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Abstract: Meat and meat products are popular foods due to their balanced nutritional nature and their availability in a
variety of forms. In recent years, due to an increase in the consumer awareness regarding product quality and authenticity
of food, rapid and effective quality control systems have been sought by meat industries. Near-Infrared (NIR) spectroscopy
has been identified as a fast and cost-effective tool for estimating various meat quality parameters as well as detecting
adulteration. This review focusses on the on/inline application of single and multiprobe NIR spectroscopy for the analysis
of meat and meat products starting from the year 1996 to 2017. The article gives a brief description about the theory of
NIR spectroscopy followed by its application for meat and meat products analysis. A detailed discussion is provided on
the various studies regarding applications of NIR spectroscopy and specifically for on/inline monitoring along with their
advantages and disadvantages. Additionally, a brief description has been given about the various chemometric techniques
utilized in the mentioned studies. Finally, it discusses challenges encountered and future prospects of the technology.
It is concluded that, advancements in the fields of NIR spectroscopy and chemometrics have immensely increased the
potential of the technology as a reliable on/inline monitoring tool for the meat industry.
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Introduction
Meat is one of the most desired food products due to its balanced

nutritional nature, containing crucial levels of protein, vitamins,
minerals and micronutrients and contributing to our growth and
development (FAO). It is consumed in a large variety of forms
such as roasted meat, fried meat, meat balls, sausages, and many
more. Meat quality and its authenticity however, has emerged as
an important issue over the past decade when several major events
regarding meat adulteration were discovered (Lohumi and others
2015). Food quality has since been one of the most critical con-
siderations with regard to consumer perception, with consumers
expecting manufacturers and retailers to provide products of high
quality. The increasing awareness necessitate the use of reliable
techniques to monitor and evaluate the quality of food (Cen and
He 2007; Pan and others 2016).

Near-Infrared spectroscopy has been identified as a valuable and
cost-effective tool for estimating various meat quality parame-
ters as well as detecting adulteration. NIR spectroscopy provides
many advantages when compared to traditional methods (proxi-
mate analysis, HPLC, GC, MS) which includes; speed of analysis,
nondestructive and noninvasive measurement, little or no sample
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preparation, noncontact technique and several others (Zamora-
Rojas and others 2012; Salguero-Chaparro and others 2013; De
Marchi and others 2017), making NIR spectroscopy suitable for
on/inline applications within a processing plant.

NIR measurements for meat products can be performed in 4
different modes: (a) transmission, (b) reflectance, (c) interactance,
and (d) transflectance. Transmission mode for example, can be
used to detect transparent (liquid) material in minced meat sam-
ples or meat pastes, for example, water content and fecal or rumen
contamination. Reflectance mode, the most common utilized for
meat samples, is the least penetrating mode and can detect adulter-
ation and chemical composition of minced, whole or dried meat
samples. Interactance mode detects the reflected energy from deep
within the sample while excluding any surface reflectance, which
for example can be useful for monitoring vacuum packed meats
such as frozen beef or pork while excluding the reflectance from
the packaging material. Transflectance mode is designed for mea-
suring thin samples such as ham slices (Nicolai and others 2007;
Ozaki Y and others 2007). Each mode has its advantages and dis-
advantages depending upon the sample geometry and surrounding
environment to analyze, therefore one needs to consider all aspects
prior to analysis.

Chemometrics plays an important role in extracting useful in-
formation from NIR spectra. Chemometrics utilizes various mul-
tivariate techniques to build models with the use of reference
chemical data obtained through other analytical techniques. Nu-
merous chemometric techniques have been employed by scientists
in the area of NIR spectroscopy of meat products (Kamal and

1172 Comprehensive Reviews in Food Science and Food Safety � Vol. 16, 2017
C© 2017 Institute of Food Technologists®

doi: 10.1111/1541-4337.12295

http://orcid.org/0000-0002-7913-8437


Online NIR spectroscopy for meat . . .

Karoui 2015; Tajammal Munir and others 2015). In the past few
years, various studies have been conducted on the application of
NIR spectroscopy for online monitoring of meat products. How-
ever, sample heterogeneity, model robustness and several external
factors can pose limitations to the inline application of the tech-
nology on an industrial level. Nevertheless, advancements such as
high standoff distances, multipoint NIR spectroscopy, concurrent
measurements, and low spectral acquisition time have illustrated a
bright future for inline NIR spectroscopy.

Previous reviews have been published on the online applica-
tions of NIR spectroscopy for food production (Porep and others
2015), however the application of NIR spectroscopy has become
extremely diversified and product specific, making it difficult to
compile a review covering all food products. Nowadays, NIR
spectroscopy instruments are specifically designed for meat prod-
ucts taking into consideration their physico-chemical properties;
for example, the high susceptibility of meat to microbial spoilage
requires a system with very low spectral acquisition time. In the
current review, an emphasis has been given to the studies published
in the last decade or so. This article gives a brief description about
the theory of NIR spectroscopy, system configurations and their
relevance followed by its application on meat and meat products
analysis. A detailed discussion is provided on the various studies
regarding applications of NIR spectroscopy and specifically for
online monitoring of meat and meat products, system considera-
tions along with their advantages and disadvantages. Additionally,
a brief description has been given about the role of chemometrics
in the mentioned studies. Finally, a discussion is provided about
the challenges encountered and future prospects of the technology
for inline applications.

NIR Spectroscopy
NIR system setup

A typical NIR system consists of the following main compo-
nents: light source, spectrophotometer and a computer for data
acquisition. The light source illuminates the sample, which is then
reflected (reflectance mode), transmitted (transmittance mode) or
diffused reflected (interactance mode) followed by its detection
via an interferometric or a dispersive system (Nicolai and others
2007). The spectrophotometer mainly consists of an interferom-
eter, a prism, a diffraction grating or any similar optical device
and a detector; the optical device allows light of only a particular
range of wavelengths or a single wavelength to pass through to
the detector. Finally, the detector sends the data acquired from
the NIR spectra to the computer for further analysis. There are
different types of light sources and additional accessories which
can be used. Detailed discussions about NIR instrumentation can
be found elsewhere (Osborne and others 1993).

NIR region
The NIR region covers the wavelength range from 780 to 2500

nm. The absorption bands are mainly overtones and combinations
of fundamental vibrations (Blanco and Villarroya 2002). The spec-
tral signature produced by various meats are different depending
upon their chemical composition (Figure 1). Absorption bands
observed in the NIR region at 948 and 1448 nm are due to O-H
second and first stretching overtones respectively, and are related
to moisture content in samples. Moreover, the absorption band
at 1928 nm is a combination of O-H stretching and O-H defor-
mation which is also related to moisture content (Cozzolino and
Murray 2002; Ortiz-Somovilla and others 2007; Morsy and Sun
2013). Absorption bands related to fat or fatty acids are observed

at 920 and 1200 nm (C-H 3rd and 2nd stretching overtone). C-H
1st stretching overtones are observed at 1716 and 1758 nm and
their combination tones are observed at 2136, 2298, and 2346 nm
which are also related to fat or fatty acid content. Protein content
is related to N-H overtones which are observed at 1086, 1187,
1510, 1690, and 2265 nm (Park and others 2001; Morsy and Sun
2013).

System configurations
This section is focused on NIR reflectance spectroscopy as re-

flectance is the most commonly used mode for meat products.
NIR measurements are greatly affected by the positioning of the
probes, standoff distances, illuminating spot size and sample ge-
ometry (bed-depth variations, smooth or mirror like surface and
varied shapes). Probe positioning is vital in order to receive the
diffused reflected light back to the detector. When light illumi-
nates the sample, 2 types of reflections are produced; diffused and
specular (direct scattering). Specular reflection does not contain
any chemical information and it may be minimized by probe po-
sitioning, instrument design and sample geometry (Rinnan and
others 2009). Bed-depth variations during NIR scanning pro-
duces baseline shifts, for example, beef cuts of diverse thicknesses
in a processing line. Baseline shifts are produced due to differ-
ent amount of diffused light reaching the detector because of a
change in the effective path length and also due to asymmet-
ric sample geometry. Up to recently, standoff distances used for
NIR measurements were in the range of 1.5 to 2.5 cm, increas-
ing distances beyond these was challenging as defocusing occurs
(Osborne and others 1993). The use of high powered halogen
light sources makes possible to use higher stand-off distances in
the range of 30 cm or more. However, the amount of heat energy
produced by the halogen source may not be feasible for heat liable
materials. The introduction of collimators is a solution to this is-
sue as they can be fitted with fiber optic probes and operate up
to 4 cm stand-off distances producing far less incident heat energy
on the samples when compared to a direct halogen lighting. The
size of the illuminating spot defines the area to be scanned. Sin-
gle point spectroscopy scans only a small portion of the sample,
which could be disadvantageous when analyzing heterogeneous
products such as meat. Multipoint NIR systems overcomes this
limitation by scanning simultaneously different areas of the sample
(Dixit and others 2016b). Smooth or mirror like surfaces produce
specular reflection, therefore reflectance mode is not appropriate
for certain samples such as less viscous meat pastes or meat juices.
Interactance and transflectance modes could be useful in case of
such samples. For samples with different shapes such as meat balls,
single point spectroscopy would scan only a small portion and
would also produce reflections in all directions depending upon
the probe positioning. In such case, the use of multipoint spec-
troscopy along with a light diffuser could be useful. A light diffuser
would produce multiple bounces of the reflected light from the
sample and increase the amount of diffused reflected light going
back to the detector. Apart from these system considerations, base-
line shifts (multiplicative effects) and nonlinearities can be largely
eliminated with the use of appropriate preprocessing techniques
which are discussed in section “Preprocessing techniques.”

Meat Analysis Over the Years
The potential of NIR spectroscopy has been identified as a qual-

ity monitoring tool by the meat industry. Various studies have been
conducted over the years illustrating the capabilities of this tech-
nique including hyperspectral imaging (HSI). Hoving-Bolink and
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Figure 1–Visible and NIR spectra of beef, pork, chicken and lamb meat, adapted from: (Cozzolino and Murray (2004)).

others (2005) used NIR spectroscopy to predict ultimate drip loss,
color, tenderness and intramuscular fat (IMF) of pork. Barlocco
and others (2006) used NIR spectroscopy to predict moisture, IMF
and Warner-Bratzler shear force (WBSF) in pork samples. Simi-
larly, Ortiz-Somovilla and others (2007) used NIR spectroscopy
to predict fat, moisture and protein in minced mixtures for pork
sausages. Prieto and others (2008) successfully employed NIR
spectroscopy to discriminate between ground beef samples from
steers and young cattle based on their chemical composition. Ba-
jwa and others (2009) used visible NIR (Vis/NIR) spectroscopy
in order to predict the nutrient quality of ground beef patties.
ElMasry and others (2011) used a HSI system to assess the quality
of cooked turkey hams and ElMasry and others (2013) success-
fully used HSI to assess major constituents in beef (water, fat, and
protein). Wold and others (2016) used an industrial HSI scanner
for online measurement and sorting of pork trimmings based on
their fat content. In a recent study, De Marchi and others (2017)
used near infrared transmittance (NIT) to predict sodium content
in various commercial meat products.

Studies have also been conducted in order to predict adulter-
ation in meat. Kamruzzaman and others (2013) used HSI to de-
tect pork adulteration in minced lamb samples. Similarly, Morsy
and Sun (2013) used Vis/NIR spectroscopy to detect adulter-
ation in minced beef. Kamruzzaman and others (2015) used a
Vis/NIR HSI system to detect adulteration in fresh minced beef
with chicken. Recently, Ropodi and others (2017) used multispec-
tral imaging (MSI) to detect horse meat adulteration in minced
beef. Detailed discussions of the studies conducted using HSI are
not included in this section as it warrants for a separate review,
the interested reader is referred to a compilation of research papers
on the topic (Xiong and others 2014; Siche and others 2016).
HSI systems, indeed provide many advantages with its ability to
provide spatial information. However with the advancements in
the area of optics and NIR spectroscopy, fiber-optic probes can
provide advantages such as: noninvasive, noncontiguous and con-

current measurements which could be beneficial in an industrial
environment (Cama-Moncunill and others 2016).

All studies mentioned are either at line or off line. However, the
meat processing industry is interested in on/inline analysis, which
eliminates the need for procuring samples from the processing line
and results are simultaneously obtained without interrupting the
process.

In the last decade, studies have been conducted in order to pre-
dict online meat composition and other physical, chemical and
sensory attributes using NIR spectroscopy. Table 1 illustrates dif-
ferent studies conducted in order to evaluate the efficacy of NIR
spectroscopy performing online along with attributes predicted,
spectroscopy system employed, modelling approach, and model
performance summary.

Online meat analysis
This section discusses the various studies aimed at illustrating

the online prediction ability of NIR spectroscopy for meat com-
position and quality attributes in a chronological order.

Isaksson and others (1996) conducted a study to evaluate the
efficiency of a NIR spectrophotometer based on rotating filter
wheels to predict the chemical composition of ground beef di-
rectly at the outlet of a meat grinder. Beef was ground through 4
different plates with hole diameters of 4, 8, 9, and 13 mm. The
NIR sensing head was mounted at the outlet of the grinder. Five
wavelength filters were selected to cover C-H (1728 nm) and O-H
(1441 and 1510 nm) band overtones related to fat and moisture,
respectively. 1655 and 1810 nm filters were selected as references
with low absorbance in homogenized beef. Good predictions were
obtained with 4 and 8 mm diameter grinder plates and acceptable
results were obtained with 9 mm. It was concluded that sampling
error contributed the most to the RMSECV (root mean square
error of cross validation) due to the restricted exposure of the
sample to the NIR probe and the heterogeneity of ground beef
samples. Togersen and others (1999) conducted a study to predict
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fat, moisture and protein in ground beef and pork at the outlet of
an industrial scale grinder. Correlation coefficients for pork sam-
ples were better in comparison to beef. This can be attributed to
the different melting characteristics of the fat in pork and beef,
which result in more distinct particles of beef fat than of pork
fat at low temperature. This study also reveals that sampling error
is the major contributor to the calibration and prediction errors.
Finally, the researchers report on the development of calibration
models for frozen and semi-frozen ground meat with regard to the
meat processing industry. The NIR system used in both of these
studies was based on a filter wheel arrangement, where proper
alignment and speed of rotation are crucial in order to allow suf-
ficient acquisition time for the spectra. Moreover, the low speed
of the filter wheel (20 Hz) may not be suitable for online mon-
itoring of faster operations such as meat grading on a conveyor
belt.

Anderson and Walker (2003) employed Vis/NIR spectroscopy
in order to conduct online measurements of fat content in ground
beef using a conveyor system. The Vis/NIR system consisted of
a diode array which analyzed the reflected light from the sample
and simultaneously recorded the amount of light energy reaching
the sensors, obtaining a spectral measurement every 1/30th of a
second. The system does not have any moving parts, which makes
it suitable for processing applications. Beef pieces were made suffi-
ciently small using a hydroflaker before they were fed to the meat
grinder. A molding head was used so that a consistent amount of
ground beef was exposed to the spectrophotometer. Overall the
results showed good feasibility of the system for online analysis of
beef. This study illustrates a better NIR setup for online mon-
itoring as indicated by the absence of non-moving parts and a
faster spectral acquisition time. However, the system was not de-
signed to handle situations where the effective path length rapidly
changes owing to nonuniform sample surfaces. In a recent study,
Dixit and others (2016c) used a NIR spectrophotometer with an
integrated beam-splitter to overcome these effects. It could be
possible to enhance the online monitoring ability of the Vis/NIR
system illustrated by Anderson and Walker (2003) with the use of
an integrated beam-splitter.

Togersen and others (2003) used NIR spectroscopy to predict
the chemical composition of semi-frozen ground beef at the outlet
of an industrial scale meat grinder. The study analyzed the effect
of temperature from liquid water to ice on the NIR spectra. An
increase in the temperature of water from 30 to 60 °C was ob-
served to shift the absorption band between 1400 and 1500 nm
toward shorter wavelengths (Iwamoto and others 1987). Fornes
and Chaussidon (1978) discovered that liquid water and ice pro-
duced distinct isosbestic points at 1957 and 2008 nm, respectively.
However, due to the limited penetration of NIR radiation it only
experienced surface characteristics and did not encounter any ef-
fect due to the temperature gradient between the surface and the
core. Therefore, the study suggests the requirement for more ro-
bust calibration models for industrial applications. This study was
more focused on the deviations occurring in the spectral features
due to a change in the temperature of water. The NIR setup
was similar to the system illustrated in the study conducted by
Togersen and others (1999) and hence did not contribute to the
advancement of online NIR monitoring of meat.

Rust and others (2008) employed NIR spectroscopy to predict
the tenderness of 15-d aged, cooked beef. Slice-shear force of
beef rib eye rolls was measured using a WBSF and used as ref-
erence values for tenderness. The spectrophotometer was hand-
held with a fiber-optic contact probe in the wavelength range

of 400 to 2500 nm. The study indicated that tough meat ab-
sorbed more light than tender meat. A low correlation coefficient
between the observed and predicted values indicated low accu-
racy of the system. However, the system illustrated potential to
sort carcasses into different tenderness categories. Prieto and oth-
ers (2009) performed online Vis/NIR spectroscopy to predict
chemical, physical and sensory characteristics of beef in an abat-
toir. Vis/NIR spectra were acquired with a 63.5 mm active area
scanning head from musculus longissimus thoracis (MLT) removed
from vacuum packed carcasses (steers and heifers). The muscle
area was scanned by moving and rotating the scanning head, re-
ducing sampling error by giving a better representation of the
sample. Color, cooking loss, sensory analysis and Slice and Volod-
kevitch shear force were measured. Results showed high predic-
tions for color measurements, however, in the infrared region, the
longer wavelengths were less analytically useful, which could be
attributed to high absorbance and short penetration path-length
(Shackelford and others 2004). Low predictions were observed
for cooking loss, which were explained by sample heterogene-
ity and low spectral variation such as temperature during spectral
acquisition. Low predictions were observed for both shear force
tests which can be partially related to the difference between the
samples presented to the Vis/NIR instrument (48 h postmortem)
as opposed to the reference methods used (10 and 14-d aged).
Fair predictions were observed for flavor as a sensory character-
istic. It should be noted that changes in fatty acids gives rise to
variation in flavor. Fatty acid absorption peaks between 1000 and
1400 nm, related to C-H molecular bond gave the highest correla-
tion with the flavor characteristic. The study shows that Vis/NIR
spectroscopy was able to predict color and had good correlation
with the sensory characteristics, both of which are important at-
tributes with regard to consumer perception. Both studies used a
handheld NIR system which provides the advantage of portability
as well as spot checks during an ongoing process. However, the
handheld system could not be employed for continuous online
monitoring.

Liao and others (2010) used Vis/NIR spectroscopy to predict
quality traits (IMF, protein, moisture, pH and shear force value)
of fresh pork. Fresh pork slices from musculus longissimus dorsi
(MLD) were scanned over a moving conveyor belt system. An
optoelectronic sensor was employed to trigger the spectrometer in
order to collect the spectrum. When the sample was transported
into the FOV (field of view), an electrical signal was sent to the
spectrometer and the reflectance spectrum of the sample was col-
lected. It should be noted that slices were required to be flat in
order to avoid baseline shifts occurring due to bed-depth varia-
tions. Absorption bands between 530 and 560 nm were observed,
both related to the myoglobin and oxymyoglobin content, proving
the feasibility of Vis/NIR spectroscopy for scanning pork muscle.
The best predictions were observed for pH. Reasonable predic-
tions were observed for IMF, moisture and protein. Unfortunately,
poor predictions were observed for shear force values, which could
be related to significant variation in the values obtained from the 4
cores taken from the sample. Heterogeneity of the muscle and its
fiber arrangements and also the softness of the cores which is eas-
ily deformed were reported as the reason for the inconsistency of
shear force values. The use of an optoelectronic sensor enhanced
the process automaticity, which along with a low integration time
of 8 ms illustrated great potential for online monitoring. How-
ever, similar to the setup used by Anderson and Walker (2003), the
system was not designed to handle the effects due to rapid path
length changes.
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Lomiwes and others (2010) used NIR spectroscopy to deter-
mine glycogen and predict ultimate pH (pHu) of prerigor beef
MLD at a carcass grading station. NIR spectra of the freshly
cut MLD from the carcasses were collected with a diode array
spectrophotometer. Crushed frozen muscle samples were used for
determining the prerigor glycogen and the pHu was determined
with a pH meter using a muscle slurry which provided reference
values. It was observed that pHu had significant dependence on
animal class. pHu depends on glycogen and pH at approximately
45 min post mortem (pH45), bulls have much lower concentration
of prerigor glycogen. Moreover, mean pH45 was found to be much
lower in steers than bulls and cows which resulted in bulls having
higher mean pHu. Significantly different covariation was observed
between pHu and glycogen for bulls in comparison to steers and
cows. Poor results were obtained in order to classify animals as
per their pHu. Qualitative models correctly categorized 42% of
high pHu samples which were developed to categorize each mus-
cle according to their pHu. Optimum qualitative and quantitative
models showed low correlation between predicted values and ref-
erence measurements. Results suggested that predictive models for
individual animal classes may be more accurate for glycogen and
muscle pHu predictions. However, this was not investigated due
to the restricted number of animals in each class. The study inves-
tigated a novel approach for online quantification of glycogen and
pHu prediction of prerigor beef MLD, useful in order to detect
beef eating quality. However, the models performed poorly and
required more experiments. The study did not discuss the NIR
setup in detail, hence conclusions regarding the system configura-
tions could not be derived.

Liao and others (2012) used Vis/NIR reflectance spectroscopy
to predict pH in fresh pork online with wavelet de-noising. MLD
samples from pig carcasses were used. A spectrometer equipped
with a fast response CCD (charge coupled device) detector was
installed over a conveyor belt system (0.25 m/s), acquiring the
reflectance spectra of the sample when it entered the FOV us-
ing an optoelectronic sensor. Reference values for pH (5.03 to
6.14) were obtained using a pH meter. Since the spectra had
a low signal-to-noise ratio, signal de-noising was performed us-
ing discrete wavelet transform (DWT). In order to de-noise the
spectra 2 threshold strategies (hard and soft) were used. Results
showed that a smoother spectra was obtained with soft threshold-
ing. It was verified with the results that Vis/NIR spectroscopy
offers the potential to predict the pH value of fresh pork online
and the use of DWT (variable selection) could provide a simpler
and cost-effective calibration model. The experimental procedure
conducted and NIR setup in this study were similar to Liao and
others (2010). The main feature of this study was the use of DWT
to de-noise the scanned spectra as online operation enlarges the
noise component. A detailed discussion about DWT can be found
elsewhere (Pasti and others 1999).

De Marchi (2013) used Vis/NIR reflectance spectroscopy to
predict beef quality traits such as pH, color indexes, cook-
ing loss and WBSF. Two trials were conducted using cattle
carcasses as samples. In the first trial, carcasses of bulls and
heifers were used while in the second trial cattle carcasses
from different breeds were used (Charolais, Limousin, and Irish
crosses). Vis/NIR measurements were taken after 4 to 6 h
postmortem for trial 1 and 14 to 16 h postmortem for trial 2.
The spectrum was collected within the abattoir by placing the
scanning head over the surface of the exposed gracilis muscle. Lab-
oratory analysis were conducted in order to obtain reference values
for pH, color indexes, cooking loss and shear force; pH was mea-

sured using an intact MLT. Color indexes were measured on MLT
after 1 h of air exposure with a Minolta colorimeter. Cooking loss
was determined by the difference in sample (thick MLT) weight
before and after cooking. Shear force was determined using a TA-
HDi Texture Analyzer with a Warner–Bratzler shear attachment.
Results showed fairly good predictions for color, cooking loss, and
pH of MLT whereas poor predictions were reported for WBSF.
Limitations of the study were related to the standardization of the
spectra collection and low accuracies of the calibration models.
The study suggested the importance of proper scheduling and
positioning for spectra collection which is difficult due to hetero-
geneity within the animals and slaughtering conditions. However,
it may be possible to improve the calibration equation using a
larger dataset. Reis and Rosenvold (2014) used NIR spectroscopy
for early online classification of beef carcasses based on pHu. Car-
casses included were those from cows, bulls, steers and heifers.
Reflectance spectra were collected using a Vis/NIR spectropho-
tometer which was located at the grading station. Reference values
for glycogen were obtained using a commercial system based on
enzymatic conversion of glycogen to glucose. Color measurements
were performed using a Hunter Lab system. Fresh cut surface of
meat was bloomed for 30 min before taking color measurements.
The best correlations were obtained between pHu and color pa-
rameters: a∗-value and b∗-value. Calibration models showed a lim-
ited ability to predict the nominal pHu value. The best approach to
evaluate pHu was to use 2 separate models for bulls and non-bulls.
Overall results showed that NIR spectroscopy has the potential to
replace wet chemistry analysis of pHu for prime animals (steers +
heifers). Both studies involved the use of a hand-operated NIR
system which was appropriate for abattoirs. However, both designs
did not show much potential for online monitoring in a processing
plant which required constant monitoring.

Dixit and others (2016b) used a NIR spectrophotometer, based
on a Fabry-Perot interferometer with 4-measurement channels at-
tached to 4 collimating lenses to estimate fat, moisture, protein and
ash content of minced beef samples at different stand-off distances
(10, 25, and 40 mm). Measurements were conducted in static and
2 different rotating motion conditions; 100 rpm (0.074 m/s) and
210 rpm (0.156 m/s) by placing the collimator fitted probes per-
pendicular to the sample. Motion conditions were employed to
simulate conditions of a meat processing plant. Reference values
were obtained by performing proximate analysis. Data obtained
was preprocessed using standard normal variate (SNV) transfor-
mation and Savitzky–Golay smoothing in order to enhance signal-
to-noise ratio followed by partial least squares regression (PLSR)
modelling of each compositional attribute. Results showed good
prediction accuracy for each attribute in all combinations of stand-
off and motion conditions. Best predictions were obtained at a
stand-off distance of 10 mm for a speed of 210 rpm, as a greater
surface area is analyzed in motion conditions. The portability of
the device along with the ability to perform measurements in mo-
tion conditions illustrated great potential as an inline monitoring
tool for the meat processing industry. In a later study, Dixit and
others (2016c) used a multipoint NIR spectrophotometer system
incorporating a beam-splitter, combined with collimated light to
perform online analysis of minced beef composition. The beam-
splitter performed baseline correction in cases of sudden effective
path length changes by the adaptive adjustment of the spectra,
which can often occur in a meat processing plant. Additionally,
the study also aimed at demonstrating the ability of the multipoint
NIR spectrophotometer to provide spatial information. Sample
preparation was performed following the methodology described
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by Dixit and others (2016b). A separate batch was prepared in the
form of a square grid (8 × 6 array) consisting a total of 48 samples.
The grid was prepared to illustrate 2 key features of the device
presented; (a) automatic baseline correction and (b) generation of
spatial information. The 4 collimating probes were arranged in a
straight line, where each probe was exposed to a different sample
and distance (10, 15, and 40 mm) depending on its position along
the grid. Measurements were conducted in static and vibrating
motion conditions (360 rpm). In order to illustrate the automatic
baseline correction feature, the sample grid was manually moved
during each scan towards the same sample replicate at a different
stand-off distance to produce a sudden shock due to a rapid change
in sample presentation. Results showed that the NIR spectropho-
tometer spatially predicted the chemical composition of minced
beef samples at different path lengths with good accuracy, both
with and without baseline correction. Overall it was concluded
that the addition of collimators and the use of a beam-splitter made
this spectrophotometer highly suitable for a typical real-scenario
in an industrial environment. In another study, Dixit and others
(2016a) used a multipoint NIR spectrophotometer system, com-
bined with a flexible collimator–probe arrangement for real-time
analysis of beef fat content. The main objective of the study was to
demonstrate the flexibility and independency of 4 collimator-fitted
NIR probes, that could be placed at distances of up to 4 m apart,
to assess fat content in minced beef concurrently under both static
and motion conditions. The collimator-fitted probes were placed
at a stand-off distance of 15 mm and measurements were taken
concurrently under static and rotational motion conditions in a
random order; 100 rpm (0.15 m/s) and 210 rpm (0.31 m/s). Two
probes were positioned to scan samples in static condition while
the other 2 collimating probes were positioned to scan samples in
rotational motion. Fat content was determined with a Soxhlet ap-
paratus following a standard method of the AOAC (2000). Results
showed good fat predictions both in static as well as in motion con-
ditions. In order to illustrate the collimator probe independency, 2
samples with different fat percentages were scanned concurrently
in static and motion conditions. Spectral features obtained clearly
differentiated samples based on their fat related absorption peaks at
1754 and 1768 nm. Overall, it was concluded that the multipoint
NIR spectroscopy system holds great potential for performing in-
line monitoring of food products at various junctions in a meat
processing plant.

The last 3 studies illustrate the different features of a novel NIR
system including; (a) multipoint analysis for better sample repre-
sentation as well as spatial features, (b) high stand-off distances with
collimators minimizing sample interference, (c) automatic baseline
correction with beam-splitter for overcoming shifts due to sudden
path length changes, and (d) probe independency and flexibil-
ity for analyzing different samples concurrently and in different
motion conditions.

The studies discussed in this section illustrate various applica-
tions of NIR spectroscopy for online meat analysis which provides
certain advantages to the meat processing industry: (a) real-time
quality monitoring, (b) reduction in number of chemical tests,
(c) lower possibility of hazards, and (d) overall cost reduction with
better product quality. However, the industrial application of these
novel NIR systems require further work involving the develop-
ment of robust calibration models by using large sample sets as
well as industrial trials with various meat products. Moreover, it
is also important to study and take into account the effects due to
different external factors such as instrumental variations (instru-
ment temperature, wavelength shifts, illumination source, stability,

and so on) and sample variations (sample temperature, sample ho-
mogeneity, height differences between probes and sample, and so
on). Overall significant technology developments have occurred
over this period to the point where large-scale industrial trials over
extended periods are warranted. With this in mind high stand-off
distances, automatic baseline correction and multipoint systems
are recommended.

Role of Chemometrics
Chemometrics is a discipline that deals with the use of com-

puter and information technologies to solve chemical problems
(Iwaniak and others 2015). NIR spectra are greatly influenced by
nonlinearities introduced by light scattering effects such as Mie
scattering and optical scattering. Both baseline shifts and nonlin-
earities occur due to a considerable difference between the size
of the wavelength in the NIR region and the particle size of the
sample. For example, in solid samples, a loss in the amount of
light (diffused reflected) getting back to the detector could give
rise to baseline shifts (multiplicative effects), generally influenced
by differences in the effective path length. In the case of NIR-
reflectance for liquid samples or samples with shiny surfaces, a
phenomenon called specular reflectance (mirror-like reflections)
takes place, which prevents obtaining valuable information from
the samples.

Preprocessing techniques
This section concentrates on the most-common preprocessing

techniques which have been used (Table 1) in order to minimize
the multiplicative effects and other nonlinearities caused by the
scattering phenomenon. These techniques can be divided into 2
categories; scattering correction methods and spectral derivatives.

MSC (multiplicative scattering correction), EMSC (extended
multiplicative scattering correction), and SNV are the most fre-
quently used scattering correction techniques. MSC is probably
the most widely used technique for preprocessing of the NIR
spectra. It removes undesired scatter effects from the data matrix,
involving 2 steps: (a) estimation of the correlation coefficient and
(b) correction of the recorded spectrum. MSC was the most com-
mon preprocessing technique used among various studies con-
ducted by Wold and others (2006), Rust and others (2008), Prieto
and others (2009), and De Marchi (2013) for online meat analysis.
EMSC is the extended version of MSC, which normally involves
the fitting of a second order polynomial to the reference spectrum,
baseline fitting on the wavelength axis and the use of theoretical
information from the spectra of interest (Thennadil and Martin
2005; Rinnan and others 2009). Reis and Rosenvold (2014) used
EMSC as a preprocessing technique for spectra acquired on beef
carcasses. SNV is the second most popular preprocessing technique
after MSC. Its basic format is similar to that of MSC except that a
common reference signal is not required in the case of SNV. The
relation between SNV and MSC can be represented as:

xMSC ≈ xSNV . Sx+
=
X (1)

where Sx is the average standard deviation of all spectra, and
=
X is

the grand mean overall spectra, both obtained from the raw spectra
(Dhanoa and others 1994).

In different studies conducted by Wold and others (2006, 2011),
De Marchi (2013), Gou and others (2013), Dixit and others
(2016a, 2016b, 2016c) for online prediction of different chem-
ical, physical and sensory characteristics of meat, SNV was the
common preprocessing technique used for removing noise from
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the spectra. It could be inferred that MSC and SNV are the same
for most practical applications.

Spectral derivatives on the other hand, have the capability to
remove both additive and multiplicative effects. Savtizky–Golay
(SG) derivative is probably the most popular method for numerical
derivation of a vector that includes a smoothing step (Madden
1978). Smoothing is required in order to reduce the signal-to-noise
ratio (Cen and He 2007). A detailed discussion about preprocessing
techniques can be found elsewhere (Rinnan and others 2009;
Bakeev 2010).

Modeling approach in various studies
Once the data is preprocessed, it is then subjected to different

multivariate statistical techniques in order to build models and
validate them. Table 1 illustrates the different modelling approaches
adopted by various studies related to on/inline NIR meat analysis.
Building a reliable calibration model is of utmost importance for
quantitative and qualitative analysis of meat (Cen and He 2007).
This section gives a general overview of the most commonly
employed modelling approaches. Linear regression is the simplest
predictive modelling technique that relates a single independent
variable to a single dependent variable (MacGregor and Bruwer
2008). Multiple linear regression (MLR) is an extension involving
the use of several independent variables, often required for NIR
spectroscopy applications due to the inability to find a suitable
single response variable (Bakeev 2010).

Spectroscopic data obtained from NIR analysis often contains a
large number of strongly correlated variables in the range of hun-
dreds to thousands, presenting mathematical and computational
issues when working. Hence, data compression is required in or-
der to reduce the data into a representation of fewer variables,
representing most of the information. Principal component anal-
ysis (PCA) is the most common data reduction method, which
transforms the original data matrix into a simpler representation
that uses a significantly reduced number of compressed variables
called principal components (PCs). Each PC can be explained
as a linear combination of the original variables and the impor-
tance of each of these variables is defined by the loadings. It is a
technique which identifies patterns in the data and show them in
such a way that similarities and differences can be observed (Hu
and others 2015). PCA was employed in the studies conducted by
Togersen and others (2003) and Lomiwes and others (2010) for
online analysis of beef.

Modelling approaches can be divided into 2 categories: (a) mul-
tivariate calibration and (b) classification.

Multivariate calibration. Multivariate calibration approach uses
preprocessed NIR data and reference values from chemical analy-
sis, for example, proximate analysis, pH measurements, and so on
to build calibration models which can predict and quantify val-
ues from a similar NIR data set (validation set). MLR, principal
component regression (PCR) and PLSR are the most common
multivariate calibration methods used in NIR analysis of meat. Ta-
ble 2 shows the equations for different quantitative models along
with the meaning of the terms involved. MLR relates concentra-
tion as a function of absorbance, which involves information of the
concentrations of the target analytes along with other components
that contribute to the overall signal (Blanco and Villarroya 2002).
MLR was used as a calibration method in the studies conducted
by Isaksson and others (1996) and Togersen and others (1999) for
online analysis of ground meat. Similar to MLR, PCR is also an
inverse calibration method and an extension of PCA, where PCs
obtained from PCA are used as variables in a MLR model. Firstly

PCA is done on the calibration data, generating PCA scores and
loadings followed by MLR (Gemperline 2006). Cozzolino and
Murray (2004) utilized PCR to identify and authenticate minced
samples of beef, lamb, pork and chicken meat. PLSR utilizes the
exact same mathematical model as PCR with the exception that
in PCR, the data compression is performed using only spectral
information, while PLS employs spectral and concentration data
(Hemmateenejad and others 2007). The compressed variables ob-
tained in PLSR are referred to as latent variables (LVs). PLSR
mathematically correlates the spectral data to a matrix of the prop-
erty of interest (chemical or physical attributes) concurrently with
all the other significant spectral factors that disturb the spectrum
(ElMasry and others 2012). The procedure has 2 steps, the first
is the calibration and the second is the prediction that tests the
calibration model (Meza-Márquez and others 2010). PLSR was
the common modelling approach used in the studies conducted by
Anderson and Walker (2003); Rust and others (2008); Prieto and
others (2009); Liao and others (2010); Liao and others (2012), De
Marchi (2013), Dixit and others (2016b), Dixit and others (2016c)
and Dixit and others (2016a).

However, to perform multivariate calibration in situations where
the relationship between x and y variables are highly nonlinear;
techniques such as artificial neural network (ANN) and support
vector machine (SVM) have been proved to be useful (Wu and
others 1996; Li and He 2008). ANN is a computing system made
up of a number of simple, highly interconnected processing el-
ements, which simulate the parallel processing of a human brain
to convert input variables into meaningful outputs. ANN’s model
structure is expressed by a map and the model parameters are
determined by a searching algorithm (Blanco and others 2000;
Bakeev 2010). Back propagation neural network (BPNN) is one
of the most common neural network technique used for nonlinear
modelling of NIR data. BPNN provides the advantages such as
quick response and high learning accuracy. Network architecture,
network parameters, and the problem complexity defines the su-
periority of a network’s function approach. Significance of results
heavily rely on the selection of appropriate network architecture
and parameters. BPNN comprises of an input layer, hidden layer,
and output layer. BPNN parameters include: the number of hid-
den layers, number of hidden neurons, learning rate, momentum,
and so on which have significant impacts on the performance
of the neural-network (Chen and Hsu 2007; Chen and others
2010). Liu and others (2010) used PLSR and PCA-BPNN for
nondestructive measurement of soluble solid content of navel or-
ange fruit by (VIS/NIR) spectroscopy. In another study, Liu and
others (2009) performed BPNN and least squares-support vector
machine (LS-SVM) combined with Vis/NIR spectroscopy to im-
plement the fast discrimination of instant milk teas. To the best
of our knowledge, studies involving the use of ANN combined
with NIR spectroscopy for meat products have not been reported
to date. Support Vector Machine (SVM) is another method to
perform nonlinear modelling of spectral data. The following at-
tributes of SVM makes it different from other regression tech-
niques; (a) SVM can perform more efficient modelling of non-
linear or complex data structures by using nonlinear transform
functions, called kernels, (b) model coefficients are not deter-
mined using the standard least squares minimization criterion but
using a more complex criterion; and (c) a developed SVM model
is expressed in terms of a series of vectors, called support vectors,
rather than a single regression coefficient vector. The disadvan-
tage of using SVM is that the regression models do not consider
all calibration samples equally, but rather depends heavily on a
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Table 2–Models for various quantitative modeling methods

Method Model Meaning of terms

Linear regression y = bx + b01 + f y: vector of measured independent variables, x: matching vector of measured dependent
variables, 1: vector of ones and f: vectors containing the residuals of the linear regression
model.

MLR (multiple linear
regression)

y = bX + f X: matrix that contains responses from M (>1) different x variables and b: It contains M
regression coefficients for each of the x variables.

PCR (principal
component
regression)

y = T̂ q + f
q̂ = (T̂tT̂)−1 + T̂ty

y: It contains the known values of the property of interest, T̂: PCA scores and q: It contains the y
loadings of the PCR model. q̂: y loadings, obtained using the least squares procedure.

PLSR (partial least
squares regression)

b̂PLS = ŴPLS(P̂t
PLSŴPLS)−1q̂

ŷp,PLS = b̂PLSXp

b̂PLS : regression coefficients, ŴPLS : Loading weights, P̂PLS : x loadings and q̂: y loadings. ŷp, :
value of unknown sample and x̂ p : array of x values.

subset of samples that are most effective for modelling the prop-
erty of interest (Thissen and others 2004; Dixon and Brereton
2009; Bakeev 2010). Studies involving the use of SVM combined
with NIR spectral data for meat analysis have only been reported
with HSI (Pierna and others 2004; Xiong and others 2015; Kam-
ruzzaman and others 2016), which warrants for a separate review.
The interested reader is referred to a compilation of research papers
on the topic (Siche and others 2016; Xiong and others 2014).

Classification. Classification techniques are employed when it
is not possible to quantify and when quantification may lead to
misleading results. Classification techniques differentiate groups
depending upon their quality attributes. PLS-discriminant analysis
(PLS-DA), linear discriminant analysis (LDA) and soft independent
modelling of class analogies (SIMCA) are commonly used classi-
fication techniques for NIR analysis of meat. PLS-DA utilizes a
quantitative regression method of PLS in order to perform qualita-
tive analysis. It involves the application of PLS algorithms followed
by the determination of a discriminant threshold value for each
class. PLS-DA decomposes the spectra as linear combinations of
PCs, which expresses the major part of information contained in
the dataset. The latent variables (LVs) are then generated from the
input variables to maximize the variance between sample classes
in the model (Tian and others 2014). LDA uses a space defined by
a set of vectors called linear discriminants (LDs), which are similar
to the PCs generated in PCA. It is a technique based on proba-
bilistic classification, which searches for canonical variables with
maximum separation between categories; the first canonical vari-
able is the direction of maximum ratio between inter-class and
intra-class variances (Casale and others 2015). Ropodi and others
(2015) utilized PLS-DA and LDA as a multivariate technique to
detect adulteration of minced beef with pork meat and vice-versa
using multispectral imaging. Unlike PLS-DA and LDA, which
works on a strategy to find directions in a common space that
separate known classes, SIMCA works on a strategy that defines
a unique space for each class, define class-specific models using
their respective spaces, and then apply an unknown sample to
these models in order to assess class membership (Bakeev 2010).
Meza-Márquez and others (2010) utilized SIMCA for detecting
adulterants in minced beef using mid-infrared spectroscopy.

Multivariate curve resolution (MCR) is a technique which at-
tempts to impose specific constraints on the properties of the scores
or loadings obtained from a PCA or PLS model, so that they can
be rotated to a more physically meaningful form. MCR is fo-
cused on the determination of qualitative information and on the
recovery of the response functions of the components present in
unresolved mixtures, whereas multivariate calibration methods are
more focused on estimation of quantitative information (Jaumot
and others 2013). Multivariate curve resolution-Alternating least

squares (MCR-ALS) is the most popular chemometric method
used for the resolution of multiple component responses in un-
known unresolved mixtures (Jaumot and others 2005). It is an it-
erative method that performs a bilinear decomposition of the built
data matrix by means of an alternating least squares optimiza-
tion (Felten and others 2015; Folch-Fortuny and others 2015).
MCR-ALS is not a popular technique for meat analysis using
NIR spectroscopy. However, its application as a multivariate tech-
nique in several studies using NIR systems for different products
is found (Alexandrino and Poppi 2013; Colares and others 2016).
Apart from the mentioned modelling approaches there are several
other techniques which can be found elsewhere (Bakeev 2010).

Advancements, Challenges, and Future Possibilities
On/inline NIR analysis of meat has observed a rapid develop-

ment in the last decade or so. One of the major obstacles while
performing NIR analysis are low stand-off distances in the range of
millimeters (Prieto and others 2015; Pullanagari and others 2015;
Srivichien and others 2015). The use of direct sample illumina-
tion by a halogen light source makes it possible to use high probe
stand-off distances in the range of 30 cm or more. A combined
illumination and sensor unit is also available commercially which
claims to work in the range of 15 to 60 cm stand-off distances
(PSS-H-A03, Polytec GmbH Waldbronn, Mich., U.S.A.). How-
ever, the amount of heat energy produced by the halogen source
would not be feasible on heat liable materials. Introduction of
collimators is a solution to this issue that can operate up to 4 cm
stand-off distances and are fitted with fiber optic probes. The light
from a halogen light source travels through the fibers and finally
the collimated light illuminates the sample, thus the amount of
incident heat energy is far less in comparison to a direct halogen
light. The use of halogen light and higher stand-off distances is
also one of the reasons for better suitability of NIR spectroscopy
for on/inline applications.

A major issue is the imprecise representation of sample compo-
sition of highly heterogeneous samples such as meat when using
single point NIR spectroscopy. Multipoint NIR spectroscopy il-
lustrates the potential to offer better representation of these sam-
ples. Additionally, it also provides spatial information. The use of
a flexible multiprobe system illustrates the potential for conduct-
ing independent concurrent measurements (Cama-Moncunill and
others 2016). Moreover, the fiber-optic probes have been reported
to work approximately 30 m apart from each other (Klimkiewicz
and others 2014). Hence, a single NIR system could be used to
monitor different control points in a meat processing plant situ-
ated at farther distances. Figure 2 illustrates these different probe
types and configurations. Among the obstacles while performing
online NIR analysis are the motion artifacts (MAs) produced due
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Collimator
Fiber-optic

probe

Spectrophotometer

Illumination source

Fiber-optic
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(c) (d)

0.2 cm
4 cm

(e)

60 cm

Combined halogen light
with probe

Figure 2–Probe types and configuration: (a) single point fiber-optic probe, (b) single point fiber-optic probe with collimator, (c) Multipoint fiber-optic
probe with collimators, (d) Concurrent measurements using fiber-optic probes with collimators, and (e) Combined halogen light with probe.
(↑ indicates connection to the spectrophotometer and ↓ indicates light approaching from the illumination source).

to vibrations, motion between probes and the sample and sudden
change in effective path length. A possible solution is the use of
beam-splitter with a spectrophotometer which allows to automat-
ically overcome baseline effects (Dixit and others 2016c). More-
over, statistical algorithms such as wavelet transform and Kalman
filtering could overcome these artifacts (Velardi and others 2009;
Liao and others 2012).

Spectroscopic observations depends on clean observation win-
dow (cleanliness of the probe tips). If fouling occurs on the probe
tip such as the sample (for example, meat emulsion) adhering
onto the fiber, it will eventually lead to poor analysis. Devel-
opments in fiber design have seen the emergence of easy-clean
or self-clean fibers. Commercially available Lighthouse probes
(GEA, Düsseldorf, Germany) could overcome this issue as it pro-
vides in-process window cleaning and recalibration during the
process and has been successfully employed in a pharmaceutical
study by Marković and others (2014). Inline monitoring of dry-
ing or freezing processes for meat products could be monitored
with NIR spectroscopy provided appropriately designed probes are
used. Flame resistant probes (FL400, OceanOptics, Fla., U.S.A.)
are commercially available in the market and can operate in the
temperature range of –269 to 700 °C. All of these features demon-
strate the capability of single or multiprobe NIR spectroscopy sys-
tems to conduct on/inline monitoring at various stages of meat
processing in an industrial setting.

In an industrial environment, NIR measurements are sensi-
tive to various external factors such as ambient temperature,
spectrophotometer temperature, sample presentation to the NIR
probes, wavelength shifts and others. Alexandrakis (2012) sug-
gests to overcome the influence of these factors it is important

to understand the sample and environment and to identify the
effects of these factors on the respective spectra. Extensive ex-
perimental designs such as RSM (response surface methodology)
could be utilized in order to identify and measure these influences.
Chemometrics plays an important role in dealing with these issues.
Several correction strategies such as optical methods, orthogonal
methods and bias correction can be used in achieving robust cal-
ibration models in an industrial environment. Detailed discussion
about these techniques can be found elsewhere (Zeaiter and others
2006; Roger and others 2008).

Conclusions
NIR spectroscopy has experienced massive growth as a popu-

lar and reliable analytical tool for online monitoring of meat and
meat products due to a variety of reasons such as speed and its
nondestructive nature High performances have been achieved in
the studies aimed at predicting chemical composition of various
meat and meat products using on/inline NIR spectroscopy sys-
tems. Good or reasonable predictions for sensory characteristics
such as color, tenderness, and so on and also for pH have illus-
trated high potential for NIR spectroscopy, however advancements
in the technology and design may be required to meet the desired
performance under industrial conditions.

Advancements in the on/inline application of NIR spec-
troscopy for meat and meat products such as using high stand-
off distances, multipoint spectroscopy, fiber-optic probe inde-
pendency and flexibility, and concurrent measurements have
immensely increased the potential of the technology as a reli-
able inline monitoring tool for the meat industry. Moreover, the
continuous developments in the fields of computer technology
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and chemometrics allow a high dependency on accurate reference
measurements (chemical, physical and sensory analysis) to be min-
imized. The increasing awareness about the authenticity of meat
and meat products and on-going research and advancements in
the area of on/inline application of NIR spectroscopy, illustrates
its great potential as a reliable quality monitoring tool for the meat
processing industry.
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