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Abstract

The shelf-life of fresh carcasses and produce depends on the chemical and physical proper-

ties of antimicrobials currently used for treatment. For many years the gold standard of

these antimicrobials has been Cetylpyridinium Chloride (CPC) a quaternary ammonium

compound (QAC). CPC is very effective at removing bacterial pathogens from the surface

of chicken but has not been approved for other products due to a toxic residue left behind

after treatment. Currently there is also a rising trend in QAC resistant bacteria. In order to

find new compounds that can combat both antimicrobial resistance and the toxic residue we

have developed two Quantitative Structure-Activity Relationship (QSAR) models for Salmo-

nella typhimurium and Listeria monocytogenes. These models have been shown to be accu-

rate and reliable through multiple internal and external validation techniques. In processing

these models we have also identified important descriptors and structures that may be key

in producing a viable compound. With these models, development and testing of new com-

pounds should be greatly simplified.

Introduction

Foodborne illness presents a considerable risk to both public and personal health in the United

States. Every year, approximately one in six United States citizens will contract some form of

foodborne illness [1]. The severity and duration of the disease depends on the causative agent.

According to foodsafety.gov, the majority of foodborne disease reported in the United States is

caused by pathogenic bacteria. Among the many pathogenic bacterial species spread by food

products, two species particularly noted for their burden on public health are S. enteritidis ser-

ovar typhimurium (commonly known as S. typhimurium) and L. monocytogenes.
S. typhimurium causes the gastroenteritic disease salmonellosis, which is characterized by a

period of one to four days of abdominal pain, fever, and diarrhea. S. typhimurium is also capa-

ble of entering the bloodstream through the intestines and causing bacteremia. Salmonellosis
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accounts for a considerable amount of foodborne illness in the United States. The Centers for

Disease Control and Prevention (CDC) reports that the estimated 1,027,561 annual cases of

non-typhoidal salmonellosis comprise eleven percent of the total predicted annual foodborne

illness cases in America. Among these annual cases, approximately 16,000 salmonellosis

patients are hospitalized and 600 die [1–4]. Listeriosis, caused by L. monocytogenes, is an even

more serious foodborne illness, causing bacteremia, septic abortion, and bacterial meningitis.

It is predicted that 1,600 cases of listeriosis occur annually and result in 260 deaths [1, 5–10].

The prevention of foodborne diseases such as salmonellosis and listeriosis begins with the cru-

cial step of treating food products–particularly, poultry and beef–with chemical antimicrobial

agents.

Quaternary Ammonium Compounds (QACs) are a class of molecules identified by a cat-

ionic nitrogen atom. QACs that are used as antimicrobial agents often contain aliphatic, non-

polar chain tails. These compounds are widely used as general-purpose disinfectants, given

their ability to impede the growth of a wide range of microorganisms [11]. The general antimi-

crobial mechanism for QACs is the disruption of bacterial cell walls and plasma membranes

with the aliphatic tail constituents. The nonpolar chains “pinch” sections of the cell wall or

membrane off; the loss of structural integrity leads to cell leakage and ultimately death of the

bacterium [12–14]. There is also evidence that QACs can operate through different mecha-

nisms, including disruption of ion channels and protein denaturation [11, 15].

Cetylpyridinium chloride (CPC) is a QAC that has shown effectiveness as an antimicrobial

compound. Due to the low toxicity of CPC, it has been approved for use on chicken carcasses

with the aid of propylene glycol (PEG) as a cosolvent [16, 17]. It is able to reduce aerobic colony

counts significantly, and extend the shelf-life of refrigerated chicken up to 3 days compared to

untreated meats[18, 19]. Although CPC has long been held to be a “gold standard” for disinfec-

tant antimicrobial compounds, there are many issues associated with the use of CPC as a food

disinfectant. Studies have shown a rising trend of resistance to certain QACs (including CPC)

among bacteria[20], a negative environmental impact of CPC runoff [21], and negative health

effects from ingested QAC residue left on fatty surfaces [22–26]. There is a growing need to

identify new antimicrobial QACs and similar compounds that share or mimic the general anti-

microbial mechanisms. These new compounds must be able to overcome immediate resistance,

reduce environmental impact, and be useable on fattier surfaces without any residue.

Due to the imprecise targets of QACs and the economic advantages of computational pre-

screening, we turned to QSAR (Quantitative Structure-Activity Relationship) modeling to pre-

dict the antimicrobial activity of our potential compounds. QSAR models are designed

through predictive tests that estimate the biological activity of untested compounds. QSAR

models do this by re-expressing molecular structures as quantifiable character data; the data

can then be correlated with a given bioactivity by a statistical test (i.e. MLR, PLS, Neural Net-

works, etc.) [27–31]. Through QSAR modeling, all of the compounds from a set can be easily

compared to one another by predicted quantitative measures of biological effect [32]. This

allows research groups to remove less effective compounds from consideration and readily

identify the more promising compounds for further testing.

Methods

Our methods were adapted from the procedure developed previously by the Bai lab [33].

Finding known antimicrobials

All of the known antimicrobials for the training and test sets were acquired from three reputa-

ble and public-accessible databases: PubChem (www.pubchem.org), PubMed (www.PubMed.
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org), and the European Bioinformatics Institute Database (www.ebi.ac.uk). The molecules

used in these sets included QACs, as well as tertiary nitrogen-based compounds with similar

antimicrobial actions to QACs. The selected compounds were effective bacteriostatic agents

against S. typhimurium, L. monocytogenes, or both, and held a wide range of Minimum Inhibi-

tory Concentration (MIC) values. The Simplified Molecular Input Line Entry System

(SMILES) notation and MIC value for the compounds were both reported in separate Excel

files—one document for S. typhimurium, and the other for L. monocytogenes. The collected

data was sorted into either the training set (85% of compounds) or the test set (15% of

compounds).

Calculating descriptors

The molecular descriptors for all data sets were calculated using the ochem.eu chemoinfor-

matics database (https://ochem.eu). The “Calculate Descriptors” bar was accessed under the

“Models” tab, and the Excel files were uploaded directly to the server. The uploaded molecules

were then pre-processed; during this procedure, the salts associated with each compound

structure were removed. After this stage, the molecular descriptors were selected (unless other-

wise stated, the default settings for the descriptor types were not modulated). The descriptor

types used were: ALogPS, GSFragment, QNPR, ISIDA fragments (fragment length was set as 2

to 10), and E-state (all boxes checked apart from “Extended indices—experimental”). These

were selected from the entire set as they did not contain any 3D descriptors. This selection

was made to avoid errors that occur with 3D descriptors calculation. Any compounds still

experiencing errors in calculation were deleted from the descriptor sets, and the remaining

sets were saved as.csv files. Resulting in 1356 descriptors for each compound.

Descriptor output modification and data normalization

The.csv files for S. typhimurium and L. monocytogenes were modified before QSAR use. Col-

umn headings with no empirical data (i.e. Comments) were deleted from the files and a new

column containing the log of each compound’s MIC (logMIC) was inserted into the docu-

ments. Finally, each compound was randomly assigned to either the training or test groups for

both pathogens. 85% of the total molecules in the data sets were used as the training group and

the remaining 15% were used in the test group. In all, the S. typhimurium file contained 26

compounds in the training group and 6 compounds in the prediction group; the L. monocyto-
genes file contained 37 compounds in the training group and 7 compounds in the prediction

group. The compounds were assigned numbers in a new “split” column by their status; “1”

indicated assignment to the training group, “2” indicated molecules from the testing group.

These modified.csv files were then uploaded to the normalizeTheData (v.1.0) data normaliza-

tion tool [34] (http://teqip.jdvu.ac.in/QSAR_Tools/#ADInHouse), which produced a new ver-

sion of the.csv files with adjusted molecular descriptor values. Last, the.csv files were

reformatted as.txt files for compatibility with the QSAR program.

QSAR modeling

After the file modifications, the.txt data files for S. typhimurium and L. monocytogenes were

imported separately into the QSARINS program [35, 36](qsar.it). All compounds in the test

set were manually deleted from the uploaded file. Following this, the training compounds were

run through the software’s internal filters. The internal filters were used to remove descriptors

that had under 80% consistency throughout the data set and those that were 95% correlated.

The internal filters removed the majority of the descriptors for all QSAR models. The next step

involved a setup procedure for the QSARINS equation in which the remaining molecular
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descriptors were selected as the variables and the log(MIC) was selected as the response. The

in-program Genetic Algorithm was then applied to select the top models for each iteration of

descriptors based on their Q2 (average leave-one-out fit) values. The number of iterations

(number of times the Genetic Algorithm is run) is equal to 1/5th the total number of com-

pounds in the test set (as recommended by Eriksson et al. [37]); the number of combinations

(of molecular descriptor variables) is equal to the number of molecular descriptors that remain

after the preliminary internal filtering step. After the Genetic Algorithm is applied QSARINS

displays the top 5 models from each iteration. The algorithm was set to run for 20 iterations

with 500 generations processed for each iteration.

Internal selection

These models were then sorted according to their respective R2 and R2-Q2 values. The default

model parameters for S. typhimurium and L. monocytogenes were the same for both; however,

as QSARINS produced models with different value ranges for each, the parameters were

slightly modulated to reduce the overall number of models that were considered. Our cutoff

values were R2� 0.75 and R2-Q2� 0.10. These numbers were elevated from the less conserva-

tive cutoffs presented by most other researchers [27, 28, 31, 37]. Therefore, only the top models

selected by internal statistics were used for further analysis.

External validation

The saved model file for the selected top models were retrieved from the “models” bar and

loaded onto QSARINS. The number of rows was adjusted to reflect the number of compounds

within the test set. The compounds and relevant molecular descriptor data were then loaded

into the model. The model predicted the log(MIC) of the test compounds; these predicted log

(MIC) values were contrasted against the experimental log(MIC) values by percent error anal-

ysis and the R2 (linear trend fit) of the predicted compounds.

Predictions

Once the final top models were selected and combined as described above, each model was

then used on the prediction set collected from the Bai lab [33]. A set of 835 compounds was

collected from PubChem based off the top results from a similar identity search using CPC as

the query. These compounds were then filtered based on the model applicability domain for

each model, any model outside the applicability domain was removed from the final results.

The consensus models for each bacterium were also applied to this data set. Any compound

within the applicability domain for 75% of the combined models were kept, all other com-

pounds were removed from the final set.

Consensus modeling

The consensus models were built using the average of all predicted values for the models that

met the following criteria. First, the single worst model of each set was removed (77 for S.

typhimurium and 84 for L. monocytogenes). Models were then included for the selected con-

sensus if they met the following criteria, a cutoff of external validation R2� 0.60 and percent

error� 10% for S. typhimurium and external validation R2� 0.90 and percent error� 35%

for L. monocytogenes. This technique was also used to combine the predictions from the final

model identified for each bacterial species.
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Structural similarity comparison

In order to better understand the relationship between the top compounds identified by the

QSAR models developed for this project and for our previous study of E. coli, we looked at

similarity and substructures shared between the top 50 compounds from each predicted set

using SIMCOMP2 [38–40]. In order to use this tool, all SMILES structures were converted

into.mol files using molview [41]. The.mol files for each prediction set were then concatenated

to produce a single.mol file with all 50 structures. Each set was then analyzed pairwise against

the other two sets using SIMCOMP2 with the following parameters: global search, bond based

docking matched by KEGG atom, post-processing for all SCCSs matched by atom, and a cutoff

value of 0.60. This data was further filtered to cutoff score of 0.75 and limited to structures that

matched with structures across all data sets [38–40].

Results

S. typhimurium models

Detection of potentially new food safe antimicrobials first starts with looking at the best cur-

rent technologies being applied. We performed a literature search to find all available data on

QACs and QAC-like compounds that have been tested against S. typhimurium. Specifically we

looked for studies pertaining to minimum inhibitory concentrations (MIC) of compounds

against this bacterium. MIC is a measure of the effectiveness of an antimicrobial by the lowest

concentration that inhibits growth, making the most effective compounds to have the lowest

MIC. Although previous individual studies provide a more stable and accurate model building

sets, no single study had a wide enough range of MIC values or a wide enough range of differ-

ent molecules. Therefore, we decided to utilize a group of 32 compounds that were collected

from 8 different sources [42–48]. The compounds we chose had at least a single nitrogen with

3 or more constituent groups, beyond that these compounds had variable numbers of carbon,

benzene rings, oxygen, and other distinct structural differences. Their MIC values ranged

from 3 μg/ml to 1071.1 μg/ml. Having a wide range of MIC values and a wide range of struc-

tural differences increases our confidence in our results. These structures were used to develop

over 300 models using the QSARINS software. This software produces predictive models

using a multiple linear regression (MLR) based approach paired with a genetic algorithm for

descriptor selection. The algorithm iterates through models based off a number of descriptors

based on the iteration number. It then substitutes descriptors out from each individual model

based on the given mutation rate. The top 10 models, based on the average linear fit loss of one

(Q2) for each model, are kept for the next round of mutations. Each iteration cycles through

500 generations. After each iteration a list of the top 5 models of each iteration is kept for fur-

ther analysis. 20 iterations were done for each model. The top models, as determined by inter-

nal selections (Table 1), were applied to external datasets to produce predicted MIC values.

The best of these models were selected via filtering using their R2 (linear trend fit) and R2-Q2

values (difference between linear trend fit and average leave-one-out fit). Within these models

the most frequent descriptors that were shared between all of these top compounds included a

cyclic SP2 hybridized 5 carbon ring attached to a methyl group and a minimum 6 carbon

chain (Fig 1A). The incidence of use of these descriptors do not seem to be correlated to the

magnitudes of the coefficients however. Our data shows that the descriptors that have the high-

est coefficient values are cyclic carbons attacked to a Nitrogen atom and a carbon chain con-

taining oxygen attached to a Nitrogen. These descriptors only appear in ~25% and ~10%,

respectively, of the top models. As such, a singular descriptor cannot be ascertained as being

most important in predicting MIC values of potential QACs.
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Using external validations and our own internal filters, a final list of 14 models was collected

for S. typhimurium (Table 1). A number of these models were then used to develop three sepa-

rate consensus models (Table 1). These consensus models were developed in hope of creating

a more accurate model. After looking over the data, we determined that model 76 was the best

possible model having the highest R2 (by 0.04) and lowest percent error (by 0.21%) of the

external validation set. Its internal statistics were not the best of the set, however they were

comparable to the rest of the models. The regression of this model can be seen in Fig 2. Of all

the potential models, 76 really stood out as the most potentially accurate and consistent model.

It is interesting to note that the R2 values of these models diminished across the validation sets.

This could be due to the selection of test compounds being on the high end of the applicability

domain, unlike the L. monocytogenes set. Having determined the optimal model, we began

producing predictions using the QSARINS program.

Table 1. Internal and external validation data for top S. typhimurium and L. monocytogenes Models.

Internal Statistics External Validations

Model Number R2 Q2 R2-Q2 R2 Average Percent Error

S. typhimurium

77 0.86 0.79 0.07 0.06 15.49

79 0.86 0.80 0.06 0.66 9.23

78 0.86 0.79 0.06 0.62 9.40

80 0.85 0.80 0.05 0.36 14.32

76 0.85 0.79 0.07 0.70 7.42

75 0.85 0.79 0.07 0.63 9.96

74 0.85 0.78 0.07 0.65 9.00

73 0.85 0.78 0.07 0.66 7.63

71 0.85 0.78 0.07 0.65 10.47

72 0.85 0.78 0.07 0.15 9.53

68 0.85 0.77 0.07 0.51 10.18

70 0.85 0.79 0.05 0.40 10.43

67 0.84 0.77 0.07 0.53 10.58

Consensus N/A N/A N/A 0.53 10.58

Consensus (selected) N/A N/A N/A 0.62 8.73

Consensus (worst deleted) N/A N/A N/A 0.60 8.38

L. Monocytogenes

89 0.91 0.84 0.07 0.93 33.08

92 0.91 0.85 0.06 0.84 48.87

90 0.90 0.84 0.07 0.95 33.38

87 0.90 0.84 0.07 0.82 52.44

91 0.90 0.84 0.06 0.80 51.75

84 0.90 0.83 0.07 0.43 42.08

88 0.90 0.84 0.06 0.84 48.56

85 0.90 0.83 0.07 0.79 50.05

86 0.90 0.83 0.07 0.77 43.77

83 0.89 0.82 0.07 0.88 46.32

82 0.85 0.75 0.10 0.89 54.19

Consensus N/A N/A N/A 0.88 41.51

Consensus (selected) N/A N/A N/A 0.94 32.73

Consensus (worst deleted) N/A N/A N/A 0.90 41.78

https://doi.org/10.1371/journal.pone.0189580.t001
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S. typhimurium predictions

Predictions of the QSAR model that we selected were run on the dataset previously curated by

Rath et al. based on a sub structure search of CPC [33]. This list contains no samples that have

a previously predicted or experimentally validated MIC, unlike the test set used for external

validations. Out of the 834 compounds, we identified the top 10 compounds that fit within the

applicability domain of model 76 (Table 2). These compounds are similar in that they all con-

tain one or more ring structures and some form of nitrogen. It’s interesting to note that there

is not a positively charged nitrogen in each molecule.

L. monocytogenes models

Much like S. typhimurium, a single study with enough antimicrobial information was not

found for L. monocytogenes. The final list of compounds was taken from 12 sources and con-

tained 49 unique compounds [49–57]. These compounds were similar in structural depth to

the previous set (above) of compounds but ranged in MIC from 0.0005 μg/ml to 50 μg/ml.

Fig 1. Descriptor distribution for top QSAR models. Distribution of chemical descriptors (black) and their respective average absolute coefficient

magnitudes (black), in top models for S. typhimurium (A) and L. monocytogenes (B). Descriptor distribution normalized to the total number of models

observed for each bacteria. (C) Descriptor distribution (black) and average absolute coefficient magnitudes (grey) based on previously created models

against E. coli.[33] Most descriptors are in canonical SMILES, using single letters to represent atoms in a molecule, “*” denote any atom, “‘“ represent

potential atoms, “()” represent branches in a molecule, numbers represent joining points in ring structures, “=“ represent double bonds, and lower case letters

are atoms involved in aromatic strucutres. (D) Distribution of descriptor types across all top models. Descriptors that were pertinent to multiple bins were

included in all potential bins.

https://doi.org/10.1371/journal.pone.0189580.g001
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This resulted in an even larger list of potential models than the list for S. typhimurium. In the

top 11 models there were four descriptors were involved in> 90% of the top models. These

include a constituent group that starts with a single carbon, a 6 member carbon ring, a 6 car-

bon chain, and two carbons leading to a nitrogen (Fig 1B). The two descriptors that showed

the greatest coefficients were the two descriptors containing Sulfur. These two descriptors

were only involved in ~10% of the top compounds. Through this data we cannot ascertain a

singular descriptor that is most important for MIC prediction across the top models.

Using the same internal filters and an external validation set the final list of 11 compounds

was curated (Table 1). These models were used to create three additional consensus models to

be considered for the final prediction. These models have a much higher margin of error than

that of the S. typhimurium models, this could be due to a greater variance in the structures of

the compounds used in the training and test sets. Model 90 was selected as the optimal model

of this set. It was the top single model for external validation R2 and the second lowest percent

error by only 0.30% (Fig 3). Although the selected consensus model had reduced error and a

very close R2, we chose a singular model for ease and efficiency in prediction.

Fig 2. Linear regression for top model against S. typhimurium. Regression of experimentally validated and model

predicted log(MIC) values for the top QSAR model (model 76) for S. typhimurium selected through internal and external

validations. The yellow dots represent the training set while the blue dots represent the test set.

https://doi.org/10.1371/journal.pone.0189580.g002
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L. monocytogenes predictions

We ran the predictions of the same 835 compounds through the selected model in order to

determine the best possible compounds from this set. The top ten compounds that lay within

the applicability domain of model 90 are shown in Table 3. These compounds have many

structural similarities to those detected by the S. typhimurium based model.

Combining all predictions

Having three separate QSAR models (the two detailed here and one from a previous study for

E. coli [33]) for each individual target species is effective in providing highly accurate and reli-

able predictions. Alone these models are unable to produce a direct consensus on a singular

set of potential compounds, and cannot be directly combined without making incomplete

assumptions of the effectiveness of known compounds. In order to gain a better understanding

of the predicted compounds’ effectiveness across a range of pathogenic bacteria. This informa-

tion was gathered through two separate approaches. The first approach focuses on using the

average predicted MIC across all models and the later utilizes similarity scoring to find general

structural similarities of top compounds from each model.

One approach to combining the predictions of the models is to follow our consensus

approach. By averaging the log(MIC) for each compound across all three predictions we are

able to draw conclusions as to the general effectivity of the compounds. The top 5 compounds

are reported in Table 4. These compounds have a structure similar to CPC with an aromatic

head and a long hydrophobic tail.

When trying to define possible compounds that can effect multiple species of pathogenic

bacteria, it is important to look at the structural similarities between the top compounds from

each predictive model. In order to find the regions of similarity and the degree of similarity

between each set, we turned to a pairwise comparison through SIMCOMP2, an online tool

provided by KEGG. In order to expand the possibilities of similar compounds, we expanded

our potential list to the top 50 compounds predicted for each species. Multiple similar struc-

tural components were identified within pairwise comparisons, however only one major

structure was identified for the compounds with at least 0.75 similarity between all three

predictions (Fig 4). A search of the most similar compounds returned 1 L. monocytogenes

Table 2. Top 10 compounds against S. typhimurium in terms of log(MIC).

SMILES Structure of Potential Compounds log(MIC)

(μg/ml)

SMILES Structure of Potential Compounds log(MIC)

(μg/ml)

S. typhimurium (model 76)

C[C@@]12CC[C@]3(CC[C@H](C3C1CCC4[C@]2(CCC5

[C@@]4(CC[C@@H](C5(C)C)O)C)C)C (= C)C[N+]6 = CC =

CC = C6)CO

0.606 C[C@@]12CC[C@]3(CC[C@H](C3C1CCC4[C@]2(CCC5

[C@@]4(CC[C@@H](C5(C)C)O)C)C)C (= C)C[N+]6 = CC =

CC = C6)CO

0.606

CC1 = CC (= C[N+] (= C1)CC (= C)[C@@H]2CC[C@]3

(C2C4CCC5[C@]6(CC[C@@H](C(C6CC[C@]5([C@@]4

(CC3)C)C)(C)C)O)C)CO)C

0.6082 CC1 = CC (= C[N+] (= C1)CC (= C)[C@@H]2CC[C@]3

(C2C4CCC5[C@]6(CC[C@@H](C(C6CC[C@]5([C@@]4

(CC3)C)C)(C)C)O)C)CO)C

0.6082

C[C@@]12CC[C@]3(CC[C@H](C3C1CCC4[C@]2(CCC5

[C@@]4(CC[C@@H](C5(C)C)O)C)C)C (= C)C[N+]6 = CC = C

(C = C6)N(C)C)CO

0.6207 C[C@@]12CC[C@]3(CC[C@H](C3C1CCC4[C@]2(CCC5

[C@@]4(CC[C@@H](C5(C)C)O)C)C)C (= C)C[N+]6 = CC = C

(C = C6)N(C)C)CO

0.6207

C[C@@]12CC[C@]3(CC[C@H](C3C1CCC4[C@]2(CCC5

[C@@]4(CC[C@@H](C5(C)C)O)C)C)C (= C)C[N+]6 = CC =

CC (= C6)CO)CO

0.6251 C[C@@]12CC[C@]3(CC[C@H](C3C1CCC4[C@]2(CCC5

[C@@]4(CC[C@@H](C5(C)C)O)C)C)C (= C)C[N+]6 = CC =

CC (= C6)CO)CO

0.6251

C[C@@]12CC[C@]3(CC[C@H](C3C1CCC4[C@]2(CCC5

[C@@]4(CC[C@@H](C5(C)C)O)C)C)C (= C)C[N+]6 = CC = C

(C = C6)CO)CO

0.6273 C[C@@]12CC[C@]3(CC[C@H](C3C1CCC4[C@]2(CCC5

[C@@]4(CC[C@@H](C5(C)C)O)C)C)C (= C)C[N+]6 = CC = C

(C = C6)CO)CO

0.6273

https://doi.org/10.1371/journal.pone.0189580.t002
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compound, 3 S. typhimurium compounds, and 9 E. coli compounds (Table 5). The actual struc-

tures of these compounds can be found in S1 Table. These compounds provide a good launch-

ing point for experimental validation, or rational design of new compounds.

Fig 3. Linear regression for top model against L. monocytogenes. Regression of experimentally validated and model

predicted log(MIC) values for the top QSAR model (model 90) for L. monocytogenes selected through internal and external

validations. The yellow dots represent the training set while the blue dots represent the test set.

https://doi.org/10.1371/journal.pone.0189580.g003

Table 3. Top 10 against L. monocytogenes in terms of log(MIC).

SMILES Structure of Potential Compounds log(MIC)

(μg/ml)

SMILES Structure of Potential Compounds log(MIC)

(μg/ml)

L. monocytogenes (model 90)

CCCCCCCCCCCCCCCC[N+]1 = CC = C(C2 = CC =

CC = C21)CC(C3 = C(NC4 = CC = CC = C43)C)O

-1.8558 CCCCCCCCCCCCCCCC[N+]1 = CC = C(C2 = CC =

CC = C21)CC(C3 = C(NC4 = CC = CC = C43)C)O

-1.8558

CC1 = CC (= C[N+] (= C1)CC (= O)C2 = CC3 = C(C = C2)

C4 = CC = CC = C4C3)C.[Br-]

-1.7315 CC1 = CC (= C[N+] (= C1)CC (= O)C2 = CC3 = C(C = C2)

C4 = CC = CC = C4C3)C.[Br-]

-1.7315

CC1 = CC = CC2 = NC (= C(N12)NC(C)(C)CC(C)(C)C)

C3 = CC4 = CC = CC = C4C5 = CC = CC = C53

-1.7252 CC1 = CC = CC2 = NC (= C(N12)NC(C)(C)CC(C)(C)C)

C3 = CC4 = CC = CC = C4C5 = CC = CC = C53

-1.7252

CC1 = C[N+] (= CC = C1)CCCCCC2 = CC (= CC = C2)

CCCCC[N+]3 = CC = CC (= C3)C

-1.7101 CC1 = C[N+] (= CC = C1)CCCCCC2 = CC (= CC = C2)

CCCCC[N+]3 = CC = CC (= C3)C

-1.7101

CC1 = C[N+] (= CC = C1)CCCCCC2 = CC (= CC = C2)

CCCCC[N+]3 = CC = CC (= C3)C.[Br-].[Br-]

-1.7101 CC1 = C[N+] (= CC = C1)CCCCCC2 = CC (= CC = C2)

CCCCC[N+]3 = CC = CC (= C3)C.[Br-].[Br-]

-1.7101

https://doi.org/10.1371/journal.pone.0189580.t003
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Discussion

The development of an accurate and reliable computation tool for the development and identi-

fication of potential food safe antimicrobials is paramount for increasing the efficiency of this

process, especially for those under the QAC and QAC-like umbrella. Using currently available

QAC antimicrobial data we developed two models that focus of the effectiveness of these com-

pounds on S. typhimurium and L. monocytogenes respectively. These models were produced

using an optimized descriptor set and the built in genetic algorithm (GA) within the QSARINS

software. The models we have identified in this study have shown both accuracy (percent

error) and reliability (Q2) against the test and training sets. We have confidence these are the

optimal models for the datasets that are currently available.

We have identified the top used descriptors for each data set, potentially providing great

insight into the important structural components of effective QACs. From the data collected,

long chains of carbon (at least 5 carbons) followed by both cyclic rings and the inclusion of

heteroatoms were shown to be the most frequent descriptors for top models (Fig 1D) Conse-

quently, we can assume that the carbon structure of these compounds is very important to

their antimicrobial effects. Due to the mechanism that QACs rely on, this relationship not only

makes sense, but adds to the confidence that we have in the accuracy of our models.

These models and the model produced for a previous publication have uncovered a number

of top rated compounds that have potential as food safe antimicrobials [33]. There were no

compounds that were shared amongst the top ten compounds for each organism; however,

there were many structural similarities observed (Tables 2 and 3). Each top ten set contained

at least one straight chain compound with a hexane ring in the head region, this is similar to

most commonly used QACs. These compounds may be a good immediate replacement for

CPC in meat processing but may not provide much difference in terms of solubility, residue,

and in overcoming potential antimicrobial resistance.

There are other compounds in these sets that do show potential for overcoming these

issues. Within these sets there are a group of compounds that have a larger “head”, usually

composed of two fused rings with one to three nitrogens (not usually charged) and a large set

of fused carbon rings as the “tail”. This tail is slightly reminiscent of the structure of most cho-

lesterols and other steroids. This structure gives us confidence that these compounds might be

able to interact with bacterial membranes in a similar manner to their straight chained cousins.

If this is the case, it is possible that these compounds could easily overcome QAC bacterial

resistance and could possibly reduce the issues of residue. Unfortunately, these compounds

would be much harder to dissolve in water as they have very large hydrophobic regions.

Regardless, these compounds have potential in replacing the current QACs being used for

food safe decontamination as they have a chance to overcome bacterial resistance.

Through the use of both a consensus between the different bacterial models and through

structural similarity detected between the top 50 predicted compounds from each model we

were able to determine the most important structural elements to help narrow the list of

Table 4. Top 5 compounds according to average log(MIC) from all 3 predictive models.

SMILES Structure E. coli S. typhimurium L. monocytogenes Average log(MIC)

CCCCCCCCCCCC(CCCC[N+]1 = CC = CC = C1)C (= O)N 1.04 1.39 -1.00 0.48

CCCCCCCCCCCCCCC(C)[N+]1 = CC = CC = C1 1.13 1.37 -1.02 0.50

CCCCCCCCCCCCCCC(C (= O)[O-])[N+]1 = CC = CC = C1 1.16 1.45 -1.04 0.52

CCCCCCCCCCCCCCCC (= O)[N+]1 = CC = C(C = C1)N(C)C 0.97 1.44 -0.71 0.57

CCCCCCCCCCCCCCCC[N+]1 = CC = C(C = C1)C (= O)N 1.02 1.41 -0.68 0.58

https://doi.org/10.1371/journal.pone.0189580.t004

Identification of antimicrobials against S. typhimurium and L. monocytogenes using QSAR modeling

PLOS ONE | https://doi.org/10.1371/journal.pone.0189580 December 13, 2017 11 / 17

https://doi.org/10.1371/journal.pone.0189580.t004
https://doi.org/10.1371/journal.pone.0189580


potential compounds. All compounds have a structure that is nearly identical to the structure

of CPC, this shows a high degree of confidence in our ability to detect top compounds using

either method. Unfortunately, these compounds do not give us any structures that will be

Fig 4. Substructure amongst top compounds predicted by QSAR modelling. Major substructure

detected by SIMCOMP2 software for the top similar structures from their prediction sets.

https://doi.org/10.1371/journal.pone.0189580.g004
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greatly effective in reversing and overcoming antimicrobial resistance. We attempted to fur-

ther limit this list by looking at the toxicity of each compound, the more toxic compounds

being less likely to be good food safe antimicrobials. None of the compounds in Table 4 or

Table 5 had any available toxicity data and all predictions of toxicity from open-source predic-

tion tools were too varied to draw any adequate conclusions. Future experimental validation

for our computationally identified compounds would provide a final list of candidate food

antimicrobials.

While our current predictions are based on a wide ranging list, these models could be reap-

plied to a more targeted list of potential compounds. This would provide an extra filtering step

to any study that wishes to experimentally test any potential QAC/QAC-like compounds. Fur-

thermore, our top potential compounds could also be tested in a similar manner.

Our study focuses on a more accurate model for less different structures. It is of our belief

that these structures will still be able to overcome some of these issues even immediate resis-

tance (as their binding affinity to e-flux pumps may be reduced), although this approach

would not be able to overcome long term resistance. In terms of lipophilicity, some of our pre-

dicted compounds contain more hetero-atoms which lead to increased polarity which would

Table 5. Pairwise similarity comparisons between top 50 predicted compounds for three bacterial species.

Listeria

Compound

Similarity Score (L.

monocytogenes & S.

typhimurium)

S. Typhimurium

Compound

Similarity Score (S.

typhimurium & E. coli)

E. coli

compound

Similarity Score (E. coli & L.

monocytogenes)

35 0.77 37 0.78 16 0.84

35 0.77 37 0.78 23 0.84

35 0.77 37 0.78 24 0.84

35 0.77 37 0.78 35 0.84

35 0.77 37 0.78 37 0.84

35 0.77 37 0.78 39 0.84

35 0.77 39 0.78 16 0.84

35 0.77 39 0.78 23 0.84

35 0.77 39 0.78 24 0.84

35 0.77 39 0.78 35 0.84

35 0.77 39 0.78 37 0.84

35 0.77 39 0.78 39 0.84

35 0.77 37 0.76 36 0.80

35 0.77 37 0.76 38 0.80

35 0.77 37 0.76 40 0.80

35 0.77 39 0.76 36 0.80

35 0.77 39 0.76 38 0.80

35 0.77 39 0.76 40 0.80

35 0.75 36 0.78 16 0.81

35 0.75 36 0.78 23 0.81

35 0.75 36 0.78 24 0.81

35 0.75 36 0.78 35 0.81

35 0.75 36 0.78 37 0.81

35 0.75 36 0.78 39 0.81

35 0.75 36 0.78 37 0.75

35 0.75 36 0.76 36 0.77

35 0.75 36 0.76 38 0.77

35 0.75 36 0.76 40 0.77

https://doi.org/10.1371/journal.pone.0189580.t005
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affect their ability to be removed from fattier surfaces using water based washes/rinses. Envi-

ronment impact of these compounds cannot be currently ascertained however.

The discovery and development of new QAC/QAC-like compounds is vital in the preserva-

tion of food and in the management of pathogenic microbes on the surface of foods. Without

more research into potential compounds, antibiotic resistance and other current problems will

continue to be a detriment to the food industry and in turn the consumer. Any new compound

that can overcome the issues of current food safe antimicrobials will become a gold standard

for all other antimicrobials. Although our current list is not perfect for replacement of CPC,

our model can be applied to other QAC and QAC-like compounds to increase the viability of

future studies and reduce the cost of bulk sampling of these lists.

Supporting information

S1 Table. Average top structures detected by combining all top bacterial models.
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