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Abstract

Endophytes are microorganisms that inhabit plant tissues without causing disease. Some endophytes help their
hosts to combat pathogens. Here we explored the hypothesis that the plant-derived foods consumed by humans
and other animals host endophytes that also antagonize foodborne pathogens or food-rotting agents. Our
laboratory previously cultured a library of bacterial endophytes from different members of the maize/corn
family (Zea) including wild relatives. Here, 190 of these endophytes were screened for their ability to antag-
onize four foodborne pathogens (Escherichia coli O157:H7, Listeria monocytogenes, Clostridium perfringens,
and Salmonella enterica Newport) and a food spoiling agent (Pseudomonas fluorescens) using dual culture
assays. Two Paenibacillus polymyxa endophytes (strains 3C6 and 3G11) were found to inhibit the growth of all
five deleterious strains on agar. Using conserved polymerase chain reaction primers and sequencing, both
beneficial endophytes were found to encode polymyxin genes, suggesting a potential antibacterial mechanism
of action. Polymyxin production by both strains was confirmed using enzyme-linked immunosorbent assay.
Strains 3C6 and 3G11 originated, respectively, from the seeds of the wild Central American maize species Zea
diploperennis, and the wild ancestor of modern maize, Zea mays ssp parviglumis (Parviglumis). As the latter is
the direct ancestor of modern maize, we discuss the role its endophyte(s) may have played in promoting crop
domestication by suppressing foodborne pathogens and/or food-spoilage agents.
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Introduction

Endophytes are microorganisms, usually bacteria or
fungi, which inhabit plant tissues without causing disease

symptoms (Hallmann et al., 1997; Strobel, 2003; Rosenblueth
and Martı́nez-Romero, 2006). The term ‘‘endophyte’’ is de-
rived from the Greek words, endon (meaning within) and
phyte (meaning plant) (Sturz et al., 2000). Endophyte colo-
nization has been observed in nearly all plant species tested
(Ryan et al., 2008; Hardoim et al., 2015). Endophytes may live
latently or grow actively inside plant tissues (Taghavi et al.,
2009). Endophytes can colonize a diversity of tissues, of which
seed-inhabiting endophytes are more likely to be vertically
transmitted across generations ( Johnston-Monje and Raizada,
2011; Truyens et al., 2015).

Plant–endophyte associations sometimes form symbiotic
(mutualistic) relationships by which the endophytes gain ac-
cess to a protected habitat and nutrients, whereas the host gains
benefits from the endophytes in terms of growth promotion,

nutrient acquisition, or antagonism against plant pathogens
(Rosenblueth and Martı́nez-Romero, 2006; Ryan et al., 2008;
Johnston-Monje and Raizada, 2011). Although endophytes
can be beneficial, some toxic alkaloid-producing fungal en-
dophytes in grasses such as tall fescue and perennial ryegrass
have been linked to health disorders (fescue toxicosis) in cattle
and horses that consume these grasses (Guerre, 2015).

An unexplored hypothesis is whether the seeds and other
foods selected by humans and other animals possess endophytes
that not only help their plant hosts but also indirectly benefit
human and animal health by antagonizing foodborne pathogens
or food-spoilage organisms, either in the source grain/food or in
foods consumed alongside (e.g., meat). Endophytes would be
viable in raw foods, whereas some spores may survive cooking.

Many bacteria are causative agents of foodborne illness, of
which Escherichia coli, Salmonella enterica, Listeria
monocytogenes, and Clostridium perfringens are especially
problematic, whereas Pseudomonas fluorescens causes
spoilage to foods (Bach et al., 2002; Brynestad and Granum,
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2002; Pitout et al., 2003; You et al., 2006; Allen et al., 2016;
Lin et al., 2016). E. coli is a Gram-negative bacterium
commonly found in the human intestine as a commensal or-
ganism, but some strains of E. coli are pathogenic such as en-
terohemorrhagic E. coli (EHEC). The most common strain of
EHEC is E. coli O157:H7 (Callaway et al., 2009), which is a
very important foodborne pathogen found in feed, water, soil,
and manure (Bach et al., 2002). In humans, this pathogen causes
diarrhea, hemorrhagic colitis, and hemolytic uremic syndrome.

S. enterica strains, including Salmonella enterica sero-
type Newport, are Gram-negative bacteria that cause sal-
monellosis in humans as well as in animals and is associated
with gastroenteritis and bacteremia. Disease outbreaks have
been associated with consumption of contaminated poultry,
eggs, pork, beef, seafood, milk, cheese, chocolate, peanuts,
cereal, sprouts, mangoes, and other fruits and vegetables
(Van Beneden et al., 1999; Pitout et al., 2003; Sivapala-
singam et al., 2003; Zhao et al., 2003).

L. monocytogenes is a Gram-positive, nonspore forming, rod-
shaped bacterium that can be found in water, dairy products,
meats, egg products, seafood, and vegetables (Farber and Pe-
terkin, 1991; Embarek, 1994; Lawrence and Gilmour, 1994;
Novoslavskij et al., 2015). Infection symptoms range from
moderate gastrointestinal illness to severe septicaemia and
meningitis, with a mortality rate of 20–30% in the case of in-
vasive listeriosis, which makes it a major food safety concern
(Carpentier and Cerf, 2011; Cossart, 2011; Allen et al., 2016).
Listeriosis affects cattle, sheep, and goats with the disease as-
sociated with encephalitis, septicaemia, and uterine infections
and abortion (Low and Donachie, 1997).

C. perfringens is an anaerobic, Gram-positive, rod-shaped,
spore-forming bacterium that causes two types of food poi-
soning in humans: a mild, self-limiting type A diarrhea and the
more severe type C necrotic enteritis. In animals, C. perfringens
causes diarrhea, enterotoxemia, and necrotic enteritis (Brynes-
tad and Granum, 2002; Uzal and Songer, 2008; Garcı́a and
Heredia, 2011; Silva and Lobato, 2015; Silva et al., 2015),
whereas in poultry, it can cause avian malignant disease, gan-
grenous dermatitis, or avian necrotic enteritis, the most severe
bacterial poultry enteric disease (Cooper and Songer, 2009).

Finally, the food spoiler P. fluorescens is a Gram-negative,
rod-shaped bacterium that causes major economic losses (An-
dreani et al., 2015). P. fluorescens causes food spoilage by
producing extracellular lipases and proteases; the bacterium is
common in dairy products, fish products, and leafy greens
(Miller et al., 1973; Olanya et al., 2015; Lin et al., 2016).

Our laboratory has previously isolated *200 bacterial en-
dophytes from seeds, roots, and shoots of different genotypes of
the maize/corn family, Zea, including wild, ancient, and modern
varieties (Johnston-Monje and Raizada, 2011; Johnston-Monje
et al., 2014). Among these varieties were wild Parviglumis te-
osinte (Zea mays ssp parviglumis), the direct, living ancestor of
modern maize from Mexico (Piperno et al., 2009), and Zea
diploperennis, a wild perennial Central American maize (Iltis
and Doebley, 1980). Endophytes from this collection, in par-
ticular from wild and ancient maize, were recently found to host
microbes with antifungal and nutrient acquisition abilities
(Mousa et al., 2015; Shehata, 2016, Shehata et al., 2016a, b, c),
perhaps selected by their host plants that grow without synthetic
pesticides and fertilizers.

In this study, as a first step toward testing our hypothesis,
we ask whether bacterial endophytes from the maize family,

including those isolated from grain, can antagonize, in vitro,
the mentioned bacterial foodborne pathogens as well as the
food spoiler P. fluorescens.

Materials and Methods

Bacterial strains

The bacterial endophytes used in this study (Fig. 1A;
Supplementary Table S1; Supplementary Data are available
online at www.liebertpub.com/fpd) were previously isolated
from diverse wild, ancient, and modern genotypes of the
maize family, Zea ( Johnston-Monje and Raizada, 2011;
Johnston-Monje et al., 2014). The bacterial endophytes were
maintained as glycerol stocks in a -80�C freezer.

Foodborne pathogens, Escherichia coli O157:H7 (C899),
Listeria monocytogenes (LJH391), Clostridium perfringens
(C1354), and Salmonella enterica Newport (C407), and food
spoiler, Pseudomonas fluorescens (C942), were obtained
from the Canadian Research Institute in Food Safety culture
collection at the University of Guelph.

In vitro screening for antagonistic activity against
foodborne pathogens

Bacterial endophytes were cultured in Luria-Bertani (LB)
medium overnight at 37�C with shaking at 250 rpm. From each
bacterial endophyte culture (OD595 = 1.0), 15 lL were spotted
onto 10 cm Petri plates containing 15 mL of solidified LB agar,
in triplicate, allowed to dry, then the plates were inverted and
incubated overnight at 37�C to allow colonies to develop. In
parallel, the foodborne pathogenic strains were cultured in
Tryptic Soy Broth overnight at 37�C with shaking at 200 rpm.
C. perfringens was cultured in Brain Heart Infusion in an an-
aerobic chamber at 37�C. From each pathogenic strain culture,
10 lL (OD595 = 1.0) (200 lL for C. perfringens, OD595 = 0.6)
were mixed with 10 mL of melted and cooled LB agar, and
then poured over LB agar on which the endophyte colonies
were growing. After solidification, the plates were incubated at
37�C (in an anaerobic chamber for C. perfringens). Inhibition
zone diameters were recorded (Bevilacqua et al., 2003).

Taxonomic identification of antagonistic strains
based on 16S rRNA sequencing

To identify the antagonistic endophytes, full length 16S
rRNA sequences were used. DNA was extracted using a Bac-
terial Genomic Miniprep Kit (NA2110; Sigma), and then
quantified using a NanoDrop ND-1000 (Thermo Scientific,
USA). Polymerase chain reactions (PCRs) were conducted us-
ing universal 16S rRNA primers (Frank et al., 2008; Ghyselinck
et al., 2013) according to a previously described protocol
(Shehata et al., 2016a) and then Basic Local Alignment Search
Tool-Nucleotide searched against the 16S ribosomal sequence
database at National Center for Biotechnology Information.
A phylogenetic tree was constructed using reference 16S se-
quences from GenBank to confirm strain identity the phylogeny
tool (Phylogeny.lirmm.fr) using default parameters (Castresana,
2000; Edgar, 2004; Dereeper et al., 2008).

Genomic fingerprinting of antagonistic strains

To test whether strains 3C6 and 3G11 are identical or
distinct, BOX-PCR followed by gel electrophoresis was
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conducted. Each reaction consisted of 20 lL of GoTaq�

Green Master Mix (M712C; Promega, Madison, WI), 2 lM
BOX-A1R primer with sequence CTACGGCAAGGCGA
CGCTGACG, 50 ng of DNA, and double-distilled water up
to 40 lL. BOX-PCR conditions were 7 min at 95�C, then 30
cycles (1 min at 95�C, 1 min at 53�C, and 8 min at 65�C), and
a final extension at 65�C for 15 min (Cottyn et al., 2001). The
PCR products were run on a 1% agarose gel in Tris-acetate-
EDTA at 75 V for 11 h. Banding patterns were visualized and
extracted using Image Lab 5.1 software.

Detection of polymyxin genes in candidate
antagonistic strains

Primers for polymyxin genes pmxA, pmxB, pmxC, pmxD,
and pmxE (Supplementary Table S2) were designed using
Primer 3 software based on the reference sequence for Pae-
nibacillus polymyxa strain PKB1 (GenBank: JN660148.1).
PCR mixtures contained 10 lL of GoTaq Green Master Mix
(M712C; Promega), 50 ng of DNA, 0.5 lL of each of the
forward and reverse primers (10 lM), and double-distilled

water up to 20 lL. The same reaction conditions and gel pu-
rification methods were used as in the 16S gene amplification
already described. Retrieved sequences were searched using
BLASTN against the Genbank nr/nt collection.

Detection of polymyxin production

Strains 3C6 and 3G11 were cultured in glucose starch calcium
carbonate (GSC) medium for 3 days at 37�C with shaking at
200 rpm. The GSC medium consisted of, per liter, 20 g each of
glucose, starch, and ammonium sulfate, 10 g of yeast, 2.6 g of
K2HPO4, 0.1 g of FeSO4.7H2O, 0.5 g of MgSO4.7H2O, 0.25 g of
sodium chloride, and 9 g of calcium carbonate (Shaheen et al.,
2011). The GSC medium was previously found to be optimal for
polymyxin production (Niu et al., 2013). Two milliliters from
each culture were centrifuged at 10,000 rpm for 5 min. Two
experiments were conducted using GSC culture supernatants.
The first experiment was to evaluate the antibacterial activity of
the cell-free supernatant. Culture supernatants were passed
through 0.22 lm filters and from the resultant cell-free super-
natants; 15 lL were then spotted on LB agar plates and assayed

FIG. 1. Screening of maize endophytes for their ability to suppress foodborne pathogens and a food spoiling agent. (A) A
map showing the geographical origins of the different maize genotypes used in this study as sources of endophytes. Agar
plates showing zones of growth inhibition of foodborne pathogens and a food spoiling agent by endophytes 3C6 and 3G11:
(B) Escherichia coli O157:H7, (C) Salmonella enterica Newport, (D) Clostridium perfringens, (E) Listeria monocytogenes,
and (F) Pseudomonas fluorescens. (G) Graph showing the ability of endophytes 3C6 and 3G11 to inhibit growth of the
deleterious pathogens (diameter of inhibition zones). The map image is licensed under the Creative Commons Attribution-
Share Alike 3.0 Unported license. Color images available online at www.liebertpub.com/fpd
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for activity against E. coli as already described. Polymyxin
standards prepared from commercial polymyxin solution
(81271; Sigma) at concentrations of 500, 250, 125, 62.5, 31.25,
15.6, and 7.8 ng/lL were spotted on agar in parallel. The second
experiment was to assay for polymyxin production. In this ex-
periment, the GSC culture supernatants were mixed with
methanol at a ratio of 1:4 and allowed to incubate at 4�C for
30 min. The mixtures were then centrifuged at 10,000 rpm for
5 min. The resultant supernatants were used to assay for poly-
myxin production using a Colistin and Polymyxin ELISA Kit
(DEIA042; Creative Diagnostics, USA). E. coli DH5-Alpha
strain was used as a negative control. The test was run using
50lL of each methanol extract, in triplicate, according to the
manufacturer’s recommendations. Polymyxin standards (0, 2.5,
7.5, 22.5, 67.5, and 202.5 ppb) were run in parallel, in triplicate,
to construct a semilogarithmic standard curve (A% against the
log concentration). The absorbance was measured at 450 nm
(A450). The relative absorbance (A%) was calculated as the mean
A450 of the sample or A450 of the standard x (100/A450 of the
0 ppb standard).

Statistical and graphical analyses

Prism 6 (GraphPad Software, USA) was used for graphical
displays and statistical analysis. Pearson r was used to mea-
sure the linear correlation between the banding patterns of
strains 3C6 and 3G11.

Results

In vitro screening for antagonistic activity against
foodborne pathogens and a food spoiler

Out of 190 bacterial endophytes tested from the maize family
(Fig. 1A) for antagonistic activity against four foodborne path-
ogens, 2 endophytes (strain 3C6 and strain 3G11) were found to
show zones of growth inhibition in vitro of Escherichia coli
O157:H7, Listeria monocytogenes, Clostridium perfringens, and
Salmonella Newport; the same two endophytes also inhibited the
food spoiling agent, P. fluorescens (Fig. 1B–G).

Taxonomic identification of candidate endophytes
based on 16S rRNA

The two candidate strains were identified based on their full
16S rRNA sequences along with their positions on a phylo-
genetic tree constructed using reference 16S rRNA sequences.
Strains 3C6 and 3G11 were found to resemble Paenibacillus
polymyxa (100% and 99% similarity, respectively) (GenBank:
KX015879 and KX015880) and to cluster with this species in a
phylogenetic tree (Fig. 2A, B). Genomic fingerprinting showed
that 3C6 and 3G11 were very closely related (Pearson corre-
lation of banding pattern, r = 0.941), but distinct given the extra
band in the genomic fingerprint of strain 3G11 (Fig. 2C–E).
Strain 3C6 originated from seeds of the wild Central American
maize species Zea diploperennis, whereas 3G11 originated
from seeds of the direct, wild ancestor of modern maize, Zea
mays ssp parviglumis (Parviglumis teosinte) (Fig. 2B).

Detection of polymyxin genes and polymyxin
metabolite(s) in candidate antipathogen strains

As polymyxins are well-known antibiotics of previously
reported P. polymyxa strains (Yahav et al., 2012), strains 3C6

and 3G11 were tested for the presence of polymyxin genes.
An operon encoding polymyxin synthetase genes was pre-
viously identified from a plant growth-promoting Paeniba-
cillus polymyxa strain E681 as having five open reading
frames, pmxA, pmxB, pmxC, pmxD, and pmxE (Choi et al.,
2009). Whereas pmxA, pmxB, and pmxE were found to en-
code polymyxin synthetases, pmxC and pmxD resembled
genes that encode transport proteins. Here strains 3C6 and
3G11 were tested using PCR primers for pmxA-E followed by
sequencing and BLAST analysis of amplicons of the correct
size. The genomes of both strains contained sequences with
high similarity to pmxB, pmxC, pmxD, and pmxE, but ap-
parently not for pmxA (Fig. 2F; Supplementary Table S3).

To confirm the production of polymyxin from strain 3C6
and 3G11, first, cell-free supernatants were assayed for an-
tibacterial activity. Cell-free supernatants of 3C6 and 3G11
were found to demonstrate antibacterial activity equivalent to
32.7 and 25.4 ng/lL of polymyxin, respectively (Fig. 2G).
Furthermore, polymyxin was detected in methanol extracts of
culture supernatants using a polymyxin ELISA Kit. Strains
3C6 and 3G11 were found to secrete 50 and 65.3 ng/lL of
polymyxin, respectively, under the conditions used (Fig. 2H).

Discussion

Seeds of two wild maize genotypes, Zea diploperennis and
Parviglumis teosinte, were found to possess bacterial endo-
phytes that can suppress four foodborne bacterial pathogens
and one food spoiling agent, in vitro. It is especially intriguing
that Parviglumis teosinte seeds possess an endophyte (strain
3G11, predicted to be P. polymyxa) that can suppress the
growth of human and livestock pathogens, including those
transmitted by fecal matter. Parviglumis (also known as Balsas
teosinte) is the extant, wild, direct ancestor of modern maize,
selected and domesticated beginning*10,000 years ago in the
Balsas river valley of Mexico (Matsuoka et al., 2002).

One theory of crop domestication holds that nutritious seeds
were brought to temporary human settlements by animals, for-
aging for human food scraps, and left behind in their feces
(Diamond, 1997). The animal manure was a rich nutrient source
that subsequently promoted germination and growth of the seed-
bearing plants. In another theory, crop domestication promoted
human settlements that led to food waste, which attracted wild
animals, ultimately leading to animal domestication and in-
creased human–animal contact (Larson and Fuller, 2014). Ex-
citing but speculative questions arise from these theories.

First, as it is known that wild animals select foods, in part,
for their medicinal value (Huffman, 2003), then perhaps ani-
mals in the Balsas river valley habituated to eating Parviglumis
teosinte seeds, in part, because their endophytes helped to
protect the animals from dangerous bacterial pathogens that
originated from other animals or increasing human popula-
tions (Harper and Armelagos, 2013). Balsas teosinte seeds are
surrounded by a hard fruit case that can help them to escape
damage after ingestion. Archaeological evidence has revealed
the presence of animal bone fragments, including mammals,
near human settlements in this region (Piperno et al., 2007;
Ranere et al., 2009). Mammals are the major reservoir of E.
coli strains such as strain O157:H7 (Bach et al., 2002; Delaquis
et al., 2007; Franz and van Bruggen, 2008; Callaway et al.,
2009), whereas listeriosis caused by L. monocytogenes affects
mammals (Low and Donachie, 1997). C. perfringens is the
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most serious toxin-producing clostridia that affects both hu-
mans and animals (Garcı́a and Heredia, 2011), and its spore-
forming ability imparts longevity and persistence (Brynestad
and Granum, 2002).

Alternative to the hypothesis that Parviglumis seed endo-
phyte(s) may have helped ancient animals in the Balsas re-
gion of Mexico, perhaps the endophytes protected local
humans from bacterial pathogens after direct animal to
human transmission or through contaminated meat. Archae-
ological evidence has revealed that the ancient humans of the
Balsas river valley were hunters and that animal protein was

abundant (Piperno et al., 2007; Ranere et al., 2009). L.
monocytogenes is a human and animal foodborne pathogen
that can be transmitted to humans directly from infected
animals or contaminated food (Farber and Peterkin, 1991;
Embarek, 1994; Lawrence and Gilmour, 1994; Carpentier
and Cerf, 2011; Cossart, 2011; Novoslavskij et al., 2015). By
contrast, P. fluorescens is a food spoiler (Andreani et al.,
2015), and hence Balsas teosinte grain may have had the
potential to protect ancient peoples when added to foods.

Alternative to the mentioned food-related hypothesis, if
humans temporarily penned small animals, leading to a

FIG. 2. Taxonomic identification of candidate endophytes and detection of polymyxin. (A) Phylogenetic tree predicting the
identity of endophyte strains 3C6 and 3G11 as Paenibacillus polymyxa. (B) Table showing the candidate identity and host
plant source of endophytes 3C6 and 3G11. (C–E) Genomic fingerprinting following BOX-PCR demonstrating that strains 3C6
and 3G11 are distinct from one another: (C) gel electrophoresis of BOX-PCR products, and lane profiles of (D) strain 3C6 and
(E) strain 3G11. (F) Detection of polymyxin genes in 3C6 and 3G11. The E-values indicate the count of hits expected by
chance during the Basic Local Alignment Search Tool search. The lower the E-value, the stronger is the homology. (G)
Detection of antipathogen activity (against Escherichia coli) in the supernatants of strains 3C6 (orange) and 3G11 (yellow).
(H) Enzyme-linked immunosorbent assay-based detection of polymyxin metabolite(s) in the methanol-extracted supernatants
of strains 3C6 (orange) and 3G11 (yellow). BOX-PCR; E-value, expect value; NA, No Amplification. The white arrow in C
refers to an extra band in the banding pattern of strain 3G11. Color images available online at www.liebertpub.com/fpd
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buildup of dangerous manure, then perhaps P. polymyxa
protected the animals that were fed Parviglumis grain. Sal-
monella enterica serotype Newport is known to be trans-
mitted through infected manure used in agricultural fields, or
from manure to soil to plants (You et al., 2006). In general, it
is thought that many current human pathogens have their
origins in agricultural domestication, in part because human
populations increased, which promoted disease transmission,
and in part because humans were in contact with domesti-
cated animals, which were the sources of these pathogens
(Diamond, 2002; Pearce-Duvet, 2006; Harper and Armelagos,
2013). The problem with such a theory is that there appears to
be no evidence for animal domestication in this region at this
time; turkeys were domesticated elsewhere in Mexico thou-
sands of years later (Thornton et al., 2012; Larson and Fuller,
2014). However, humans at the time of maize domestication
may have lived with dogs in ancient Mexico (Zeder et al.,
2006), and dog-to-human transmission of pathogens has been
shown, as has pathogen transmission from rodents that gather
at food storage sites (Pearce-Duvet, 2006; Harper and Arme-
lagos, 2013). The corollary theory would be that there might
have been a buildup of human feces at the first settlements,
which could have led to widespread outbreaks of the bacterial
pathogens suppressed by P. polymyxa.

Finally, it may be that Parviglumis-associated P. polymyxa
provided no direct benefits to ancient humans and animals
associated with them, but rather that the endophyte, by pro-
viding resistance to a wide spectrum of bacteria including plant
pathogens, protected its host and thus contributed to making
Parviglumis a hardy plant that was attractive for domestica-
tion. In fact, here we uncovered the presence of an antibacterial
Paenibacillus polymyxa endophyte from Zea diploperennis, a
wild perennial teosinte from Central America (Iltis and
Doebley, 1980). We also previously demonstrated that both
wild and modern maize possess other Paenibacillus polymyxa
endophytes that combat diverse fungal pathogens of crops
(Mousa et al., 2015). Combined, these data are suggestive of
long-term mutualism between the maize family (Zea) and its
Paenibacillus polymyxa endophytes.

In terms of the antibacterial mechanism of action, our data
show that strain 3G11 and strain 3C6 from Z. diploperennis,
both predicted to be P. polymyxa strains, encode polymyxin
genes and secrete polymyxin in vitro. Polymyxins are cationic
lipopeptide antibiotics, well known for their antibacterial ac-
tivity especially against Gram-negative bacteria (Choi et al.,
2009; Naghmouchi et al., 2011). The mechanism of action
depends on the detergent-like properties of polymyxins; they
can bind membrane-associated lipopolysaccharides, resulting
in disruptions to the integrity of cytoplasmic membranes and
outer membranes (Naghmouchi et al., 2011; Yahav et al.,
2012). Polymyxin antibiotics were used as antibiotics to treat
bacterial infections, but because of their side effects, their use
is currently limited to topical use on surface injuries or
wounds, or used systemically in multidrug-resistant infections
(Choi et al., 2009; Yahav et al., 2012). Interestingly, Poly-
myxin E was found to work synergistically with bacteriocins to
control foodborne pathogens (L. monocytogenes and E. coli)
(Naghmouchi et al., 2011). The involvement of polymyxin
genes in suppressing the five harmful microbes in this study
will need to be tested experimentally.

Several other antimicrobials were reported to be produced
by P. polymyxa strains. Among these antimicrobials are

paenibacillin, a peptide antibiotic that is active against Gram-
positive bacteria (He et al., 2007), fusaricidins, a group of
peptide antibiotics with activity against Gram-positive bac-
teria (Kajimura and Kaneda, 1997), and polyxin, a
bacteriocin-like compound, with activity against Gram-
positive and Gram-negative foodborne pathogens (Piuri
et al., 1998).

Conclusions

Here we hypothesized that the maize family possesses
endophytes that can suppress foodborne pathogens and food
spoiling agents. We demonstrated, in vitro, that seeds of two
wild maize relatives possess bacterial endophytes that inhibit
the growth of five such harmful microbes, and we have
proposed a candidate mechanism of action. One of these wild
maize relatives is the direct ancestor of modern maize, raising
interesting questions about the role of its endophyte(s) in
promoting crop domestication by ancient Mexican farmers.
More experiments in the future are needed to test the various
hypotheses proposed in this article. With respect to future
applications, as both endophyte strains were found to produce
polymyxin, they may not be ideal for use as natural food or
feed preservatives, as they may contribute to the spread of
antimicrobial resistance.
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