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Probiotics are live microorganisms which, when administered in adequate amounts, confer a health benefit on
the host. Standard culture techniques are commonly used to quantify probiotic strains, but cell culture onlymea-
sures replicating cells. In response to the stresses of processing and formulation, some fraction of the live probi-
otic microbes may enter a viable but non-culturable state (VBNC) in which they are dormant but metabolically
active. These microbes are capable of replicating once acclimated to a more hospitable host environment. An op-
erating definition of live probiotic bacteria that includes this range of metabolic states is needed for reliable enu-
meration. Alternative methods, such as fluorescent in situ hybridization (FISH), nucleic acid amplification
techniques such as real-time quantitative PCR (RT-qPCR or qPCR), reverse transcriptase (RT-PCR), propidium
monoazide-PCR, and cell sorting techniques such as flow cytometry (FC)/fluorescent activated cell sorting
(FACS) offer the potential to enumerate both culturable and VBNC bacteria. Modern cell sorting techniques
have the power to determine probiotic strain abundance and metabolic activity with rapid throughput. Tech-
niques such as visual imaging, cell culture, and cell sorting, could be used in combination to quantify the propor-
tion of viable microbes in various metabolic states. Consensus on an operational definition of viability and
systematic efforts to validate these alternative techniques ultimately will strengthen the accuracy and reliability
of probiotic strain enumeration.

© 2014 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/).
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1. Introduction

Probiotics are livemicroorganismswhich, when administered in ad-
equate amounts, confer a health benefit on the host (FAO/WHO, 2001).
Probiotics have a long history of safe consumption in fermented foods
such as yogurts and pickled edibles and considerable interest exists
in their use as food additives and supplements. Lactobacillus and
Bifidobacterium constitute the bacterial genera most frequently
employed in probiotic preparations for human use. Probiotic prepara-
tionsmustmeet strict criteria related to quality, safety and functionality
(Vankerckhoven et al., 2008). A key quality criterion is that they contain
accurately defined numbers of viable cells as expressed on the product
label. Some investigators, however, have found that commercial prod-
ucts did not contain the stated cell numbers (Lin et al., 2006), but had
significantly lower levels than reported (Carr and Ibrahim, 2005;
Al-Otaibi, 2009).

As probiotics are live organisms, it is critical to enumerate accurately
the population of viablemicrobes in the preparation and express this in-
formation to the consumer on theproduct label. Several significant chal-
lenges exist. First, culture-based enumeration of specific organisms
requires specialized and standardized methodologies, which will only
detect bacteria that are able to replicate on synthetic media and under
specific conditions. As noted almost thirty years ago, there may be or-
ders of magnitude differences between the numbers of cells isolated
from natural environments which are countable by microscopic exami-
nation versus those that can form colonies on agar media which was
coined “the great plate anomaly” (Staley and Konopka, 1985). Further,
cells that divide and form chains or “clumps” of cells or become encased
in the thick extracellular polysaccharide (EPS) during growth have a
high probability of being missed if enumerated via traditional culture
dependent analyses. Selective culture techniques do no always provide
an accurate representation of all specieswithin as sample as highlighted
in a 2002 study of lactic acid bacteria enumeration using culture vs. DNA
techniques (Jackson et al., 2002). Use of culture-independent tech-
niques, with a more holistic definition of viable probiotic bacteria,
have the potential to provide direct, rapid enumeration methods for
both researchers and industry-based scientists faced with the challenge
of providing the dose available for the final product.

Standardized methods are available for a limited number of spe-
cies in certain dairy products, such as publications from the Interna-
tional Organization of Standardization (ISO) regarding enumeration
standards for Lactobacillus acidophilus (ISO 20128/IDF 192:2006) and
Bifidobacterium (ISO 29981/IDF 220:2010). Secondly, a consensus on the
operational definition of live, viable cells needs to be established. Most
Table 1
Major physiological states of probiotic strains.

Physiological state Phenotype

Viable (live) Intact cytoplasmic membrane, function
and energy production necessary to ma
(Breeuwer and Abee, 2004).

Culturable (replicating) Capable of division; will form a colony
Non-replicating (in stationary phase; inhospitable
conditions for replication; or injured)

Will not form a colony on an agar plate
and intact cytoplasmic membrane. Cell

Starving Cells undergo dramatic decreases in me
Dormant (viable but not culturable) In a state of low metabolic activity and

phase. A protective response. Also seen
Irreparably damaged cells Will not grow with vigor under any con

(Le et al., 2008).
Non-viable (dead) No metabolic activity. (Lahtinen et al.,
probiotic strains are well adapted to living in or on the mammalian
host, but may be poorly adapted to other environments (Mills et al.,
2011). When subjected to environmental stress during formulation and
storage, constituentmicrobesmay transition to a viable but nonculturable
state (VBNC), a protective response in which they are dormant yet meta-
bolically active (Xu et al., 1982; Lahtinen et al., 2008). Microbes in this
state can reestablish broad functioning and replicate when they en-
counter amore hospitable environment (Lahtinen et al., 2008). Because
standard culture-dependent methods enumerate replicating cells only,
culture techniquesmay underestimate the numbers of viable organisms
that contribute to the functional capacity of the probiotic preparation
once constituent microbes reach the anatomical niche in the host to
which they are well-adapted.

The purpose of this review is two-fold: (1) to examine the metabolic
states of probiotic microbes pertinent to aworking definition of viability,
and (2) to review the advantages and limitations of both culture-based
methods and the newer visual imaging, molecular biology techniques
that include cell sorting techniques. These techniques can be opti-
mized so that enumerating microbes in various metabolic states
can be achieved as well as ultimately developing validating more ro-
bust methods for enumerating live probiotic strains.

2. Microbial metabolic states and an operating definition of viability

To accurately enumerate livemicrobes in probiotic preparations, sci-
entific consensus on the definition of a viable microbial cell is para-
mount. By a convention that dates back to the time of Koch, who in
the 19th century first described the growth of bacteria into a colony
(Carter, 1987), the scientific community typically considers a cell “via-
ble” if it reproduces to form a colony on an agar plate that supplies
key nutrients for the strain. Recent advances, however, reveal this to
be a limited definition. Microbes exist in a variety of growth phases
and metabolic states depending on environmental conditions and
stressors (Volkert et al., 2008; Garcia-Cayuela et al., 2009), and only a
subset of these states involve active replication. Descriptions of these
various states have been identified in probiotic strains (Table 1). The
convention that viable microbes must be capable of forming colonies
excludes not only dead or irreparably damaged organisms but also
live microbes that have adapted to environmental stress by becoming
dormant (the VBNC state). Hence, the fundamental questions become:
“Is an organism that does not replicate but continues to metabolize, vi-
able? Or must the organism meet classical culture specifications for
enumeration even though a heterotroph is stressed when removed
from its natural environment and forced to grow on synthetic media?”
al synthesis of protein and other cell components (nucleic acids, polysaccharides, etc.)
intain cellular metabolism, and, eventually, growth and multiplication.

on agar plate or proliferate observably in liquid medium (see authors listed in Table 2)
nor proliferate observably in liquid medium; but may have active physiologic activity
s may be inhibited by the medium or injured but capable of repair (Le et al., 2008).
tabolism, but remain fully culturable (Mahdi et al., 2012).
unable to divide or to form a colony on an agar plate without a preceding resuscitation
in “post-acidification” (Lahtinen et al., 2008; Shah, 2000)
ditions due to progressive metabolic decline. These cells may be irreparably injured

2008; Le et al., 2008)
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As noted by Mills et al. (2011) preparation of products that contain
probiotic strains via the industrial pipeline can be stressful to the strain
itself and can even induce stress-response genes. An important prereq-
uisite of the selection of probiotic strains are the ability to withstand
stresses such as temperature, osmotic, solvent stress and/or freeze-
drying as they progress during their manufacture to final form (Bron
et al., 2011). These processes may leave the final strain(s) in a variety
of physiological states before they can reach the environment in
which they have biological activity in their host. This review proposes
that the definition of live, viable probiotic microbes should be extended
to encompass all microbes in the population that are metabolically ac-
tive and/or have intact membranes. These strains still possess the capa-
bility of exhibiting beneficial function(s)when re-acclimated to thehost
environment. Instead of only identifying those cells that are live as those
that are capable of forming septae and accumulating biomass to form a
colony when isolated on appropriate artificial media, the new opera-
tional definition encompasses the various states that an organism may
need to go through before progeny are formed. Fig. 1 illustrates a con-
cept map for the two separate possibilities for viable probiotic strains
after preparation (center green ovals). The next layer of circles (both
above and below the white line) identifies either injured or dormant
cells which may be metabolically active but cannot replicate yet still
possess the capability to do so. It also recognizes that cells may be irrep-
arably damaged if severely injured (Fig. 1 — outer gray circles) and are
therefore, nonviable/dead and not capable of enumeration. If only cul-
ture techniques had been applied to this mixed population, underesti-
mation of the true number of strains capable of biological activity
would occur. Some stressed or injured cells may not be capable of im-
mediate replication for a vigorous culture response, butmay reestablish
that capacity through repair mechanisms. By contrast, dead bacteria or
irreparably damaged bacteria (undergoing an irreversible decline in
metabolic activitywith orwithout damagedmembranes), are not viable
and should be excluded from the enumeration of live cells. Conventional
and alternativemethods to quantify the biomass ofmicroorganisms pres-
ent are assessed from this standpoint in the following review. Obtaining
information about all individual bacteria and their physiological status is
relevant since many probiotic effects may depend on their metabolic ac-
tivity and subsequent byproducts than culturability/replicating status.
An example would be the production of lactic acid. It has been noted
that even dead cells and/or genomic DNA may have some probiotic ef-
fect(s) (Ghadimi et al., 2008; Bunthoff and Abee, 2002; Ouwenhand
et al., 2000; Pessi et al., 1999; Ouwenhand and Salminen, 1998).

3. Evaluation of culture-dependent techniques for enumerating
probiotic organisms

3.1. Availability and reliability of selective media for strains of probiotic
interest

Probiotics were initially characterized by their phenotypic charac-
teristics (such as colony morphology) microscopic details (such as
Gram stain reaction and cell morphology), and physiologic characteris-
tics (such as fermentation patterns and enzymatic activity) (Conway
and Henriksson, 1994). The range of selective media available to identi-
fy and enumerate strains of probiotic interest is relatively limited and it
should be noted that no one single medium and/or set of techniques for
isolation of the strain is applicable to all probiotic strains Vinderola and
Reinheimer (1999) (Table 2). Selectivemedia for specific species of Lac-
tobacillus are available; by contrast, members of the genus,
Bifidobacterium, can be identified, but no standard selective media are
available to differentiate among Bifidobacterium species (Hartemink
andRombouts, 1996; Roy, 2001). To overcome this, selective differential
media have been developed, but the subjectivity of identification re-
quires skilled personnel for reliable results.

The development of selective media for a broader range of strains of
probiotic interest remains a challenge. Different organisms require
distinct sets of nutrients in varying concentrations and forms. These
must be identified and formulated into the medium at the appropriate
concentrations to sustain growth yet avoid co-precipitation of the intro-
duced chemicals. Moreover, depending on the nature of the samples,
the cultivation efficiency of active cells by standard plating techniques
is estimated between 0.001 and 1% (Amman et al., 1995). No single
culture-based methodology is applicable to all probiotic organisms, as
there is considerable variability between species and even strains in
their response to plating procedures.

3.2. Quantification of culturable probiotic microbes by heterotrophic plate
counts

Quantification of bacteria in a given sample is routinely achieved by
counting the total number of colony-forming units (CFUs) grown on an
agar plate from serial dilutions, expressed as CFU per gram or mL of the
original sample. This yields an estimate of the number of cells present
based on a skilled interpretation of the number of colonies on a plate.
It is a skewed estimate, as only cells that can form colonies under the
given experimental conditions (e.g. incubation media, temperature,
time, and oxygen conditions) are counted. Colonies may arise from
individual cells or from cell clusters that happened to be sufficiently
separated after plating to be distinguished following growth. Thus, de-
pending on original concentration estimates prior to dilution, a colony
could arise from one cell or several thousand. Hence, they are referred
to colonies, not cells.

Reliable quantitation requires an acceptable range of countable
colonies on a plate. These are based on historical ranges and have
been refined by various authoritative bodies. Commonly used ranges
for countable numbers of colonies on a plate are 25–250 and 30–300
(Table 2). In their seminal work on milk analysis, Breed and Dotterrer
(1916) proposed the original estimates for acceptable, countable plates.
Factors such as colony size, and hence the number of colonies per plate,
varied by species; nutrients could be limiting, and neighboring colonies
inhibit or stimulate growth or merge altogether. Thus, almost a century
ago, these scientists noted that “… certain plates in any series made
from a given sample are more satisfactory for use in computing a total
than are others. The matter of selecting plates to be used in computing
a count becomes a matter of considerable judgment” (Breed and
Dotterrer, 1916).

The upper limit of the enumeration is reached when bacteria com-
pete for space and nutrients. This depends on bacterial swarming
behavior as well as the plating surface area, a critical factor when
using smallmembranes instead of standard plates. TNTC (too numerous
to count) can be reported in several ways. ASTM (1998) recommends
reporting this as greater than the upper limit (e.g. a 1:10 dilution
with more than 200 CFU on a spread plate would be reported as
N2000 CFU/mL). FDA's BAM recommends counting the colonies
from the dilution giving plate counts closest to 250 and estimating the
total number and then using that number as the estimated aerobic
count. The lower limit of enumeration can be based on the limit of
quantification (LOQ) (25 CFU, from a countable range of 25–250) or
the limit of detection (LOD) (i.e. 1 CFU). ASTM recommendations rely
on the LOD and to report that answer if no colonies are recovered
(e.g., b10 CFU/mL for 1:10 dilution) (ASTM, 1998). Different regulatory
bodies have suggested and/or identified acceptable ranges of colonies to
count from spread plates over the years since the original 1916proposal
by Breed and Dotterer and appear in Table 3.

In summary, culture-based techniques provide estimates of those
microbes that are capable of replicating under experimental conditions.
Selective media exist only for a limited subset of potential strains of in-
terest. Reliable plate count enumeration is based on a relatively narrow
countable range (generally considered to be 25–250 CFU bacteria on
a standard petri dish) and the lack of consensus on the use of a LOD
(1CFU) or LOQ for the lower limit of quantitation introduces a larger de-
gree of variability than is necessary. It is alsoworth noting that although



Fig. 1. A concept map for probiotic strains that describes metabolically active, replicating/
culturable/viable states and the transitions that are possible. The arrow on the perimeter
and the black one-way arrows indicate that once a cell is non-viable/dead it does not re-
turn to a viable state.
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counts of CFU follow a Poisson distribution, mention is rarelymade of the
transformation used to approximate a normal distribution prior to the use
of normal statistical analytical tools. Consequently, despite its common
usage, the plate count method does not support precise, reproducible es-
timations of cell densities of probiotic strains, especially inmixed cultures.
(Sohrabvandi et al., 2012)Moreover, it estimates only the subset of viable
organisms that replicated under the conditions of culture. It should also
be noted that beyond the art and skill of the technician to culture the sam-
ple under the correct environmental conditions, that rapid turn around is
Table 2
Selected examples of culture-based methods for identification/enumeration of probiotic strain

Methods and media for selective enumeration of probiotic strains based on viable replicating

Medium Base Selectivity/supplement

Bifidobacterium spp.
Bifidobacterium selective medium
(BSM)

MRS (deMan, Rogosa, Sharpe) Cysteine HCl and Mupu

NPNL (Neomycin sulfate,
paromycin, nalidixic acid, and
Lithium chloride)

MRS or BL (blood–liver–
glucose)

Neomycin sulfate, parom
sulfate, nalidixic acid an
chloride

Raffinose Bifidobacterium
medium

LCL (liver–cysteine–lactose) Proprionate, lithium chl
raffinose

MRS-raffinose MRS Raffinose, lithium chlori

Lactobacillus acidophilus group (L. acidophilus, L. johnsonii, L. gasseri, L. crispatus)
MRS-clindamycin MRS Clindamycin

X-Glu Rogosa agar 5-Bromo-4-3-indoyl-β-D
glucopyrananoside

Lactobacillus casei group (L. casei, L. paracasei, L. rhamnosus)
MRS-salicin MRS Salicin

a Adapted from KneifelW., “Probiotic Products: How can theymeet requirements?” in Probio
and Ashraf, R. and Shah, N.P., Selective anddifferential enumeration of Lactobacillus debrueckii su
Bifodobacterium spp. In yoghurt — A review. (2011) Intl J Food Micrbiol 149:194–208.
not possible as aminimum of 24–72 h of growth in an incubator is neces-
sary before enumeration of colonies on agar plates is possible.

The International Scientific Association for Probiotics and Prebiotics
recognized that culture based analysis of strains can underestimate
the number of viable cells and fails to account for the impact of bacterial
growth modes (Champagne et al., 2011). Numerous investigators have
published research on the use of culture-independent methods to pro-
vide more insight into the enumeration of viable probiotic strains.

4. Alternative culture-independent methods for enumeration of
viable microbes

In the recent years, alternative, culture-independent methods have
been used to accurately enumerate probiotic strains based on viability
and deliver results in a timely manner (Table 4). Enumeration
techniques that lend themselves to quantifying viable cells either use
dyes to differentiate live and dead cells by direct observation, measure
the presence of an intact cell membrane (membrane integrity), or char-
acterize some aspect of metabolic activity, such as the synthesis of
nucleic acids, or respiration; these parameters indicate that the cells
are alive even if they are unable to develop into colonies on culture
media (Fig. 2). These newer techniques are described in more detail
below and a tabular list of various published studies using the various
techniques appears in Table 4.

4.1. Direct imaging and visual enumeration — Fluorescent in situ
hybridization

Bacteria in a sample can be directly visualized microscopically, but
enumeration of viable microbes requires differentiating live and dead
bacteria.

Direct epifluorescent counting has been described as a suitable
method for enumeration of total bacteria in environmental samples
(Kepner and Pratt, 1994). The optical sectioning capability of Confocal
sa.

technique

Notes Reference(s)

rocin Incubated for 72 h @ 37 °C; Potential
concerns regarding development of
Mupurocin-resistant Staphylococcus
aureus

Leuschner et al. (2003), Upton
et al. (2003), Simpson et al.
(2004)

ycin
d lithium

When L-cysteine not present,
Bifidobacteria do not grow or form
pinpoint colonies; Time consuming to
prepare

Teraguchi et al. (1978), Dave
and Shah (1996)

oride, and Antibiotic free-medium
Some B. bifidum strains do not grow
well on this agar

Hartemink et al. (1996)

de (0.05%) Incubation @ 45 °C specific for
enumeration of B. lactis BB12
LiCl inhibits lactobacilli

Tabasco et al. (2007)

Anaerobic incubation @ 37 °C for 72 h
Use of antibiotic for suppression

ISO (2002), Van de Casteele et al.
(2006)

- Visualization of the β-D glucosidase
activity. More selective than MRS and
Rogosa for yogurt and related products

Kneifel and Pacher (1993)

Conflicting reports; Cannot be used in
products containing L. acidophilus

Dave and Shah (1996), Ravula
and Shah (1998)

tics and Health Claims. (2011) KneifelW and Salminen S. (eds.)Wiley Blackwell, England
psp. bulgaricus, Streptococcus thermophilus, Lactobacillus acidophilus, Lactobacillus caseii and



Table 3
Acceptable plate counts recommended by authoritative organizations and others.

CFU range acceptable CFU range unsatisfactory Notes Reference

50–200 CFU/mL b400 N 30 The number of colonies needed to be within 20%
of the average

Breed and Dotterrer (1916)

25–250 CFU/mL – – Tomasiewicz (1980)
25–250 CFU/mL – – USP 2011a,b
25–250 CFU/mL – – Food and Drug Administration et al. (1998)
20–80 CFU/membrane, 20–200 CFU/spread plate,
30–300 CFU pour plate

– – ASTM (1998)
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Scanning Laser Microscopy (CSLM) increases sensitivity and reduced
out-of focus blur, enabling observation of subsurface structures of
foods in situ (Brooker, 1995; Heertje et al., 1987). Digital acquisition of
images by CSLM enables rapid enumeration of bacteria by digital
image analysis (Caldwell et al., 1992). This technique may be of value
for the rapid estimation of viable bacteria in some dairy products,
which could take over three days (Auty et al., 2001). FISH consistently
estimates higher yields than plate counts for dairy products but lower
for cheese products and spray-dried cultures, highlighting the need for
further work to establish the effect of the matrix. The use of this tech-
nique as well as the combination of species specific qPCR has allowed
unequivocal methods for enumeration of probiotic strains into a variety
of cheese products (Auty et al., 2001; Villlarreal et al., 2013).

4.2. Nucleic acid-based enumeration methods

4.2.1. Polymerase chain reaction (PCR)
Detection of nucleic acid sequences (DNA,mRNA and rRNA) is amo-

lecular technique that can be applied to bacterial enumeration. Most
molecular analyses target amplification of nucleic acid to maximize an-
alytical sensitivity. DNA amplification by PCR was investigated for enu-
meration of live bacteria based on the assumption that DNA would be
degraded more rapidly after cell death than other cellular components
and that intact DNA sequences would indicate cell viability (Jamil
et al., 1993). Although most DNA detection is undertaken by PCR
(McKillip et al., 1999), hybridization-based detection methods also
have been employed (Meijer et al., 2000). However the presence of
DNA does not necessarily indicate viability, although the detection of
longer intact DNA sequences correlates more closely with viability
than shorter sequences (McCarty and Atlas, 1993).

4.2.2. Reverse transcriptase PCR (RT-PCR)
RT-PCR is oneof themanyvariants of PCR and allowsmultiple copies

of a particular sequence through amplification. It should be noted that
ribonucleic acid (RNA) is first transcribed in reverse into its DNA com-
plement that utilizes the reverse transcriptase. Attention has turned to
the use of mRNA as a marker of viability. This marker is a highly labile
molecule with a very short half-life (seconds) in bacteria. Hence,
Table 4
Published studies related to enumeration of probiotic strains by culture-independent techniqu

Culture-independent methods for enumeration of probiotic bacteria

Method Structural target probed

Imaging Fluorescent in situ hybridization (FISH) Presence of nucleic acid
Live–dead staining and microscopic
counting

Cellular integrity

Molecular Biology EMA or PMA-qPCR (vPCR) Cellular integrity/Nucleic Acid
Real-Time qPCR Presence of nucleic acid

Quantification of 16S rRNA Presence of nucleic acid
MALDI-TOF mass spectrometry Presence of nucleic acid

Cell Sorting Flow cytometry/FACS Cell integrity or metabolic activ
detection of bacterial mRNA transcription should provide a more reli-
able indication of viability thanDNA-basedmethods. Themost common
amplification techniques for detecting mRNA are reverse transcriptase
PCR (RT-PCR) and nucleic acid sequence based amplifications (NASBA)
(Chan and Fox, 1999). Both have been applied to the determination
of bacterial viability with variable success. More recently, reverse
transcriptase-strand displacement amplification (RT-SDA) has been
used as an indicator of bacterial viability (Hellyer and Nadeau, 2004).

Ribosomal RNA (rRNA) has also been investigated as an indicator of
viability and can be positively correlated with viability under some bac-
terial regimes (McKillip et al., 1998).

4.2.3. Real time-quantitative polymerase chain reaction (RT-qPCT or qPCR)
RT-qPCR, is a DNA amplification technique that uses fluorescent re-

porter dyes to combine the amplification and detection steps of the
PCR reaction in a single tube format. Whereas traditional PCR measures
the accumulation of the PCR product at the end of all the PCR cycles,
RT-qPCR quantifies PCR amplification as it occurs. RT-qPCR detection
measures the increase in fluorescent signal, which is proportional to
the amount of DNA produced during each PCR cycle. A quantification
cycle (Cq) value is determined by plotting fluorescence against the
cycle number. Cq corresponds to the number of cycles for which the
fluorescence is higher than the background fluorescence. RT-qPCR is a
quantitative technique because data are collected during the exponen-
tial growth (log) phase of PCR when the quantity of the PCR product is
directly proportional to the amount of template nucleic acid. Using this
technique allows microbial populations to be quantified by measuring
the abundance of a target sequence in DNA samples extracted from
food products (Postellec et al., 2011). Combinedwith reverse transcrip-
tion (RT), this technique can also be used to estimate the amount of
mRNA transcripts. An investigator could choose a particular transcript
related to metabolic activity (such as production of lactic acid during
fermentation) for a more direct indication of the activity of living cells.

Guidelines onMinimum Information for the Publication of Quantita-
tive Real-time PCR (MIQE) provide criteria to help achieve high quality
resultswith valid conclusions (Bustin et al., 2009). A simplified roadmap
for obtaining solid data using MIQE guidelines has been published
(Taylor, 2013).
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Fig. 2. Summary of the facets of a probiotic bacterial cell that may be probed via various culture and non-culture based techniques to assess viability of probiotic strains.
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4.2.4. Ethidium monoazide-PCR and propidium monoazide-PCR
Ethidium monoazide-PCR (EMA-PCR) and propidium monoazide-

PCR (PMA-PCR) are emerging techniques that limit enumeration to
live cells (Nogva et al., 2003) and can also be referred to as viability-
PCR (vPCR). (Fittipaldi, et al., 2012). Cells with intactmembranes are as-
sumed to be viable. Ethidium monoazide (EMA) is an azide-bearing,
DNA-intercalating dye thought to enter only membrane-compromised
cells. EMA covalently crosslinks DNA when the azide group converts
to a highly reactive nitrene radical upon exposure to bright visible
light. Water simultaneously inactivates unbound EMA and the reaction
product remains free in solution. EMA treatment is followed by genomic
DNA extraction and qPCR analysis. Crosslinking strongly inhibits PCR
amplification of the modified DNA, such that only unmodified DNA
(from presumptively intact cells) can be amplified. EMA treatment in
conjunction with qPCR led to signal reduction of up to four log10 units
in the case of membrane-compromised cells (Rudi et al., 2005).

It was later shown that, in some bacterial species, EMA does pene-
trate cells with intact membranes (Nocker et al., 2006). However,
propidiummonoazide (PMA), an analog of EMA that functions through
similar chemistry, is efficiently excluded from cells with intact cell
membranes, probably due to an increased positive charge. PMA-qPCR
is applicable to awide range of gram-negative and gram-positive bacteria.
This approach has been used successfully to assess the killing efficacy of
disinfectants (Nocker et al., 2007a) and to detect viable Escherichia coli
and Pseudomonas aeruginosa for water quality assessments (Gensberger
et al., 2013). PMA treatment also limits detection to intact microbial
cells when used with end-point PCR in combination with denaturing gel
electrophoresis (Nocker et al., 2007b). Challenges have been encountered
when applying PMA-PCR to samples that have insufficient light transpar-
ency (Wagner et al., 2008). This limitation might be overcome by using a
trigger other than light to induce DNA cross-linking or by manipulating
pH or temperature to alter turbidity. Fittipaldi, et al. (2012) published
the most recent technical review of vPCR.

4.3. Flow cytometry (FC)/fluorescent activated cell sorting (FACS)

Cell sorting methods, such as Coulter counters and flow cytometry
(FC) were originally developed for counting red blood cells. Today, FC
has been upgraded to analyze much smaller cells, such as bacteria,
and to deliver high-throughput data. The technique allows simulta-
neousmultiparametric analysis of physical and/or chemical characteris-
tics of up to thousands of particles per second. The cell surface or its
components must first be labeled with one or more fluorescent dyes.
A monodisperse suspension (single, unclumped cells) is made so that
single, labeled cells are aligned to pass individually through a laser
beam. Laser-excitation of the fluorescent molecules causes them to
emit light at variouswavelengths and the amount and typefluorescence
indicates the percentage of various cell types or cell components present
in the sample.

FC allows the examination of a large number of cells at a time (200 to
2000 cells per second), recording, for each cell, several different param-
eters that can later be linked to a wide variety of cellular characteristics
(Tracy et al., 2010). A variety of fluorescent probes can be applied to ex-
amine physiological characteristics of living cells, such cell membrane
integrity, intracellular enzyme activity, cytoplasmic pH, and membrane
potential, all of which provide a measure of viability (Chen et al., 2012).
Fluorescent Activated Cell Sorting (FACS) is a specialized form of flow
cytometry that sorts a heterogeneous mixture of biological cells into
two or more containers based on the fluorescent characteristics as
well as light scattering.

These powerful and rapid cell-sorting techniques could reduce the
time needed to determine probiotic strain abundance, size, and meta-
bolic activity. Fluorescent DNA stains, nucleic acid probes, and immuno-
fluorescence probes directed at cell proteins, extend the capabilities of
the technique, enabling cells to be discriminated based on amount and
type of nucleic acids, amount of respiratory enzymes, or membrane in-
tegrity. The potential exists to measure cell size, cell granularity, and in-
dicators of viability such as levels of newly synthesized DNA, specific
gene expression from transcription of messenger RNA, and even tran-
sient signaling events in living cells. Such techniques offer significant
promise formore robust enumeration of viable probiotic strains (whether
replicating or VBNC).

5. Limitations of assays

It should be noted that all assays have some limitations and no per-
fect methods exists even when the procedure is optimized. Some of the
limitations the techniques summarized in this review appear in Table 5.

6. Conclusion and future directions

Both traditional cell culture methods, as well as the newer, alterna-
tive techniques reviewed herein, offer advantages and limitations for
enumerating probiotics. Use of the variety of techniques and the targets
of the probiotic cell that they probe to assess viability are summarized in
Fig. 2. Conventional culture methods are commonly used for themicro-
biological quality assurance for probiotic preparations and are identified
as CFU/gram or capsule or mL of product. These methods are simple but

image of Fig.�2


Table 5
Parameters for consideration in selection of approach to enumeration probiotic species.

Method Material
cost

Time to
execute

Time to availability
of results

Specificity Automation Challenges (examples)

Culture Inexpensive ++ +++ ++ No Identifies replicating cells only if placed on appropriate
synthetic media;
Fermentation patterns may be similar between strains;
Tedious to prepare some media;
Some media incorporate antibiotics

EMA/PMA-PCR (v-PCR)
RT-PCR

+
+

++
+++

++
++

+++
++

Yes
No

Toxic materials; Sensitive to small variations in sample preparation

Fluorescent microscopy + + b2 h ++ No Optimization of permeabilization of cell wall methods for
penetration fluorescent probe

MALDI-TOF mass spectrometry + + ++ + No Variability in reproducibility reported
Flow cytometry/FACS +++ ++ ++ +++ Yes LOD 1 × 104 cells/mL, however, most probiotic preparations

contain ≥ 1 × 106 cells per preparation
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generally require more than 24 h to yield reliable results and some
media that are necessary to selectively identify these strains are tedious
to make, can contain antibiotics (Bujalence et al., 2006), and even the
use of pour or spread plate techniquesmay affect results that were pre-
sented in Table 2. It should be noted that underestimation of bacterial
numbers also may occur, because the cells that are viable but no longer
culturable by culture methods are difficult to detect. Therefore, rapid
and simple culture-independent methods are required. It is recom-
mended that the operational definition of live probiotic bacteria be up-
dated to address the fact that viable cells exist in metabolic states that
may not be amenable to culturable. Newer methods that probe cellular
integrity, presence of nucleic acids and/or the metabolic activity are
summarized in Fig. 2 by the two horizontal and downward pointing ar-
rows. Use of these techniques shows considerable promise for quantify-
ing live microbes in different metabolic states. An important caveat,
however, is the recognition that probiotic efficacy cannot be predicted
solely on the basis of viable cell quantities, as components of non-
viable cells also may have a probiotic effect. For example cell wall com-
ponents, whether from dead or living cells, have been reported to con-
tribute to efficacy (Salminen et al., 1999). Nevertheless, in the context
of enumeration rather than efficacy, alternative techniques that mea-
sure viable cells appear promising and afford the opportunity to develop
and validate standardized protocols to quantify specific probiotic strains
in the future. Thiswould set the probioticsfield on parwith other indus-
tries, such as water quality analysis, that have amended their views on
strict use of culture analyses and adopted newer techniques (such
FACS/FCwith viability stains) to increase accuracy and precision in enu-
meration. The methods selected should take into account all the cells
present in a sample/product and be able to distinguish and quantify
the various states of cells based on the agreed parameter(s) of cell via-
bility. Criteria such as detection limit and sensitivity of the method,
time required to obtain results, and laboratory outlays in skill, labor
and cost need to be taken into consideration for selection of themethod.
Precedence for use and validation of alternative methods for microbio-
logical analysis of food, animal feeding stuffs and environmental and
veterinary samples has been outlined in ISO 16140:2003. It defines
the general principles and the technical protocol for the validation of al-
ternative methods in the field of which could be used in the framework
of the official control, and the international acceptance of the results ob-
tained by the alternativemethod. The use of these guidelines provides a
framework that there is the possibility of utilizing an alternativemethod
for enumeration of probiotics for human use. The culture-independent
alternative methods reported herewith should be considered as impor-
tant tools in the armamentarium of the quality assurance of probiotic
organisms.

Evenwith the limitations noted in Table 5, FC appears as a promising
tool for use in the manufacturing of products containing probiotic
strains (Diaz et al., 2010; Tracy et al., 2010; Davey, 2011). Beyond the
simple enumeration of cells, FC provides insight regardingmicrobial fit-
ness and metabolic activities during bioprocessing of product formula-
tions. This could improve processes optimization involving strains for
commercial use, prediction of microbial performances along the whole
process and the presence/absence of activity during storage could ben-
efit the quality control of probiotic products during their shelf life
(Sohier et al., 2014; Diaz et al., 2010). Inclusion of FC as a validated tech-
nology for this purpose is supported by those in both the academic and
industrial arenas (Sohier et al., 2014; Burguiere, 2013; and Lahtinen
et al., 2006) and it has been discussed by project groups within organi-
zations such as the International Dairy Federation and ISO (Agenda-IDF/
ISO Analytical Week 2012, Standing Committee on Analytical Methods
for Dairy Organisms — D06; 3–7 June, Rotterdam, The Netherlands).
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