while S. Typhi
proliferates intracellularly in deeper tissues of the host.
However, the pathogenicity of S. Typhimurium has re-
cently been changing, with more invasive and multidrug-
resistant strains being increasingly isolated from the
blood of malnourished children and immunocompro-
mised adults living in sub-Saharan Africa (111, 112, 113).
These newly emerging strains have developed an im-
proved ability to replicate within human macrophages
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while downregulating production of flagella to reduce
innate immune recognition (114). With this unsettling
rise in unconventional invasive nontyphoidal Salmonella
(iNTS) strains, it may therefore be appropriate to revisit
available attenuated S. Typhimurium vaccines with the
goal of improving the safety of existing vaccine candi-
dates. We recognize, however, that, while development of
improved second-generation S. Typhimurium live vac-
cines might prove to be safe and highly immunogenic in
developed countries, they could nonetheless prove to be
far less immunogenic in endemic regions of develop-
ing countries where malnourished children and immu-
nocompromised adults suffering from coinfection with
malaria parasites or HIV would be severely compromised
for humoral and cell-mediated immunity (112). Not-
withstanding this caveat, it would be intriguing to target
the intestinal proliferation of S. Typhimurium to reduce
or eliminate the unacceptable shedding of vaccine orga-
nisms. In theory, this might be accomplished by inacti-
vating the ability to exploit tetrathionate as an alternate
electron acceptor for anaerobic respiration, thereby elim-
inating the metabolic advantage of S. Typhimurium over
competing flora to enhance clearance and reduce unac-
ceptably high levels of shedding (27, 28). Another pos-
sible approach could involve introduction of proven
attenuation strategies into an iNTS isolate of S. Typhi-
murium, with further deletion of a novel invasion gene
called st313-td, recently reported to enhance systemic
invasion in experimental animal models of infection
(115). We conclude that the attenuation strategies we
have summarized offer important insights into further
development of attenuated S. Typhimurium vaccines, as
well as for other serovars for which vaccines are currently
unavailable.
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