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BACKGROUND: Spray irrigation for land-applying livestock manure is increasing in the United States as farms become larger and economies of scale
make manure irrigation affordable. Human health risks from exposure to zoonotic pathogens aerosolized during manure irrigation are not well
understood.
OBJECTIVES: We aimed to a) estimate human health risks due to aerosolized zoonotic pathogens downwind of spray-irrigated dairy manure; and b)
determine which factors (e.g., distance, weather conditions) have the greatest influence on risk estimates.
METHODS:We sampled downwind air concentrations of manure-borne fecal indicators and zoonotic pathogens during 21 full-scale dairy manure irri-
gation events at three farms. We fit these data to hierarchical empirical models and used model outputs in a quantitative microbial risk assessment
(QMRA) to estimate risk [probability of acute gastrointestinal illness (AGI)] for individuals exposed to spray-irrigated dairy manure containing
Campylobacter jejuni, enterohemorrhagic Escherichia coli (EHEC), or Salmonella spp.

RESULTS:Median risk estimates from Monte Carlo simulations ranged from 10−5 to 10−2 and decreased with distance from the source. Risk estimates
for Salmonella or EHEC-related AGI were most sensitive to the assumed level of pathogen prevalence in dairy manure, while risk estimates for C.
jejuni were not sensitive to any single variable. Airborne microbe concentrations were negatively associated with distance and positively associated
with wind speed, both of which were retained in models as a significant predictor more often than relative humidity, solar irradiation, or temperature.

CONCLUSIONS: Our model-based estimates suggest that reducing pathogen prevalence and concentration in source manure would reduce the risk of
AGI from exposure to manure irrigation, and that increasing the distance from irrigated manure (i.e., setbacks) and limiting irrigation to times of low
wind speed may also reduce risk. https://doi.org/10.1289/EHP283

Introduction
Land application of livestock manure by spray irrigation is becom-
ing more common in the United States (Genskow and Larson
2016). In fact, state-specific guidance documents formanure irriga-
tion are available for Colorado, Idaho, Iowa, Missouri, Kansas,
Nebraska, New Hampshire, New Mexico, North Carolina,
Pennsylvania,Utah, andWisconsin (GenskowandLarson2016).

For manure irrigation, liquid manure in storage lagoons is
pumped through pipes to the field site, where it is applied to the
land surface using conventional water irrigation equipment, such
as traveling gun and center pivot (Figure 1). In contrast with con-
ventional methods of manure application before planting and af-
ter crops are harvested, irrigated manure can be applied
throughout the year, including applications onto growing crops.

The expressed benefits of manure irrigation tend to be maxi-
mized at large economies of scale (Genskow and Larson 2016),
and the trend of intensification in U.S. agricultural production
practices includes consolidation to larger farms. For example, the

percentage of dairy cows housed on U.S. farms with 1,000 or
more head of cattle increased from 17% to 49% between 1997
and 2012 (http://www.nass.usda.gov/). Thus, increasing use of
spray irrigation for land application of livestock manure seems
likely to continue.

However, spray irrigation presents unique public health chal-
lenges relative to other technologies for manure land application.
Spray irrigation equipment can applymanure for prolonged periods
of time and throughout the growing season, potentially resulting in
more continuous andmore frequent exposure of nearby residents to
aerosolized contaminants. Zoonotic pathogens are chief among the
contaminants of concern in livestock manure (U.S. EPA 2013).
During spray irrigation, wind may transport pathogens from appli-
cation areas, leading to human exposure via inhalation or contact
with contaminatedvectors, food, and fomites.

While exposure to zoonotic pathogens from spray-irrigated
livestock manure is plausible, the actual exposure levels and corre-
sponding human health risks are not well understood. Concentra-
tions of human pathogens and fecal microorganisms have been
measured in air samples collected downwind from spray irrigation
using untreated municipal wastewater (Katzenelson and Teltch
1976, U.S. EPA 1980). The incidence of enteric infections was
higher among the residents of 77 communities that used partially
treated domestic wastewater for spray irrigation than in residents
of 130 communities that did not (Katzenelson et al. 1976).
However, exposures and risks for spray-irrigated municipal waste-
water may differ from those for spray-irrigated livestock manure
because municipal wastewater contains human pathogens not
found in livestock manure and undergoes treatment that differs
from livestock fecalmaterial.

We are aware of only two peer reviewed studies that esti-
mated health risks posed by exposure to zoonotic pathogens in
land-applied dairy manure, including a study that generated risk
estimates for center pivot irrigation of dairy manure based on an
air dispersion model (Dungan 2014) and one that estimated risks
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based on an empirical fate and transport model for coliphage
spiked into groundwater that was sprayed using conventional
tanker equipment (Brooks et al. 2012). Both studies used quanti-
tative microbial risk assessment (QMRA), but their risk estimates
varied over 10 orders of magnitude, and neither included data
from empirical measurements during full-scale dairy manure
spray irrigation.

Our objective was to estimate the human health risk from
spray irrigation of dairy manure for residents with dwellings near
spray-irrigated fields. We measured air concentrations of zoo-
notic pathogens and bovine commensal microorganisms down-
wind of traveling gun and center pivot spray irrigation equipment
during full-scale irrigation events. We then modeled these mea-
surements as a function of distance using empirical hierarchical
models to account for variation in the concentration vs. distance
relationship among trials. Finally, we used concentrations pre-
dicted from these models as inputs to a QMRA to estimate risk.

Methods

Field Sampling and Irrigation Equipment
We collected air samples for manure-related microbes during 21
manure irrigation trials. These trials were conducted during the
growing season (May–October) over 3 y (2012–2014) on three
Wisconsin dairy farms (herd sizes of approximately 400, 660,
and 3,500 head) during routine manure application. These three

farms were a convenience sample of local farms willing to partic-
ipate in our study. Two farms were sampled throughout the 3-y
study period; the third farmwas sampled only during 2014.Manure
used for irrigation was pumped directly from storage lagoons and
applied to agriculturalfields at 94,000 to188,000 L=ha.The storage
lagoons contained untreated feces and urine (two smallest farms),
the liquid fraction of manure that had passed through an anaerobic
digester (the largest farm), and water flushed from animal pens and
milking parlors (all farms). The two smallest farms used traveling
guns (two trials and11 trials, respectively),whichmoved at approx-
imately 2 m=h, and released manure between 900 and
2,100 L=min.The third and largest farmused center pivot (eight tri-
als) to irrigate the liquid fraction of anaerobically digestedmanure,
which was diluted with groundwater (approximately 1:2) during
irrigation. The pivots were approximately 390 m long, typically
contained 80 to 120 nozzles two meters or more above ground
surface, pivoted at 20 degrees=h, and released manure between
2,700 and 3,800 L=min.

Our ideal plan was to collect air samples at ten downwind sta-
tions at each farm during each trial. Two stations were placed
15 m apart at each of five target distances: 30, 61, 105, 152, and
213 m (100, 200, 350, 500, and 700 ft). Distance was measured
from the irrigation-wetted perimeter, and stations were placed
downwind from irrigation equipment along a line perpendicular
to the center pivot’s arm (from the approximate midpoint) or to
the direction traveled by the gun. Each station typically consisted
of one button sampler (SKC Inc. SKC 225-360) and two single-
stage Andersen impactor samplers (SKC Inc. SKC 225-9611)
mounted 1.5 to 2 m (depending on crop height) above ground
surface. Button samplers were used in all 21 trials and were
loaded with gelatin filters (SKC Inc. SKC 225-9551) for quantita-
tive polymerase chain reaction (qPCR) analyses. Impactor sam-
plers were used in the 12 trials conducted during 2014
(n=6, 4, and 2 for farms A, B, and C). These were loaded with
Petri plates of MacConkey, Cefoperazone Vancomycin-
Amphotericin B Agar (CVA), 4-methylumbelliferyl-b-D-galac-
topyranoside (MUGal) and Indoxyl-b-D-glucuronide (IBDG)
[MUGal and IBDG (MI)], and m-Enterococcus media (i.e., four
types of media per distance). Calibrated air pumps for button
samplers were set to 4 L=min; impactor samplers were operated
at 27 L=min. Two additional stations located approximately
1,000 m upwind from the irrigation equipment were used in all
trials to collect background air samples before irrigation began
and upwind samples during irrigation. Field conditions often
forced us to adapt our ideal plan, so the exact number of air
samples collected varied by trial (see Table S1).

A portable weather station logged meteorological data during
every irrigation trial. The weather station consisted of a combined
anemometer and wind vane (Model 03002, R.M. Young Co.), a
pyranometer (Model CS300, Apogee Instruments) for measuring
solar irradiance, a combined temperature and humidity probe
(Model CS215, Campbell Scientific), and a CR800 data logger
(Campbell Scientific).

Air sampling was timed to maximize airborne microbe detec-
tion. For center pivots, air sampling began when the system was
fully pressurized and the nozzle arm began pivoting. For travel-
ing guns, air was sampled for the 1-h period when the gun was
most directly upwind from the samplers. Button samplers oper-
ated for 60 min (traveling guns) or 90 min (center pivots).
Impactor samplers operated for 20 min (the recommended maxi-
mum period), then the plate was exchanged for a duplicate, and
another 20-min sample was collected.

Liquid manure was sampled (100 to 500 mL) during irriga-
tion from center pivots by holding a collection vessel over a noz-
zle and from traveling guns from a pump valve. Manure samples

Figure 1. Photos of spray irrigation conducted using traveling gun (top) and
center pivot (bottom) equipment. Photos taken by authors Mark Borchardt
(traveling gun) and Rebecca Larson (center pivot).
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were analyzed by both qPCR and culture methods for the same
genetic targets and microbes as the air samples. The number of
individual manure samples collected per trial varied based on
convenience (n=0–12 samples per trial). Occasionally, we con-
ducted two trials on the same farm on the same day. In these
instances, we collected manure samples for just one trial and
used those data for both trials. This occurred twice in 2014.
Furthermore, we failed to collect manure samples for a single
trial in 2012. Thus, we have 18 trials with unique qPCR analyses
of manure samples instead of 21 and 10 instead of 12 for culture-
based analyses.

Laboratory Analyses
Button sampler gelatin filters were placed into AVL buffer
(Qiagen) immediately following sampling and the remainder
of the DNA extraction procedure completed the next day
[QIAamp DNA Blood Midi Kit (Qiagen)]. Liquid manure sam-
ples were diluted 1:10 in AE buffer (Qiagen) followed by DNA
extraction [QIAamp DNA Blood Mini Kit (Qiagen)]. qPCR was
performed with the LightCycler 480 instrument (Roche
Diagnostics) and companion LightCycler 480 Probes Master kit.
Microbial targets includedCampylobacter jejuni, enterohemorrha-
gic Escherichia coli (EHEC), Salmonella spp., bovine polyomavi-
rus, bovine Bacteroidales-like CowM3, bovine Bacteroides,
Giardia lamblia, and Cryptosporidium parvum. Two to four
qPCR technical replicates were performed per target. qPCR tar-
get genes, references for primers and hydrolysis probes, and
quality assurance parameters for standard curves are reported in
Table S2. Standard curves were created by serially diluting
gBlocks or Ultramers (Integrated DNA Technology) of the tar-
get sequence. Cycle of quantification values (Cq) were deter-
mined by the second derivative maximum method. No-template
controls were performed for every master mix and extraction
batch. Data were acceptable only if all no-template controls in an
analysis batch were negative (i.e., no Cq value). All 257 air sam-
ples (195 downwind, 33 upwind, and 29 background samples)
and 55 manure samples were checked for qPCR inhibition fol-
lowing the approach of Gibson et al. (2012) using lambda phage
DNA (New England BioLabs) as the inhibition control. No sam-
ples were inhibited based on this assessment (data not shown).

Bacterial culture procedures for manure and Andersen impac-
tor samples were conducted to quantify gram-negative bacteria,
Salmonella spp., C. jejuni, commensal E. coli, and Enterococcus
spp. (see Table S3). Colony identity was confirmed by qPCR,
except blue colonies on MI agar were counted as E. coli follow-
ing U.S. Environmental Protection Agency (EPA) Method 1604
(U.S. EPA 2002). For culturable C. jejuni in manure samples,
it was not possible to perform qPCR confirmations for all colo-
nies on each plate, so the detection frequency for C. jejuni in
manure based on culture procedures may be an underestimate.
Concentrations of C. jejuni in manure based on culture proce-
dures were estimated by multiplying the total concentration of
colonies on each plate by the fraction of colonies testing positive
as C. jejuni during qPCR confirmations. The positive-hole correc-
tion for Andersen samplers (Macher 1989) was not applied
because the corrected plate counts were not substantially different
than uncorrected plate counts.

C. parvum and G. lamblia were analyzed by qPCR for manure
samples from irrigation trials in 2012 and 2013; manure samples
from2013were additionally analyzed for both pathogens by immu-
nofluorescence (Merifluor® Cryptosporidium/Giardia, Meridian
Bioscience, Inc.). Positive controls for immunofluorescence mi-
croscopy were obtained from Waterborne Inc. Cryptosporidum
and Giardia were never observed in any manure samples from
2012 and 2013, and as none of the three study farms had storage

lagoons containing calf manure (the age most susceptible to
Cryptosporidum and Giardia infections), samples collected in
2014 were not analyzed for these two pathogens.

Empirical Modeling
We modeled downwind air concentrations of four commensal
microorganisms, bovine Bacteroides, Bacteroidales-like CowM3,
Enterococcus spp., and gram-negative microorganisms, using two
empirical models. The first set of models predicted concentration
based on distance only (hereafter designated distance models) for
use in acutegastrointestinal illness (AGI) risk calculations.The sec-
ond set of models (hereafter referred to as distance plus trial-level
variable models) were used to determine which of the following
factors were significant predictors of downwind air concentrations:
distance, microbe concentration in source manure, wind speed, so-
lar irradiance, relative humidity, and temperature. We evaluated
minimum,median, maximum, andmean values of the four meteor-
ological parameters and used the version of each variable that best
fit the data in final models, as described below. The microbes in
source manure corresponded to the microbes for which air concen-
trations were modeled. We were missing measurements of manure
microbe concentrations based on qPCR for one trial. This trial was
excluded during model building for distance plus trial-level vari-
ablemodels.Wewere nevermissingmeteorological data, distance,
ormanuremicrobe concentrations basedon culturemethods.

Hierarchical Modeling
Both modeling objectives entailed fitting separate two-level hier-
archical models for each of the four commensal microorganisms.
Concentration measurements of microorganisms measured using
qPCRwere grouped within trials (n=21). Concentrationmeasure-
ments of microorganisms measured using culture methods were
grouped within subtrials (n=21). Subtrials are the 20-min time
periods within trials during which Andersen impactors were oper-
ated. There are fewer subtrials than might be expected (12 trials
using Andersen impactors × 2 subtrials each= 24 subtrials) because
field conditions prevented us fromconducting two subtrials for three
trials.Data points collected at the samedistance for each trial (or sub-
trial)werehandled asdistinct datapoints duringmodeling.

Our hierarchical modeling approach implies that the trials (or
subtrials) were independent and the concentration measurements
within trials were correlated to the extent that they reflected the
same underlying experimental conditions (farm, day, time,
weather conditions). For distance models, the level 1 equation is:

Yij =a0j + a1jdij + eij, [1]

where, for the concentration of a given microbe in air, Yij repre-
sents downwind measurement i for trial j, a0j is the random inter-
cept for trial j, a1j is the random slope for trial j, dij is distance,
and eij are the random residuals. The level 2 equations for dis-
tance models are:

a0j =b00 + c0j [2]

a1j =b10 + c1j, [3]

where, the b terms are fixed regression coefficients, and the c
terms are random regression coefficients. In other words, the ran-
dom intercepts and slopes of Equation 1 are predicted by two
types of coefficients: a fixed overall coefficient and a random
coefficient that varies by trial. The final distance model, with
Equations 2 and 3 substituted into Equation 1, is:
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Yij =b00 + b10dij + c0j + c1jdij + eij: [4]

For distance plus trial-level variable models, the level 1 equa-
tion is the same as Equation 1. However, the level 2 equations ex-
plicitly include terms for trial-level predictors:

a0j = b00 + b0kxkj + c0j [5]

a1j = b10 + b1kxkj + c1j, [6]

where, the x terms represent the k trial-level predictors (up to a
maximum of five variables, including microbe concentration in
source manure, wind speed, solar irradiance, relative humidity,
and temperature). Their corresponding b terms are fixed regres-
sion coefficients. Like the final distance model, the final distance
plus trial-level variable model is derived by substituting Equations
5 and 6 into Equation 1.

The formulations presented above represent the most complex
formulations that could be used for a given response variable in
this study. However, a forward model-building process was used
to evaluate simplifications to model structures and avoid potential
problems with multicollinearity. For each response variable, mod-
els were developed by adding predictors one at a time and using
nested model comparisons to determine the statistical significance
of each additional term. These comparisons weremade using a chi-
squared test on the difference in deviance (−2× log-likelihood)
between nested models. Additional terms were retained if they
were statistically significant at the 0.05 level. Nested linear model
comparisonsweremade using the appropriate estimation technique
(restrictedmaximum likelihood ormaximum likelihood).

For distance models, the sequence of terms added was a)
fixed intercept and random intercepts; b) fixed slopes (i.e., fixed
distance effects); and c) random slopes. Conceptually, this
sequence corresponds to specifying that measured air concentra-
tions a) vary only by trial; b) vary by both trial and distance; and
c) vary by trial and distance, with the distance relationship itself
also varying by trial.

For distance plus trial-level variable models, the sequence of
terms was determined by screening all potential predictors indi-
vidually against a null model, again using nested model compari-
sons. The initial null model consisted of fixed and random
intercepts, and the list of potential predictors consisted of dis-
tance, microbe manure concentrations, wind speed, solar irradi-
ance, relative humidity, and temperature. After screening each
predictor individually, we selected the predictor with the lowest
p-value, added it to the null model, then screened all remaining
predictors individually against this new null model (original null
model plus most significant predictor). This process was repeated
until there were no more predictors with p-values<0:05. For
each of the four meteorological variables, we evaluated each pos-
sible form of the variable (minimum, median, maximum, or
mean) and selected the measure that provided the best fit to the
data. Note that it was possible to drop distance as a predictor in
both types of models (distance models and distance plus trial-
level variable models).

Sequential Probit and Linear Modeling
As part of the hierarchical modeling approach described above,
each response variable was also decomposed into two compo-
nents: a) a binary value indicating whether an organism was
detected or not detected downwind; and b) for observations in
which the organism was detected, the natural logarithm of the air
concentration. We used probit models to estimate the probability
of detection and linear models to estimate concentration condi-
tional on a detectable value (Gelman and Hill 2007). This

approach alleviated the need to impute values for nondetects prior
to model fitting while simultaneously allowing the use of the full
data set for each response variable. In the QMRA (see below), we
used the probit model to predict the distribution of probabilities of
detection at each distance, which was transformed to a distribution
of 0s and 1s using a Bernoulli random number generator in R (ver-
sion 3.2.1; R Foundation for Statistical Computing), andmultiplied
these values by the distribution of concentrations predicted by the
linearmodel to derive a distribution of concentrations (including an
appropriate proportion of nondetect samples with a concentration
of 0) at eachdistance.

All probit and linear models used to estimate concentration
distributions were fit using the lme4 package in R (Bates et al.
2015). Probit models were fit using LaPlace approximation, and
the final linear models were fit using restricted maximum likeli-
hood. Preliminary hierarchical modeling using an equipment type
indicator variable (center pivot or traveling gun) indicated that
equipment type was not a significant predictor of air concentra-
tion (p>0:05, chi-squared test on difference in deviance for
nested models), so equipment type was not included in models
(data not shown). Probit models were checked for accuracy to
quantify how well they reproduced the data they were fit to; accu-
racy here is defined as the proportion of data points for which the
model correctly predicts the occurrence of detections and nonde-
tections. Linear models were checked graphically to verify linear-
ity, equal variance of errors, and normality of errors (data not
shown). For distance plus trial-level variable models, we derived
standardized coefficients by fitting models to standardized data
(we divided each variable by one standard deviation). This was
done to facilitate comparisons of effect size among variables with
different ranges and units of measure.

Quantitative Microbial Risk Assessment
Air concentrations of zoonotic pathogens that may be present in
manure and cause AGI, specifically, C. jejuni, EHEC, Salmonella
spp., G. lamblia, and C. parvum, were of primary interest for
AGI risk assessment, but these pathogens were rarely or never
detected in air samples (data not shown). Therefore, we also
measured air concentrations of four potential surrogate microor-
ganisms (bovine Bacteroides, gram-negative microorganisms,
commensal E. coli, and Enterococcus spp.). We selected bovine
Bacteroides and gram-negative bacteria as surrogates to represent
pathogen fate during manure irrigation because the two repre-
sented the highest and lowest air concentrations, respectively.

Predicted air concentrations of the surrogate microbes were
estimated at each distance of interest using distance models, with
probit models used to determine the probability of detection and
linear models used to determine concentrations conditional on
detection, as described above. To make predictions based on the
distance models, we used the random coefficients in a Monte
Carlo simulation, as described below (see Table 1 for a summary
of all simulation inputs for these models). To estimate air concen-
trations of the pathogens C. jejuni, EHEC, and Salmonella spp.,
which are common in U.S. dairy operations (USDA 2003; USDA
2011) from predicted air concentrations for the surrogate
microbes, we used pathogen-to-surrogate ratios defined from the
literature for EHEC and Salmonella spp. (Hutchison et al. 2004)
and ratios based on culture data from our own study’s manure
samples for C. jejuni (Table 1). Exposure was also considered at
two levels of prevalence for each pathogen in dairy farm manure:
a) 100%; and b) a pathogen-specific typical prevalence value in
the United States, namely, 39%, 40%, and 90% for EHEC,
Salmonella spp., and C. jejuni, respectively. The values for
EHEC and Salmonella are based on published national data
(USDA 2003; USDA 2011). The value for C. jejuni (Table 1) is
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Table 1. Summary of two-dimensional Monte Carlo simulation inputs.

Description Typea Distribution Value(s)b Source

C. jejuni prevalence V Empirical discrete Values= f0, 1g This studyc

Probabilities = f0:10, 0:90g
Enterohemorrhagic Escherichia coli
(EHEC) prevalence

V Empirical discrete Values= f0, 1g USDA 2003
Probabilities = f0:61, 0:39g

Salmonella spp. prevalence V Empirical discrete Values= f0, 1g USDA 2011
Probabilities = f0:60, 0:40g

Distance (feet)d V Uniform Min= 100 Specified
Max=1,000

Bovine Bacteroides probit model
intercepte

VU Mixture of 20 normal distributions Q1=1:54 This study
Med=2:10
Q3=2:65

Bovine Bacteroides probit model
slope

U Normal Mean= − 0:15 This study
SD=0:07

Bovine Bacteroides linear model
intercepte

VU Mixture of 20 normal distributions Q1=0:30 This study
Med=1:32
Q3=3:14

Bovine Bacteroides linear model
slope

U Normal Mean= − 0:37 This study
SD=0:06

Ratio of C. jejuni to bovine
Bacteroides

C NAf 1× 10−4 This studyc

Ratio of EHEC to bovine
Bacteroides

C NAf 5× 10−5 Hutchison et al. 2004 and this study

Ratio of Salmonella spp. to bovine
Bacteroides

C NAf 5× 10−4 Hutchison et al. 2004 and this study

Gram negatives probit model
interceptg

VU Mixture of 21 normal distributions Q1= − 0:26 This study
Med=0:52
Q3=1:17

Gram negatives linear model
interceptg

VU Mixture of 20 normal distributions Q1= − 5:34 This study
Med= − 4:30
Q3= − 3:20

Gram negatives linear model slopeg VU Mixture of 20 normal distributions Q1= − 0:26 This study
Med= − 0:13
Q3= − 0:003

Ratio of C. jejuni to gram negatives C NAf 7× 10−3 This studyc

Ratio of EHEC to gram negatives C NAf 4× 10−3 Hutchison et al. 2004 and this study
Ratio of Salmonella spp. to gram
negatives

C NAf 4× 10−2 Hutchison et al. 2004 and this study

Age (years) V Mixture of 18 uniform distributions Q1=20 U.S. Census Bureau 2015
Med=39
Q3=56

Exposure time (minutes) V Mixture of five age-dependent distributions,
each age-dependent distribution is a mix-
ture of nine uniform distributions

Q1=40 U.S. EPA 2011, Table 16–20
Med=100
Q3=189

Inhalation rate (cubic meters per
minute)

V Mixture of 14 age-dependent distributions,
each age-dependent distribution is a mix-
ture of 14 uniform distributions

Q1=1:1× 10−2 U.S. EPA 2011, Tables 6–17 and 6–19
Med=1:2× 10−2

Q3= 1:4× 10−2

Ingestion-to-inhalation ratio C NAf 0.8 Hardy et al. 2006
C. jejuni dose–response model
parameter (alpha)

U Empirical continuous Q1=1:3× 10−1 Schmidt et al. 2013
Med=1:5× 10−1

Q3= 1:8× 10−1

C. jejuni dose–response model
parameter (beta)

U Empirical continuous Q1=4× 100 Schmidt et al. 2013
Med= 1× 101

Q3=4× 101

C. jejuni morbidity ratio C NAf 0.28 Soller et al. 2010
EHEC dose-response model
parameter (alpha)

U Empirical continuous Q1=1× 10−2 Teunis et al. 2008
Med= 3× 10−1

Q3= 8× 100

EHEC dose–response model
parameter (beta)

U Empirical continuous Q1=2× 100 Teunis et al. 2008
Med= 4× 101

Q3=8× 102

Salmonella spp. dose–response
model parameter (alpha)

U Empirical continuous Q1=3× 10−2 Teunis et al. 2010
Med= 3× 10−1

Q3= 2× 101

Salmonella spp. dose-response
model parameter (beta)

U Empirical continuous Q1=2× 10−3 Teunis et al. 2010
Med= 1× 10−1

Q3= 6× 101

Salmonella spp. dose–response
model parameter (eta)

U Empirical continuous Q1=7× 10−2 Teunis et al. 2010
Med= 8× 10−1

Q3= 1× 102
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based on the proportion of trials from our own study in which C.
jejuni was detected in any manure sample using qPCR; it is con-
sistent with published national data (USDA 2011). We define
pathogen prevalence as the proportion of dairy farms on which a
given pathogen can be found in any manure sample. The use of
two prevalence values and two surrogates resulted in four AGI
risk estimates for each pathogen, thus capturing some of the
uncertainty in these estimates.

Inhalation volumes were calculated from age-dependent dis-
tributions of inhalation rates and time spent outdoors at home
(US EPA 2011) (Table 1). The age distribution (25th, 50th, and
75th percentiles of 20, 39, and 56 y, respectively) was defined
using 2010 U.S. Census data for Wisconsin (U.S. Census Bureau
2015). Inhalation rates were for light intensity activity (e.g.,
walking) (U.S. EPA 2011). The duration of exposure depends on
the time spent outdoors, the duration of irrigation, and the degree
to which these two time periods overlap. However, data are lack-
ing for the latter two items, so we assumed that the duration of
irrigation was equal to the amount of time spent outdoors and
that the two time periods overlapped perfectly.

Pathogen dose was the product of pathogen air concentration,
inhalation volume, and an ingestion-to-inhalation ratio of 0.8
(Hardy et al. 2006), which is high compared with ratios of 0.1 to
0.5 used in similar QMRAs (Brooks et al. 2005b, Tanner et al.
2008, Brooks et al. 2012, Dungan 2014).

Risk of AGI was estimated using beta-Poisson dose–response
models for EHEC (Teunis et al. 2008), Salmonella spp. (Teunis
et al. 2010), and C. jejuni (Schmidt et al. 2013) (Table 1). The C.
jejuni dose–response model estimates probability of infection,
which was multiplied by a morbidity ratio of 0.28 (Soller et al.
2010). Random samples of dose–response model parameters
were obtained from authors of the three models. To avoid overes-
timating risk at low doses (Teunis and Havelaar 2000), exact
beta-Poisson models were evaluated using the Kummer confluent
hypergeometric function in the gsl package for R (Hankin 2006).

Computations
The QMRA was evaluated by two-dimensional Monte Carlo sim-
ulation using the mc2d package for R (Pouillot and Delignette-
Muller 2010). Two-dimensional Monte Carlo simulations consist
of multiple simulations addressing variability (i.e., the variability
dimension) nested within a single larger simulation that addresses
uncertainty (i.e., the uncertainty dimension). In this context, the
term uncertainty is akin to measurement error; it refers to hetero-
geneity in QMRA inputs that could theoretically be reduced by
collecting more measurements. In contrast, our use of the term
variability refers to heterogeneity in QMRA inputs that is not

reducible because it is due to natural processes. Heterogeneity in
risk factors (e.g., age, exposure time) was assigned to the vari-
ability dimension, while heterogeneity in uncertain model param-
eters (e.g., dose–response parameters) was assigned to the
uncertainty dimension (see Table 1 for the dimension associated
with each individual input variable). Pathogen prevalence was
not treated as a distribution within Monte Carlo simulations. For
each pathogen, the pathogen was considered to either be always
present (using 100% prevalence) or present during a fixed per-
centage of simulated exposure events (using typical prevalence).
The distributions of random coefficients (e.g., probit and linear
intercepts) from distance models were simulated in the variability
dimension. Thus, these coefficients represent the aggregate effects
of trial-level variables (i.e., risk factors likewind speed andmicrobe
manure concentration) on risk estimates. To determine the relation-
ship between risk and distance, simulations were performed in a
loop at each of 19 distances (100 to 1,000 ft in 50-ft increments). To
performsensitivity analyses and assess output stability, simulations
were performed with distance specified as a random variable (see
Table 1 for distribution). Each simulation consisted of 15,000 itera-
tions in the variability dimension and 3,000 iterations in the uncer-
tainty dimension, which resulted in 45 million risk estimates for
each of the four scenarios (2 surrogates × 2 prevalence values) for
each pathogen. The overall size of each simulation was constrained
by available computing power; the size of each dimension within
simulations was optimized within this constraint based on the sta-
bility of simulation outputs (seeTable S4).

Results

Meteorology
Our measurements of airborne microorganisms during manure
irrigation were conducted across a wide range of meteorological
conditions (Figure 2). For instance, mean wind speed varied from
0.9 to 6 m=s among irrigation trials, maximum wind speed varied
from 2 to 9 m=s, and solar irradiance varied between 0 (complete
darkness) and 1,000 (bright sunshine) W=m2.

Microbes in Source Manure
C. jejuni was the only zoonotic pathogen detected in manure sam-
ples (in 16 of 18 field trials). Commensal microorganisms (i.e.,
pathogen surrogates) were detected in all manure samples (see
Table S5). The detection frequencies of microorganisms were
consistently higher in manure samples than in air samples. For
example, commensal E. coli were detected in 100% of manure
samples, but only 11% of air samples. Likewise, the concentra-
tions of microbes in manure were consistently higher than in air.

Table 1 (Continued.)

Description Typea Distribution Value(s)b Source

Salmonella spp. dose–response
model parameter (rho)

U Empirical continuous Q1=1× 100 Teunis et al. 2010
Med= 7× 100

Q3=3× 101

aSimulation inputs are either constant (C), variable (V), uncertain (U), or variable and uncertain (VU).
bConstants and parameters of parametric distributions are presented directly. Summary statistics of simulated values are provided for continuous empirical distributions and mixture
distributions. Distributions that are both variable and uncertain are summarized at their median in the uncertainty dimension.
cParameters for Campylobacter jejuni are calculated based on manure data from the trials used to construct hierarchical models plus manure data from an additional two trials con-
ducted during the same study period. The air data for these two trials are not presented here because manure application was by tanker spraying, not spray irrigation. However, the ma-
nure data from these two trials are representative of C. jejuni prevalence in our study and allow for a larger sample size.
dDistance is treated as a random input when performing sensitivity analyses and assessing output stability. It is not treated as random when determining the relationship between risk
and distance.
eThe empirically observed correlation (Spearman’s correlation coefficient = 0:31) between random coefficients of the bovine Bacteroides probit model and random coefficients of the
bovine Bacteroides linear model was reproduced in the variability dimension of the simulation using the cornode function in mc2d (Pouillot and Delignette-Muller 2010).
fNot applicable.
gThe empirically observed correlations among random coefficients of the gram-negative models were reproduced in the variability dimension of the simulation using the cornode func-
tion in mc2d (Pouillot and Delignette-Muller 2010). Spearman’s correlation coefficients among these random model coefficients were −0:93 (between the linear intercepts and linear
slopes), 0.38 (between the linear intercepts and probit intercepts), and −0:22 (between the probit intercepts and linear slopes).
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For instance, median concentrations of bovine Bacteroides were
over 100million times higher inmanure (3:6× 109 gene copies=L)
than in air 30 m from the irrigated wetted perimeter (6 ×
103 gene copies=m3).

Microbes in Air
Detection frequencies and concentrations of airborne microbes
tended to decrease with distance (Figure 3). Background (i.e.,
before irrigation) and upwind (i.e., during irrigation) concentra-
tions of airborne microorganisms are reported in Tables S6 and
S7. Random slopes did not significantly improve model fit in dis-
tance models for Bacteroides and Bacteroidales-like CowM3, so
these models included fixed slopes only. Consequently, the esti-
mated rate of decrease with distance for these organisms was
constrained by the models to be equal for all trials. In contrast,
random slopes were retained in the final models for Enterococcus
spp. and gram-negative bacteria, and the rates at which predicted
concentrations decreased with distance varied among trials.
Random intercepts were retained in distance models for all four
organisms; thus, air concentrations at the minimum distance of
30 m (i.e., the intercept) varied among trials. The distance models
explained the relationship between distance and microbe air con-
centrations well. The accuracy of probit models varied between
0.85 and 0.89. For linear models, the R2 values were 0.80, 0.76,
0.89, and 0.58 for gram-negative bacteria, bovine Bacteroides,
Enterococcus spp., and Bacteroidales-like CowM3, respectively.
We attribute the poor fit of the Bacteroidales-like CowM3 linear
model to apparent outliers (see Figure S1).

In the distance plus trial-level variable models, distance
remained significantly associated with downwind air concentra-
tions for each microorganism (p<0:05). It was retained in linear
models for Enterococcus spp. and gram-negative microorganisms;
it was retained in both probit and linear models for bovine
Bacteroides andBacteroidales-likeCowM3. In addition, four trial-
level variables were also significantly associated with air

concentrations (Table 2).Wind speed andmicrobe concentration in
manure were positively associated with downwind concentration
(p<0:05) for three and two of four microorganisms, respectively.
Relative humidity and solar irradiance were negatively associated
with downwind concentration (p<0:05) for two and one of four
microorganisms, respectively.

Risk Estimates
Risk estimates for AGI decreased with distance and varied sub-
stantially based on pathogen prevalence and surrogate (Figure 4).
Median risk estimates were derived by finding the median of risk
distributions produced by the Monte Carlo simulations, and var-
ied between roughly 1 × 10−5 and 1× 10−2 per irrigation event.
Risk estimates were highest when pathogen prevalence in manure
was assumed to be 100% and when bovine Bacteroides was used
as the pathogen surrogate. They were lowest when pathogen prev-
alence was assumed to equal typical values (C. jejuni: 90%,
Salmonella: 40%, EHEC: 39%), and gram-negative bacteria were
used as the pathogen surrogate. In terms of pathogens, Salmonella
spp. presented the highest risk when pathogen prevalence was
modeled as 100%, while C. jejuni presented the highest risk when
pathogen prevalence was modeled using typical values.

Sensitivity Analysis on Risk Estimates
The relationship between risk estimates and simulation inputs
depended on the assumed level of pathogen prevalence in dairyma-
nure (Figure 5). ForEHECandSalmonella spp., both ofwhich have
relatively low typical pathogen prevalence values (39–40%), risk
estimates were most correlated with whether the pathogens were
simulated to be present in dairy manure, which is determined by
assumed prevalence values. For C. jejuni (assumed typical
prevalence= 90%), however, risk estimates were roughly equally
correlated with simulated pathogen presence in manure, distance,
exposure time, and themodel intercepts, which represent the aggre-
gateeffectsof trial-levelconditions(i.e.,microbemanureconcentra-
tion andmeteorological conditions). Individual risk factors like age
and inhalation ratewerenot stronglycorrelatedwithestimatedrisks,
although the full risk assessment cannot explicitly account for the
effects of age on risk.Age is included explicitly in the exposure esti-
mate as a predictor of time spent outdoors and inhalation rate, but
age-specific dose–response models are not available. Sensitivity
analysisusinggram-negativebacteriaas thepathogensurrogatepro-
duced similar results to those for bovine Bacteroides (data not
shown).

Discussion

Factors Affecting Risk of Illness
Weestimated the risk ofAGI for people downwind of dairymanure
spray irrigation for three pathogens common in U.S. dairy opera-
tions. Overall, risk decreased with distance and tended to be most
strongly controlled by the assumed level of pathogen prevalence in
manure. Exposure time and the combined effects of trial-level con-
ditions (i.e., microbe manure concentration and weather condi-
tions) were also important when pathogen prevalence was assumed
to be 100%, but no single factor dominated risk in this case.
Acceptable risk for manure irrigation has not been established, so
comparison to EPA’s acceptable risk levels for recreational water
and drinkingwater are used for context: median risk estimates were
generally low relative to acceptable risk levels in the United States
for recreational water (32 illnesses per 1,000 primary contact recre-
ators per event; U.S. EPA 2012). Compared to the acceptable risk
level for U.S. drinking water (1 infection per 10,000 people per
year; U.S. EPA 1989), risk estimates were higher when pathogens

Figure 2.Mean temperature (T), mean relative humidity (RH), mean wind
speed (WS), maximum wind speed (WSmax), and mean solar irradiance (SI)
during all 21 field trials. Each symbol represents a field trial. Reprinted from
Borchardt and Burch (2016), with permission.
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Table 2. Summary of distance plus trial-level variable models.

Microorganism Modeld
Standardized coefficienta,b,c

Distance Wind speede Microbe manure concentration Relative humidityf Solar irradianceg

Bovine Bacteroides Probit −0:27± 0:13 – – −0:63± 0:19 −0:72± 0:18
Linear −0:31± 0:05 0:43± 0:13 – – –

Bacteroidales-like CowM3 Probit −0:60± 0:14 – – – –
Linear −0:18± 0:08 0:54± 0:12 – −0:27± 0:13 –

Enterococcus spp. Probit – 0:83± 0:42 1:08± 0:44 – –
Linear −0:35± 0:09 0:41± 0:19 – – –

Gram negatives Probit – – 0:67± 0:23 – –
Linear −0:34± 0:11 – 0:37± 0:14 – –

aEstimate of fixed effect ± standard error. Dashes indicate that the relevant predictor was not included in the final model due to a lack of statistical significance (at the 0.05 level) dur-
ing the stepwise model building process.
bWe standardized coefficients by fitting models to standardized data. Data were standardized by dividing by one standard deviation for each variable.
cIn addition to the five predictors indicated in this table, temperature was also evaluated, but was not significant (at the 0.05 level) in any model.
dThe probit model predicted microorganism detection (Yes/No); the linear model predicted microorganism concentration conditional on detection.
eWind speed is represented as median wind speed for the bovine Bacteroides and Bacteroidales-like CowM3 linear models. It is represented as minimum wind speed for the
Enterococcus spp. probit and linear models.
fRelative humidity is represented as median relative humidity for the bovine Bacteroides probit model. It is represented as minimum relative humidity for the Bacteroidales-like
CowM3 linear model.
gSolar irradiance is represented as maximum solar irradiance for the bovine Bacteroides probit model.

Figure 3. Air concentrations of microorganisms downwind of full-scale dairy manure irrigation. Panels on the left represent quantitative polymerase chain reaction
(qPCR) data, while panels on the right represent culture data. Points represent the median concentration measured at each distance; error bars are the first and third
quartiles. Percentages represent the detection frequency at each distance. Each point represents 11 to 42measurements. Based on our ideal sampling plan, each point
should represent 24 or 42 measurements for culture measurements and qPCR measurements, respectively (2measurements per distance× number of trials for each
measurement type).However,field conditions often forced us to deviate from this plan.
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were modeled using 100% prevalence and similar, or lower when
pathogensweremodeled using typical prevalence values.

Based on how often they were significant predictors of air con-
centrations for individual microorganisms (Table 2), distance
downwind and wind speedwere the most important variables asso-
ciated with air concentrations. Even though a brown cloud of sus-
pended manure is visible during manure irrigation (Figure 1),
microorganismconcentrations and detection frequencies decreased
from source manure to air, and concentrations of airborne micro-
organisms decreased with distance downwind. The decrease in
microbial detections and concentrations likely resulted from aero-
solization, deposition, dispersion, and microbial decay (i.e., inacti-
vation). Our experimental design precludes isolating the individual
contribution of each mechanism. However, the reduction in
microbe concentration from the original manure by a factor of 108

(or more) over the first 30 m of airborne transport demonstrates the
substantial effects of thesemechanisms.

Comparison to Epidemiological Studies
To our knowledge, there are no published reports of outbreaks
following exposure to spray irrigation of dairy manure, and we

are aware of only one early epidemiological study of the associa-
tion between illness and spray irrigation of partially treated, non-
disinfected municipal wastewater (Katzenelson et al. 1976).
Katzenelson et al. (1976) estimated the excess risk of shigellosis
and salmonellosis in communities practicing spray irrigation of
partially treated, nondisinfected municipal wastewater to be
5× 10−3 and 2× 10−3, respectively, which is higher than our me-
dian risk estimates for Salmonella-related AGI, assuming typical
Salmonella prevalence in manure (median probability of illness =
0) and similar to or lower than our estimates at 100% prevalence

Figure 4. The estimated probability of acute gastrointestinal illness (AGI) plot-
ted against distance for pathogens modeled using different combinations of
pathogen prevalence and surrogate. Prevalence values are either typical or
100%.Typical prevalencevalues are 90%forCampylobacter jejuni (determined
in this study), 40% for Salmonella (USDA 2011), and 39% for enterohemorrha-
gic Escherichia coli (EHEC) (USDA 2003). Surrogate microorganisms are ei-
ther gram-negative bacteria (GN) or bovine Bacteroides (BB). Plotted values
represent the median in the variability dimension at the median in the uncer-
tainty dimension. TheU.S. Environmental ProtectionAgency (EPA)’s accepta-
ble risk levels for drinking water (1 in 10,000 per y; blue line; U.S. EPA 1989)
and recreational water (32 in 1,000 per swimming event; green line; U.S. EPA
2012) are depicted for context because acceptable risk has not been established
for manure irrigation. The acceptable risk level for drinking water is visible in
three panels: the top right, bottom left, and bottom right. The acceptable risk
level for recreational water is only visible in one panel: the bottom right. EHEC
plots are masked by the lowest risk values for Salmonella spp. (typical preva-
lence) orC. jejuni (100% prevalence). All the models used to generate risk esti-
mates allowed risk to vary by distance. Risk estimates that do not appear to vary
by distance are either much lower than risk estimates for other pathogens on the
same plot or are the result of low pathogen prevalence (i.e., the pathogen is not
present, so risk= 0, regardless of distance). Please note that vertical axis scales
vary amongpanels.

Figure 5. Sensitivity analysis of risk estimates to Monte Carlo simulation
inputs defined in the variability dimension for Campylobacter jejuni, entero-
hemorrhagic Escherichia coli (EHEC), and Salmonella spp. modeled using
typical pathogen prevalence on dairy farms and bovine Bacteroides as a
pathogen surrogate. Typical prevalence values are 90% for C. jejuni (deter-
mined in this study), 40% for Salmonella (USDA 2011), and 39% for EHEC
(USDA 2003). Bars are the median of Spearman’s correlation coefficients
between risk estimates and the inputs listed on the vertical axis. Error bars
are the 2.5 and 97.5 percentiles of these correlation coefficients. Coefficients
are calculated from simulations that included all of the inputs shown with
distributions as defined in Table 1. Probit and linear model intercepts repre-
sent the aggregate effects of trial-level conditions (i.e., meteorological condi-
tions, microbe manure concentrations).
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(10−3 to 10−2). However, these comparisons are tenuous, as our
risk estimates assume exposure is via airborne pathogens, while
Katzenelson et al. (1976) did not consider exposure routes.

Comparison to Other Quantitative Microbial
Risk Assessments
Our risk estimates are consistent with or higher than those
obtained in two other QMRAs that estimated health risks due to
aerosolized dairy manure. Brooks et al. (2012) estimated that the
risk of infection was higher for L. monocytogenes than C. jejuni,
EHEC, or Salmonella spp., with estimated probabilities of infec-
tion from a single exposure 100 m downwind from the source
between 5× 10−7 and 2× 10−6. Dungan (2014) reported that the
estimated risk of infection with C. jejuni was greater than the risk
of infection with EHEC, Salmonella spp., Listeria monocyto-
genes, or non-O157 E. coli, with estimated probabilities of infec-
tion from a single exposure 1,000 m downwind from the source
(the closest distance considered) between 3× 10−13 and 8× 10−2.
We estimated that the risk of AGI from exposure to irrigated
dairy manure was higher for C. jejuni than for EHEC or
Salmonella spp. when we assumed typical pathogen prevalence
levels, with median probabilities of AGI between 2× 10−5 and
2× 10−4 for a single exposure 100 m from the irrigation source,
and 2× 10−6 to 7× 10−6 at 300 m (the farthest distance we con-
sidered). Assumptions about the risk of infection following expo-
sure to a given pathogen dose were similar for our study and the
two previous QMRAs. Therefore, it is likely that differences in
estimated risks are related to differences in the assumptions and
methods used to estimate exposure.

Our exposure assessment was based on empirical observa-
tions of microbe air concentrations during full-scale dairy manure
spray irrigation and differs from the two previous studies. Brooks
et al. (2012) based their exposure assessment on an empirical
model derived from data collected during tanker application of
groundwater seeded with a viral pathogen surrogate (Brooks
et al. 2005a). Dungan (2014) based his exposure assessment on
assumed inputs to an air dispersion model. As a result, the patho-
gen doses estimated by these two previous studies (which can be
back-calculated from their reported risk estimates and dose–
response models) vary significantly from ours. Specifically, L.
monocytogenes doses estimated by Brooks et al. (2012) at 100 m
varied between 4× 10−5 and 1× 10−4 colony-forming units
(CFU), while our median estimated C. jejuni doses, based on typ-
ical pathogen prevalence, varied between 8× 10−3 and 5× 10−2

CFU at roughly 100 m. C. jejuni doses estimated by Dungan
(2014) at 1,000 m varied between 1× 10−11 and 6CFU, while
our median estimated C. jejuni doses based on typical pathogen
prevalence varied between 1× 10−3 and 2× 10−3 CFU at 300 m.
Thus, high doses compared to previous work likely account for
our relatively high risk estimates, although the exact aspects of
the exposure assessment driving differences in dose are unclear
(e.g., sampling approach and conditions, choice and use of surro-
gate, models, assumed pathogen levels in source).

Our risk estimates are also high compared to QMRAs for
aerosolized human fecal material. Brooks and others estimated
risk for coxsackievirus A21 and Salmonella spp. (Brooks et al.
2005a and 2005b) aerosolized from land application of treated
municipal biosolids. They estimated the single exposure probabil-
ity of infection at 100 m to vary between 1× 10−12 and 8× 10−8,
depending on the pathogen and assumed pathogen content of the
source biosolids, which is much lower than our estimates at a
similar distance. These differences in risk may be due to meth-
odological differences in exposure assessment (e.g., air sam-
pling), or they may represent true differences in downwind
pathogen exposure due to differences between treated municipal

biosolids and the dairy manure in our study (e.g., pathogen levels,
degree of aerosolization).

Considerations for Policy Decisions
Using these results to guide risk mitigation policies is a three-
step process. First, acceptable risk must be clearly defined. Any
definition of acceptable risk consists of both a risk threshold and
the statistic used to summarize risk. We have summarized our
risk estimates using medians, though other summary statistics are
possible (e.g., 90th percentile) and would result in different levels
of public health protection. Likewise, we compare our risk esti-
mates to standards for water (standards do not exist for spray irri-
gation), but these standards may not be appropriate for manure
irrigation. Second, pathogen prevalence values for manure must
be selected. Using 100% pathogen prevalence implies that risk-
management decisions are being made for the population of ex-
posure events where zoonotic pathogens are always present in
dairy manure. Alternatively, using typical pathogen prevalence
implies that risk-management decisions are being made for the
population of exposure events where pathogens may or may not
actually be present. Third, the pathogen surrogate must be
defined. In general, downwind concentrations and detection fre-
quencies of bovine Bacteroides were higher than culturable
Gram-negative bacteria in our study. Thus, AGI risk estimates
were higher when measured air concentrations of bovine
Bacteroides were used as the surrogate for pathogen concentra-
tions. However, assumptions about the prevalence of each patho-
gen had a greater influence on risk estimates (variation by a
factor of 100) than the commensal organism used as the surrogate
(variation by a factor of 10).

Interpreting these results for policy decisions also depends on
several important considerations. First, we estimated risks for sin-
gle exposure events. However, spray irrigation allows multiple
manure applications to a single field in one growing season,
which increases potential exposure events. As a result, cumula-
tive risk estimates for the entire season will be higher than those
presented here. Second, we estimated risk for C. jejuni, EHEC,
and Salmonella spp., but less prevalent pathogens like L. monocy-
togenes, C. parvum, and G. lamblia can be found in dairy manure
(U.S. EPA 2013). While the low prevalence of such pathogens
likely renders risk lower than for the high-prevalence pathogens
that we considered, a risk of illness is possible. Third, estimated
risks from exposure to spray-irrigated dairy manure may not
reflect risks associated with exposure to spray-irrigated manure
from other livestock, which may differ with regard to pathogen
concentrations and specific organisms (e.g., hepatitis E virus in
swine manure). Finally, our risk estimates only consider exposure
via ingestion of aerosolized pathogens and do not consider other
exposure routes (e.g., direct contact by workers, runoff, vectors)
or other impacts of manure irrigation (e.g., odor).

Limitations
Three study limitations must be considered when interpreting our
risk estimates. First, the 21 field trials represent conditions on only
three farms. Selection bias could have occurred if the participating
farms, or the trials included in the study, were not representative of
farms or conditions during spray irrigation in general. Second, with
regard to model assumptions, we assumed that there were no sys-
tematic differences among the farms, since we did not include an
additionalmodel level to nest trialswithin farms.Third, because the
pathogens of interest were rarely detected inmanure or air samples,
we used concentrations of common commensal microorganisms as
surrogate measures of pathogen concentrations, and applied
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pathogen-to-surrogate ratios to estimate pathogen risks based on
the observeddata for the surrogates.

Conclusions
Our median risk estimates, which varied between 10−5 and 10−2,
were generally lower than acceptable risk levels set by the EPA
for AGI as a consequence of exposure to recreational water (U.S.
EPA 2012), but were sometimes higher than acceptable risk lev-
els for drinking water (U.S. EPA 1989). It is important to note
that acceptable risk levels have not been established for AGI as a
consequence of exposure to spray irrigation of manure. Risk esti-
mates were most strongly controlled by pathogen prevalence in
manure. When pathogen prevalence was assumed to be 100%, no
single factor completely controlled risk. Distance, exposure time,
and the aggregate effects of weather conditions and microbe ma-
nure concentration were equally important in this case. Our
model-based estimates suggest that reducing the prevalence and
concentrations of zoonotic pathogens in source manure, increas-
ing distances from irrigation sources to points of potential human
exposure, and restricting applications based on wind speed may
reduce potential human health risks from spray irrigation of live-
stock manure.
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