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Abstract: Meat consumers are very concerned about the quality and tenderness 
of meat. Meat tenderness generally depends upon connective tissue, sarcomere 
length, and the proteolytic potential of muscle. Different physical and chemical 
methods are used to assess the tenderness of meat. Protease treatment is an ef-
ficient method used for meat tenderization. In the food industry, different proteases 
such as bromelain, papain, ficin, actinidin, and calpain are widely used for proteo-
lytic degradation, to improve meat tenderness. Two structural components deter-
mine the toughness of meat, connective tissues composed of structural proteins 
and post-mortem changes in the sarcomere. Proteases play an important role in 
degrading the structural proteins in the connective tissues, thus reducing toughness 
of meat. Bacterial proteases are also used in meat tenderization. Bacterial proteases 
show effective proteolytic degradation of elastin and collagen, but have negligible or 
no effect in degrading myofibrillar proteins. The present review highlight the impor-
tance of plant and bacterial enzymes with special reference to meat tenderization.
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1. Introduction
The palatable quality of meat is influenced by several factors, among which meat tenderness is 
considered the most important determinant of consumer preferences. Meat tenderness generally 
depends upon connective tissues, sarcomere length, and the extent of proteolytic degradation of 
muscles (Kemp & Parr, 2012). In contrast, meat toughness is an undesirable attribute of palatable 
meat quality for consumers (Kemp, Sensky, Bardsley, Buttery, & Parr, 2010). Toughness in meat pri-
marily occurs because of the actomyosin effect (changes in myofibrillar proteins) or the background 
effect (because of the amounts of connective tissues or stromal proteins) (Chen, He, Jiao, & Ni, 2006). 
The quality and tenderness of meat and meat products can be improved in several ways using 
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physical and chemical treatments. However, all treatments commonly emphasize on disrupting or 
degrading the connective tissues and myofibrillar proteins.

Myofibrillar toughness is caused by the onset of rigor mortis in slaughtered meat, and enzymatic 
breakdown of contractile proteins in post-slaughtered meat muscles causes tenderization of the 
meat (Naveena et al., 2011). In older animals, the formation of stronger and complex collagen cross-
links in connective tissue increases; proteolytic enzymes can degrade connective tissue composed of 
80% collagen, to tenderize meat (Gelse, Pöschl, & Aigner, 2003).

Meat tenderness is the most important attribute that governs consumer acceptability, consumer 
satisfaction, and recurrent purchasing trends and market value for meat and meat products (Grunert, 
Bredahl, & Brunsø, 2004; Mennecke, Townsend, Hayes, & Lonergan, 2007). The factors that influence 
the toughness of meat also contribute to the tenderness of meat. Meat tenderness depends on the 
type of muscle, pre- and post-slaughter factors, and postmortem pH and temperature (Anderson et 
al., 2012). The chemical composition, structure and amount of connective tissue, generally depends 
on the age of the animal and the specific muscle types, also affect meat tenderness (Bolumar, 
Enneking, Toepfl, & Heinz, 2013).

The use of exogenous proteases for meat tenderization is a relatively progressive method to im-
prove meat quality. There are five exogenous proteolytic enzymes, plant proteases (papain, bro-
melain, and ficin), and proteases from Aspergillus oryzae and Bacillus subtilis, which have been 
approved as generally regarded as safe (GRAS) for use in the meat industry by the US Department of 
Agriculture (Ha, Bekhit, Carne, & Hopkins, 2012; Ketnawa & Rawdkuen, 2011). These proteolytic en-
zymes are mixed with the meat to breakdown the proteins in muscle and hydrolyze collagen and 
elastin, which helps in meat tenderization (Rawdkuen, Jaimakreu, & Benjakul, 2013). The use of en-
zymes reduces the amount of connective tissues and does not breakdown myofibrillar proteins. 
Papain and bromelain are the most commonly used plant enzymes for meat tenderization (Liu, Liao, 
Qi, & Tang, 2008). As meat tenderizers, proteolytic enzymes are best suited for degradation of col-
lagen and elastin in connective tissue at relatively low pH and low temperature (Ryder, Ha, Bekhit, & 
Carne, 2015). The objective of this review was to gather the latest findings regarding the plant and 
bacterial enzymes which are used for the meat tenderization. Although the concept for the use of 
proteolytic enzymes is not new but the synergism between plants and bacterial enzymes added the 
value to this review.

The structure of myosin and actin filaments is affected by the plant proteases, papain, bromelain, 
and ficin (Wada, Suzuki, Yaguti, & Hasegawa, 2002). Ketnawa, Rawdkuen, and Chaiwut (2010) 
 depicted that collagen from beef and giant catfish skin is degraded by bromelain obtained from 
pineapple peels. The plant proteases are better than bacterial enzymes, because of safety, standard 
problems; high concentrations of plant proteases can cause meat deformation (Chen et al., 2006). 
Moreover, the tenderness of meat is also assessed by activity of enzymes estimation, myofibrillar 
fragmentation index, hydroxyproline measurement, and scanning electron microscopic. Plant 
 proteases also used to improve tenderization of meat by biochemical changes as well as micro 
structural changes (Maiti, Ahlawat, Sharma, & Khanna, 2008).

Additionally, tenderization can be achieved by application of electric current, dissipation of energy 
at the beginning of muscle contraction, and by changing the process of rigor mortis, such that rigor 
mortis sets in while the muscles are still warm. It shows that tenderization of meat has been started 
at a definite rate. Thus, temperature conditions and electric stimulation can be used to reduce the 
cold shortening. The methods employed for meat tenderization play a role in providing good effi-
ciency and high quality of meat and meat products (Breidenstein & Carpenter, 1983). The enzymatic 
mechanism of protein hydrolysis by cysteine proteases is shown in Figure 1.
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2. Meat tenderization with plant proteases
The process of meat tenderization is essentially an enzymatic degradation, and proteolytic enzymes 
in meat are responsible for tenderization during aging. However, plant or microbial enzymes can be 
exogenously added when additional tenderization is necessary (Lantto et al., 2009). Commercial 
meat tenderization is usually achieved using exogenously added proteolytic enzymes from plants, 
such as papain, bromelain, and ficin, as well as bacterial collagenase (Abdel-Naeem & Mohamed, 
2016). Garg and Mendiratta (2006) reported that the proteases derived from ginger rhizome and 
fruits of Cucumis trigonus Roxb plant were also effective in tenderization of meat. The connective 
tissues and muscle proteins are easily digested by the exogenously added proteases (Abdel-Naeem 
& Mohamed, 2016; Grzonka, Kasprzykowski, & Wiczk, 2007).

The myofibrillar breakdown starts after activation of the enzymatic system and includes the pro-
teins troponin-1, troponin-t, desmin, vinculin, meta-vincilin, dystrophin, nebulin, and titin 
(Koohmaraie, 1996). When meat tenderization occurs from z-to z-line attachment-and M-line at-
tachments in sarcolemma with the help of costameric proteins and the elastic protein titin, degrada-
tion of three important cytoskeleton structures occurs (Taylor, Geesink, Thompson, Koohmaraie, & 
Goll, 1995). In muscles, these proteolytic enzymes have a significant role in post-mortem proteolysis 

Figure 1. Enzymatic mechanism 
of protein hydrolysis by 
cysteine proteases (Bekhit  
et al., 2014; Grzonka et al., 
2007).
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and meat tenderization (Koohmaraie & Geesink, 2006). Cathepsins were the first enzymes used in 
meat tenderization, after which, calpain was introduced owing to its efficiency in changing the Z-line 
density seen in post-mortem, although it was not initially related to meat tenderization (Taylor et al., 
1995).

The three familiar tenderizing enzymes from plants, i.e. papain, bromelain, and ficin are ob-
tained from papaya, pineapple, and fig, respectively. The pH, temperature, and strength of hydroly-
sis of various enzymes in proteolytic degradation of myofibrillar proteins and collagen are 
summarized in Table 1. The activity and application of different plant and bacterial proteases is 
shown in Table 2.

Table 2. The activity and application of different plant proteases
Enzymes Activity and application as meat 

tenderization
References

Papain The recommended dose of papain for meat 
tenderization is 0.6% with better texture and 
quality of meat. The dose exceeding the limit 
may affect the quality and texture

Abdel-Naeem and Mohamed (2016)

Papain The addition of ginger and papain powder 
improved the physico-chemical and sensory 
properties of camel burger patties

Akpan and Omojola (2015)

Bromelain The purified bromelain completely ruptures 
the myofibril tissues in meat which shows 
higher tenderization of meat by using 
scanning electron microscopy analysis

Chaurasiya et al. (2015)

Ficin This enzyme can be inhibited by oxidizing 
agents and divalent metals with small 
strengths and this inhibition can be changed

Ramezani et al. (2003)

Actinidin The actinidin has less tenderization property 
as compared to other traditional plant 
proteases and still not approved as GRAS by 
FDA

Toohey, Kerr, van de Ven, and Hopkins (2011)

Calpain Both m-calpain and μ-calpain are cysteine 
proteases, and their proteolytic activity is 
affected by oxidation, which can influence the 
quality of fresh meat

Zhang et al. (2013)

Bacterial enzymes The bacterial enzymes hydrolyses the 
myofibril and collagen proteins more 
efficiently than the papain

Ha et al. (2013)

Table 1. pH, Temperature (0C) and strength of hydrolysis of myofibrillar proteins and collagen 
by various enzymes1

1Derived from Calkin and Sullivan (2007).

Protease Active pH Optimal pH Active 
range

Optimal 
temperature

Hydrolysis 
of 
myofibrillar 
proteins

Hydrolysis 
of collagen

Papain 4.0–9.0 4.0–6.0 50–80 65–75 Excellent Moderate

Bromelain 4.0–7.0 5.0–6.0 50–80 65–75 Moderate Excellent

Ficin 5.0–9.0 7.0 45–75 60–70 Moderate Excellent

Aspergillus 5.0–9.0 7.0 50–65 55–60 Moderate Poor

Bacillus 2.5–7.0 <6.5 40–60 55–60 Poor Excellent
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3. Papain
Papain is an important plant protease derived from the latex of the papaya fruit. Latex is obtained 
by scoring, and then allowing the latex to dry on the fruit, to give crude material. Papain is purified 
by reducing contaminating agents and further extraction. This enzyme is stable at high tempera-
tures and pressure and is inactivated in extreme conditions at 900 mpa, 80°C degree for 22 min. 
Papain is used in the meat industry as a tenderizer, owing to its proteolytic effect, as well as in beer 
making as an additive in flour (Starley, Mohammed, Schneider, & Bickler, 1999). It has the ability to 
hydrolyze larger protein molecules into smaller peptides and amino acids. For many years, papain 
has been used to breakdown tough fibers (Eshamah, Han, Naas, Acton, & Dawson, 2014). Moreover, 
papain can tenderize the meat surface and develop characteristic “mushiness” (Islam & 
 Molinar-Toribio, 2013). The physiological role of papain in plants is to protect them from insects 
(Konno et al., 2004).

The three dimensional structure for papain has been determined (Kamphuis, Kalk, Swarte, & 
Drenth, 1984). Broad-spectrum enzymatic activity has been shown by papain in the pH range 5–8 
and at 65°C temperature (Smith & Hong-Shum, 2003). Berger and Schechter (1970) demonstrated 
that papain has a specificity for amino acids with aromatic side chains such as Phe and Tyr at the P2 
position. The synthetic peptides and inhibitors in mapping are the active sites of papain; within the 
active site, Cys25 and His159 are two of the essential residues for the protease activity (Bekhit, 
Hopkins, Geesink, Bekhit, & Franks, 2014). The schematic diagram for the effect of papain in either 
active or inactive form during ante-mortem and post-mortem conditions is shown in Figure 2.

4. Bromelain
Bromelain is a proteolytic enzyme and is obtained from the root of the pineapple plant after harvest-
ing (Fileti, Fischer, & Tambourgi, 2010). The juice contains bromelain enzyme in soluble form. The 
processing involves precipitation of enzymes for further purification. Bromelain breaks down myofi-
brillar proteins and collagen and causes over-tenderization of meat. The use of bromelain in pro-
cessing adult beef showed the best results at 10 mg/100 g meat, for 24 h at 4°C, followed by 
increasing the temperature at the rate of 1°C/min, until it reached 70°C. Bromelain is important for 
tenderization of meat in industries with controlled environment, and is useful for assurance of the 
microbiological quality and purity. Bromelain is commercially available in powdered form. It is esti-
mated that 95% of the enzymes used in the United States are obtained from plant proteases like 
papain and bromelain, whereas microbially derived tenderizers are not used widely (Ionescu, Fillit, 
Jaffrezic-Renault, & Cosnier, 2008).

Figure 2. Schematic diagram 
for the effect of papain in 
either active or inactive form in 
ante-mortem and post-mortem 
conditions (Bekhit et al., 2014; 
Dransfield & Etherington, 
1981).
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Reverse micellar extraction is used for separation and purification of bromelain from pineapple. 
The commercially obtained stem bromelain was also compared with the purified bromelain in meat 
tenderization. There was high bromelain recovery and purification in the reverse micellar extraction 
technique. In reverse micellar extraction, the toughness of meat was also reduced as compared to 
control (Chaurasiya, Sakhare, Bhaskar, & Hebbar, 2015).

5. Ficin and actinidin
Ficin is a well-known plant protease used in meat tenderization (Maróstica & Pastore, 2010). Ficin is 
a sulfhydral or cysteine protease commonly obtained from Ficus carica (Fig. tree) that enhances the 
solubility of muscle proteins (Ramezani, Aminlari, & Fallahi, 2003). Ficin is an endoproteolytic en-
zyme present in the latex of Fig. trees (F. carica and F. glabrata). In 2008, ficin obtained from F. rac-
emosa has a molecular weight of protein has 44.5 KDa, and shows maximum activity in the optimal 
pH range of 4.5–6.5 at 60°C. These properties make ficins a beneficial class of plant proteases for use 
in meat tenderization.

Actinidin is also a novel sulfhydryl protease extracted from gooseberry or the kiwi fruit. It has a 
molecular weight of 32 kDa. It is used commercially in meat industry to tenderize meat (Varughese, 
Su, Cromwell, Hasnain, & Nguyen Huu Xuong, 1992) and enhance the chemical processes related to 
degradation of the myofibrillar proteins into peptides. It is also involved in the activation of m-cal-
pain throughout postmortem ageing (Ha et al., 2012). Actinidin has many applications in the food 
industry, because of its advantages over other plant proteases such as papain and ficin. Actinidin 
shows mild tenderizing activity even at high concentrations, preventing surface mushiness. It has a 
relatively low inactivation temperature (60°C), which makes it easier to control the tenderization 
process without overcooking (Eshamah et al., 2014; Tarté, 2009).

6. Calpain
Calpain is an important enzyme that is chiefly used for degradation of myofibrillar proteins. It also 
aids in meat tenderizing and improves water holding capacity during postmortem aging (Huff-
Lonergan & Lonergan, 2005; Lonergan, Huff-Lonergan, Wiegand, & Kriese-Anderson, 2001). During 
postmortem refrigerated storage, calpain oxidation may adversely affect its proteolytic activity and 
negatively influence the quality of fresh meat (Zhang, Xiao, & Ahn, 2013).

The calpain system consists of three members—m-calpain, μ-calpain, and calpastatin, which is 
the calpain-specific endogenous inhibitor (Goll, Thompson, Li, Wei, & Cong, 2003; Wendt, Thompson, 
& Goll, 2004). In the presence of calcium, calpains autolyze, and this autolysis is indication of their 
proteolytic activation during postmortem changes in muscles (Geesink & Koohmaraie, 1999). Both 
m-calpain and μ-calpain are cysteine proteases, and their proteolytic activity is affected by oxida-
tion, which can influence the quality of fresh meat (Zhang et al., 2013).

Meat tenderness undergoes changes after slaughtering due to the activity of the endogenous 
calpains and calpastatin. These calcium-dependent proteases degrade the myofibrillar proteins tro-
pomyosin, roponin T, troponin I, C-protein, connectin, titin, vinculin, and desmin. Calpains are 
 inactivated by calpastastin and decreases myofibrillar breakdown and decreases tenderness of 
meat (Cheret, Delbarreladrat, Lamballerieanton, & Verrezbagnis, 2007; Gerelt, Rusman, Nishiumi, & 
Suzuki, 2005).

The endogenous concentration of these enzymes in meat influences meat quality (Koohmaraie, 
Shackelford, Muggli-Cockett, & Stone, 1991). Calpain is involved in postmortem proteolysis and meat 
tenderization in domesticated animals (Huff-Lonergan & Lonergan, 2005; Koohmaraie, 1992).

Although calpains improve the tenderization of meat, increased expression of the CAST gene de-
creases proteolysis and increases toughness of meat. In contrast, the calpain genes CAPN1 and CAPN2 
are involved in the breakdown of myofibrillar proteins (Huff-Lonergan et al., 1996). CAPN1 plays a 
significant role in postmortem muscle proteolysis and in tenderization of meat (Kemp et al., 2010).  
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In bovine and ovine muscles, activity of CAPN2 is low (Camou et al., 2007; Veiseth, Shackelford, 
Wheeler, & Koohmaraie, 2001). The most important musclespecific calcium-dependent cysteine 
 protease is the CAPN3 which has two structural domains called ISI and IS2 and the muscle specific 
proteins bind at N2 line region where proteolysis occurs (Geesink, Taylor, & Koohmaraie, 2005; Kemp 
et al., 2010).

7. Bacterial enzymes
Bacterial strains with proteolytic activity play an important role in the degradation of proteins in 
meat and meat products (Bekhit, 2010). B. subtilis contains two major proteases, subtilisin and neu-
tral protease. The US Food and Drug Administration (FDA) has approved the GRAS status of these 
bacterial strains (FDA, 2001). The relative specific activity and low inactivation temperature of the 
bacterial proteases make them suitable for meat tenderization. Naveena, Mendiratta, and Anjaneyulu 
(2004) reported that the enzyme alkaline elastase, obtained from the alkalophilic Bacillus sp., breaks 
down the collagen, elastin, and myofibrillar proteins in tenderized meat. Alkaline elastase showed 
optimal activity at pH range 5.5–6.0 and temperature range 10–50°C. The hydrolytic activity of bac-
terial proteases in myofibrillar proteins is low as compared to that of the plant proteases; however, 
the hydrolytic activity of bacterial proteases in mediating collagen degradation was found to be in-
termediate to the hydrolytic activities of papain and bromelain (Yeh, Yang, & Tsai, 2002).

The commercially available bacterial proteases are obtained from A. oryzae. Payne (2009) report-
ed that these proteases are stable over a wide range of pH and below 70°C. Aspartic proteases pro-
duced by A. oryzae show optimal activity at pH range 2.5–6.0, and at 75°C, its activity is reduced by 
20% (Ashie, Sorensen, & Nielsen, 2002). The fungal proteases are usually effective in the proteolytic 
activity against elastin and collagen, but show negligible or no effect on myofibrillar proteins (Payne, 
2009). Similarly, aspartic proteases from A. oryzae show negligible or no effect in the degradation of 
myofibrillar proteins in meat (Ha, Bekhit, Carne, & Hopkins, 2013).

8. Conclusions
Meat tenderness is the most important factor associated with meat palatability and consumer sat-
isfaction. Different plant proteases like papain, bromelain, actinidin, and ficin have been used for 
tenderization of meat and meat products. Meat proteins can also be hydrolyzed by bacterial en-
zymes, such as proteases from Aspergillus oryzae and Bacillus subtilis. The bacterial proteases ex-
hibit lower hydrolytic activity in myofibrillar proteins as compared to plant proteases. However, 
hydrolytic activity of bacterial enzymes in the collagen was found to be intermediate to the activities 
of papain and bromelain. Further, it is recommended that the combined use of plant and bacterial 
proteases may have synergistic effect on meat tenderization.
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