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Abstract

Shiga toxin-producing E. coli (STEC) causes approximately 265,000 illnesses and 3,600 hos-

pitalizations annually and is highly associated with animal contamination due to the natural

reservoir of ruminant gastrointestinal tracts. Free STEC-specific bacteriophages against

STEC strains are also commonly isolated from fecal-contaminated environment. Previous

studies have evaluated the correlation between the prevalence of STEC-specific bacterio-

phages and STEC strains to improve animal-associated environment. However, the similar

information regarding free STEC-specific bacteriophages prevalence in produce growing

area is lacking. Thus, the objectives of this research were to determine the prevalence of

STEC-specific phages, analyze potential effects of environmental factors on the prevalence

of the phages, and study correlations between STEC-specific bacteriophages and the bacte-

rial hosts in pre-harvest produce environment. Surface water from 20 samples sites was sub-

jected to free bacteriophage isolation using host strains of both generic E. coli and STEC

(O157, six non-O157 and one O179 strains) cocktails, and isolation of O157 and non-O157

STEC strains by use of culture methods combined with PCR-based confirmation. The

weather data were obtained from weather station website. Free O145- and O179-specific

bacteriophages were the two most frequently isolated bacteriophages among all (O45,

O145, O157 and O179) in this study. The results showed June and July had relatively high

prevalence of overall STEC-specific bacteriophages with minimum isolation of STEC strains.

In addition, the bacteriophages were likely isolated in the area—around or within city—with

predominant human impact, whereas the STEC bacterial isolates were commonly found in

agriculture impact environment. Furthermore, there was a trend that the sample sites with

positive of free STEC bacteriophage did not have the specific STEC bacterial hosts. The find-

ings of the study enable us to understand the ecology between free STEC-specific phages

and STEC bacteria for further pre-harvest food safety management in produce environment.
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Introduction

Shiga toxin-producing E. coli (STEC) strains are foodborne pathogens that can cause serious

human illness, such as hemolytic uremic syndrome and thrombotic thrombocytopenic purpura.

High mortality is usually found in the population of the elders and children under 5 years of age.

Because ruminants’ gastrointestinal tracts are the reservoir for the pathogens, the diseases pri-

marily developed through consumption of undercooked and tenderized meat, particular beef

products [1]. Nevertheless, during fall 2006, a foodborne outbreak associated with consumption

of contaminated spinach occurred in several states. More than 200 victims were diagnosed with

infection of E. coli O157:H7, and 3 people died [2]. In 2011, a catastrophic outbreak occurred in

Germany associated with STEC contamination on fenugreek sprouts, and more than 3,000 cases

of human infection were recorded with 850 patients developing HUS and 53 died [3]. Ever since

the concerns regarding STEC infection has been raised on the produce safety. Produce contami-

nation is a particularly serious situation since it is generally consumed raw.

Although produce can be easily contaminated at any point where pathogens are present in

the production line, surface water, such as rivers or lakes, as a starting source of contamination

in pre-harvest environment, is responsible for the spread of the various foodborne pathogens,

including STEC, to produce through irrigation. Surface water also leads to infection of wildlife,

which may lead to produce contamination due to deposition of feces in the field [4]. Wildlife,

runoff from domestic animal facilities, and sewage are the major sources contributing to con-

tamination of surface water [5]. In the meanwhile, bacteriophages (or phages) that are lytic

against enteric bacteria, such as STEC, were also found to be key elements of intestinal micro-

biota of humans and other animals [6, 7]. Previous studies isolated free bacteriophages against

E. coli (also known as coliphages) or against STEC strains (or STEC-specific phages) from the

environments highly contaminated with feces of human or animal origins. For example, previ-

ous research focused on isolation of free STEC-specific phages, including serogroups of O26,

O111, and O157, from cattle manure [8]. Their findings indicated that these phages were free of

stx, hlyA, and eaeA genes and were good candidates as bio-control agents to prevent STEC con-

tamination. The research conducted by Muniesa and Jofre with regard to prevalence of the bac-

teriophages against E. coli O157:H7 in sewage contaminated with fecal matters showed that the

free phages infecting E. coli O157:H7 strains also harbored stx2 genes and were commonly

found in the sewage collected from different European countries [9]. Imamovic et al. evaluated

different sources of water with regard to the prevalence of coliphages encoding stx2 genes (or

Stx2 phages) and found that the phages were positive in 70% and 90% of urban sewage and ani-

mal wastewater samples, respectively [10]. In addition, the authors indicated that these free Stx

phages might pose a risk for the spread of stx genes among bacterial populations, and could

result in emergence of new pathogens. These research findings indicate that there were various

coliphages or STEC-specific phages in the animal-associated environment, and each type of

phage might have different roles with regard to the bacterial hosts and the environment. How-

ever, similar information is lacking with regard to the produce production environment.

A study was conducted by U.S. Department of Agriculture research team to evaluate the

prevalence of STEC strains and other foodborne pathogens and the persistence of pathogen

subtypes in a produce central area [11]. The findings demonstrated that foodborne pathogens,

including STEC were introduced into produce pre-harvest environment from wildlife and ani-

mal operations and were likely disseminated through surface water. Recently, the same

research team also conducted another study using male-specific coliphages, one group of E.

coli infecting phages, to track the source of fecal contamination from surface water in proxim-

ity to produce-intense regions [12]. Their findings could not correlate fecal pollution to the

prevalence of male-specific phages, nor did it provide any information regarding whether or
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not the phages harbored stx genes, and its host range. In addition, the results showed that both

non-O157 STEC and O157 STEC strains were isolated in the environment; however, the prev-

alence of free phages against O157 and non-O157 STEC was not determined [12]. So far, no

published study aiming at the prevalence of free STEC-specific phages in produce-growing

area is found. There is also a need to evaluate the potential environmental factors that may

affect the prevalence free STEC-specific phages and to determine its association with STEC

strains in pre-harvest produce area in order to improve safety of produce-growing area. There-

fore, the objectives of this research were to 1) determine the prevalence of STEC-specific

phages, to 2) analyze potential effects of environmental factors on the prevalence of the phages,

and to 3) study correlations between STEC-specific bacteriophages and the bacterial hosts in

pre-harvest produce environment.

Materials and methods

Sampling area and sample collection

The sample sites within a heavy crop-growing area in Salinas Valley, CA were selected based on

accessibility and previous experience. A total of 131 samples from 20 watershed sites were pro-

cessed and categorized into several groups based on the potential for impact by human or agricul-

ture activities. The sample sites labeled black acronym on the map indicated predominant

agriculture impact and those with red acronym labeling indicated human impact in Fig 1. Since

produce was grown throughout the Salinas valley, all 20 sample sites are impacted by agriculture,

to a degree. However, sites SABSAL, SLUSAL and CHUCRR were located furthest up stream, in

or near the Salinas River and sites QUAOSR, ZABOSR, TOWOSR, GABOSR, GABCRA, and

GABHER were up stream, along the eastern side of the valley and in several tributaries feeding

Carr Lake, within the city of Salinas. Importantly, cow calf operations were frequently observed

on the hills above these sites. Thus, these sites were classified as agriculture-impacted sites. In

contrast, the sites NATCAR, ALICAR, CAROUT, and RECVIC were located in Salinas City and

were classified as human impact because of direct impact by human activities. Although the sites

ESPESP, TEMPRE, TEMMOL, and OLSMON were along the Tembladero and Espinosa Sloughs

near Castroville, where crop farms were located, the areas were also classified as human-impacted

due to their location, downstream from Salinas and Castroville. Likewise, sites SALDAV, SAL-

BLA, and SALMON, downstream on the Salinas River, were also classified as human impact due

to runoff from several smaller townships along El Toro Creek and the Salinas River.

The samples collected from May to September 2016 were used for the isolation of both free

STEC-specific phages and STEC strains. Water samples were collected using Moore swabs

submerged in surface water for approximately 24h to collect sediment and microorganisms

flowing through the swabs. The swab samples were placed in sterile sampling bags and stored

on ice during transport to the ARS laboratory at Albany, CA. Due to lack of water, not every

site was sampled during the sampling interval. Upon arrival, the swabs were added to 500 ml

sterile water, followed by homogenization by hand for 20s. An aliquot of water (20mL) eluted

from the swabs was stored at 4˚C prior to further phage analysis. The majority of the sample

(300mL), including the swab and debris, was used for STEC bacterial isolation. The remainder

was used to isolate other pathogens in research not described here.

STEC strain isolation

The STEC strains isolation protocol used in this study was described previously [13]. In brief,

the swab including rinsate was enriched with TSB at 25˚C for 2h and 42˚C for 8h. For O157

STEC, the enrichment was subjected to immunomagnetic separation (IMS), followed by plat-

ing on selective media, Sorbital MacConkey (Difco Labs: Detroit, MI) with cefixine (0.05μg/
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mL; Introgen/Dynal) and tellurite (2.5μg/mL; Introgen/Dynal) (CT-SMAC) and Rainbow

Agar O157 (Biolog, Hayward, CA) containing novobiocin (20μg/mL; Sigma-Aldrich) and tell-

urite (0.8μg/mL; Introgen/Dynal) (NT-RA), for isolation. Subsequently, the presumptive colo-

nies were screened for the presence of rfbE gene by polymerase chain reaction (PCR) assay. As

for non-O157 STEC, similar methods were used, including IMS, for isolation. A parallel isola-

tion method included PCR screening for stx genes and was conducted immediately after sam-

ple enrichment. Subsequently, the stx-positive enrichments were plated on CHROMagar O157

(DRG International, Mountainside, New Jersey). The presumptive colonies were then con-

firmed for the presence of stx genes by PCR. The serotypes of the isolated STEC strains were

determined by enzyme-linked immunosorbent assay (ELISA), and confirmed by E. coli Refer-

ence Center at Penn State University.

Bacterial host strains for phage isolation

Four E. coli strains lacking stx1 and stx2 genes, including ATCC13706, ATCC43888, DH5, and

MG1655, obtained from U.S. Department of Agriculture (USDA) Agricultural Research Service

(ARS) Western Regional Research Center (WRRC), were used for isolating bacteriophage

Fig 1. Geographical location of the watershed sites where the samples were collected in the area of

Salinas Valley. Sample sites are labeled with a six-letter acronym in black type (locations with agriculture

impact) or red type (locations with human impact). Insert is an expanded view of the area near the city of

Salinas.

https://doi.org/10.1371/journal.pone.0190534.g001
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harboring stx genes. Four strains per serogroup of O26, O45, O103, O111, O121, O145 and

O157, as well as one O179 strain previously isolated by USDA ARS WRRC, were also used for

phage isolation, as well as host range test (Table 1). Some STEC strains previously isolated from

water samples in Salinas Area were used to increase free phage isolation, and some isolated from

different environmental samples, such as cattle feces and trough water, were also used as hosts

to increase the variety of strains in this study. The overnight cultures of the selected host strains

—non-pathogenic E. coli and STEC—were prepared by inoculating each sterile tube containing

5ml of tryptic soy broth (TSB, Difco, Becton Dickinson, Sparks, MD) with a 1μl-loop of the indi-

vidual strain culture and incubating overnight at 37˚C. The strain cocktail for either non-patho-

genic or STEC strains was prepared by mixing 0.1ml of each overnight culture immediately

prior to use. Both cocktails of non-pathogenic E. coli and STEC were used separately to inoculate

the water samples for the isolation of free STEC-specific phages.

Phage isolation and purification

Water samples were centrifuged at 4,000xg for 15min to get rid of sediments. An aliquot of

10ml water sample was added into two sterile tubes with 30ml TSB supplemented with 5mM

Table 1. Shiga toxin-producing E. coli (STEC) strains isolated from different sources by U.S. Department of Agriculture ARS used for free STEC-

specific phage isolation.

ID# (RM) Source O type H type eae stx1 stx2

17857 water 26 18 - + -

18118 water 26 - + + -

18132 water 26 - + + -

17133 water 26 - - + -

12551 water 103 2 + + -

13322 cattle feces 103 2 + + -

8356 water 103 - - - +

10744 cattle feces 103 - + - +

10046 cattle feces 121 19 + - +

10068 trough water 121 19 + - +

8082 cattle feces 121 - - + +

9982 water 121 - + - +

13483 cattle feces 111 2 + + -

13789 water 111 - + + -

11765 water 111 - + + -

14488 water 111 - + - +

8732 water 145 + + + -

11691 water 145 + + + -

12367 water 145 + + - +

10808 cattle feces 145 - + + -

10729 cattle 45 - - + -

13726 cattle 45 - - + -

13745 cattle 45 - - + -

13752 cattle 45 - - + -

18959 water 157 7 + - +

18961 water 157 7 + - +

18972 water 157 7 + + +

18974 water 157 7 + - +

13543 trough water 179 - - - +

https://doi.org/10.1371/journal.pone.0190534.t001
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CaCl2, and subsequently inoculated with 2.8ml and 0.4ml of respective STEC and non-patho-

genic E. coli cocktails, respectively. The sample-culture mixers were left at room temperature

for 15min prior to incubation in a bench top incubator with 150rpm shaking (Sheldon

Manufacturing, Inc., Cornelius, OR) at 37˚C for 48h. After incubation, chloroform at 4% v/v

concentration was added into each enrichment tube and homogenized by use of a multi-pur-

pose tube rotator (Thermo Fisher Scientific, Waltham, MA) at room temperature for 30min to

kill both bacterial hosts and background flora. The supernatants were obtained after centrifu-

gation at 8,000xg for 10min.

For confirming the presence of free STEC-specific phages and its host specificity, spot assay

was conducted with the supernatants obtained from the enrichments on the selected host

strains (STEC and non-pathogenic E. coli). Briefly, an aliquot of 0.2ml bacterial overnight cul-

ture was mixed with 10ml molten tryptic soy agar (TSA, Difco, Becton Dickinson, Sparks,

MD) amended with 5mM Calcium Chloride (CaCl2) to enhance phage adsorption onto bacte-

rial surface and poured into a sterile Petri plate. Subsequently, ten microliters of each superna-

tant were spotted on the strain-inoculated TSA plate and incubated at 37˚C for 24h. As a

result, the positive samples showed a circular clearing zone, indicating the presence of phages

lytic against the tested strain. The supernatants, which were used for spot assay and had posi-

tive results, were further enriched with each of the spot test-positive strains by adding 0.1ml of

supernatant with 0.5ml of the overnight bacterial culture supplemented with CaCl2 at 5mM in

5ml of TSB and incubated at 37˚C for 24h. After incubation, the propagated phage solutions

(also known as lysates) were centrifuged at 8,000xg for 10min to get rid of bacterial debris.

Subsequently, the phage lysates were subjected to single layer plaque assay for phage separa-

tion. Briefly, the phage lysate was serial diluted, followed by mixing 0.2ml of the diluted lysate

and 0.3ml overnight bacterial culture in 10ml molten TSA supplemented with CaCl2 prior to

pouring to a sterile Petri dish plate. After incubation at 37˚C for 24h, three segregated plaques

with different sizes were selected for further purification. Each plaque was enriched with 0.2ml

of the bacterial host culture in 8ml of TSB at 37˚C for 24h. After enrichment, the phage lysate

was subjected to centrifugation at 8,000xg for 10min and then single plaque assay. Later, one

plaque was selected for two more run of enrichment and plaque assay as describe above for

phage purification. At the end, the phage lysates were filtered through 0.22μm syringe filter

membrane and quantified by use of single layer plaque assay prior to further analysis.

Transmission electron microscopy

Phage lysates were subjected to polyethylene glycol concentration using PEG kit (PEG, BioVi-

sion Inc., Milpitas, CA) according to manufacturer’s instruction, and morphology of the phage

was examined by transmission electron microscopy (TEM). Briefly, an aliquot of 6μl of phage

sample was applied on copper mesh PLECO grids (Ted Pella Inc., Redding, CA) and incubated

for 1min at room temperature. The copper mesh grid containing phage sample was carefully

blotted on Whatmann filter paper and subjected to negative staining by adding 8μl of 0.75%

Uranyl acetate (Sigma-Aldrich, Darmstadt, Germany) for 30s incubation at room temperature.

The specimen was then examined in a transmission electron microscope (FEI Tecnai G2).

DNA extraction and PCR screening

After phage concentration by PEG, the phage lysates were subject to DNA extraction with

commercial phage DNA extraction kit according to manufacturer’s instruction (Norgen Bio-

tek Corp., Ontario, Canada). Detection of stx genes were investigated by use of PCR with

10μM each of stx1 forward/ reverse primer pairs (5’-CATCGCGAGTTGCCAGAATG-3’/
5’-AATTGCCCCCAGAGTGGATG-3’) and stx2 forward/ reverse primer pairs (5’- GTAT
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ACGATGACGCCGGGAG-3’/ 5’- TTCTCCCCACTCTGACACCA-3’) [14]. PCR master mix

(Promega Corp., Madison. WI) was added to the sample with a total reaction volume of 50μl,

and thermal parameters for denaturing, annealing, and extension temperatures of stx1 and

stx2 genes are 95˚C, 56˚C, 72˚C and 95˚C, 58.1˚C, 72˚C, respectively, for 28 cycles. The target

amplicons were 119bp for stx1 and 104bp for stx2. The PCR products were subjected to elec-

trophoresis using 1.5% agarose gel with a 100bp DNA ladder at 100 voltages for approximately

2h and stained with 3x GelRed prior to visualization on the Alpha Imager UV gel box.

Collection of environmental data

The information of rain precipitation and solar radiation were collected from the website of

California Irrigation Management Information System (CIMIS). The rain precipitation data

for each sample site were collected during 5 days ahead through the day of samples collection,

and the solar radiation data was collected only on the day of sampling for statistical analysis.

These environmental factors, rain precipitation and solar radiation, were included in this

study to evaluate their effects on the prevalence of free STEC-specific phage because these

were two of the major factors that attributed to the growth of produce.

Data analysis

Statistical analysis was performed using JMP1 (Version 12.0.1, SAS Institute Inc., Cary, NC).

One-way analysis of variance (ANOVA) tests were used to evaluate correlation between envi-

ronmental factors (rain precipitation or solar radiation) and STEC-specific phage isolation.

Student T test was used to evaluate different environmental impacts (human vs. agriculture)

on the phage isolation.

Results and discussion

This is the first study focusing on the prevalence of free STEC-specific bacteriophages at a pre-

harvest produce area in Salinas, CA. In order to increase isolation of the free STEC-specific

phages, both non-pathogenic and pathogenic STEC cocktails were used. Furthermore, the use

of generic E. coli would also facilitate isolation of the phages harboring stx genes in this study.

A previous study utilized non-pathogenic O157 strain to isolate Stx-phages from waste water

and river water, and the findings showed that stx2 was more prevalent than stx1 in the phages

isolated from the aquatic environment [15]. In addition, the authors revealed that the isolated

Stx-phage were at low levels in their study. On the contrary, in current study, none of the

STEC-specific bacteriophages were positive of either stx1 or stx2 gene. Therefore, there was

less likely that the phages isolated in this study could serve as potential mobile genetic elements

for transferring virulence genes in the environment [16]. The current results with no detection

of stx genes in the phages could be due to low levels of fecal contamination around produce-

growing environment in Salinas, which was correlated with the findings of previous research,

in that the authors failed to track fecal contamination in Salinas area using male-specific coli-

phages as indicators due to scarcity of STEC strain isolation [12].

In this study, a number of STEC-specific phages and STEC strains isolated from various

sample sites in Salinas area are indicated in Fig 2 (131 samples from 20 watershed sites). A

total of 9.9% (n = 13) of the water samples collected in this study were positive of free lytic bac-

teriophages against STEC strains, including serogroups of O45, O145, O157 and O179, and

were distributed among 8 different watershed sites. The O145- and O179-specific phages were

most frequently isolated (4 different sites) in this study, followed by O157-specific phages (2

sites), and O45-specific phages (1 site). Interestingly, both O145- and O179-specific phages

were likely found in the area close to city where human impact was predominant; i.e., the site
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“CAROUT” was positive for three different STEC-specific phages (O145, O157 and O179).

Although not statistically different, the results showed that the naturally occurring STEC-spe-

cific phages were more likely isolated in the human impact-associated area rather than in agri-

cultural impact region (P>0.05). Additionally, the sample sites with isolation of O145-specific

phages (GABCRA, CAROUT, SALMON, OLSMON) were either located in the same flow

path (GABCRA & CAROUT) or affected by nearby merging river branch, indicating that the

phages were likely to be disseminated through river flow. Similar phenomenon was also found

on some of the free O179-specific phages positive sites (CAROUT, ESPESP, TEMPRE). On

the other hand, though not subjected to analysis, more sample sites in the agriculture-impact

area were positive of the STEC strains than those in human-impact area that could be due to

cow calf operation or wild animal activities. Furthermore, O157 STEC strains were the most

predominant bacterial isolates found in this study, both in areas with human impact and agri-

culture impact, and the river might also attribute to the spread of the pathogens. Although

some sample sites were positive of both STEC strains and STEC-specific phages, it seemed that

the sites with presence of STEC-specific bacteriophages did not have the STEC bacterial hosts

isolated. The findings could be derived from the mitigating effects of these lytic bacteriophages

against the STEC bacterial population because the spot test used at the early stage of the phage

isolation showed that the phages were able to produce lysis zone against some of the top six

non-O157 and O157 STEC strains selected in this study. Hallewell et al. studied the prevalence

of E. coli O157:H7-infecting phages in the cattle that shed the O157 strains. The authors found

Fig 2. Summary of phage and STEC isolation data from water samples collected from Salinas, CA. The acronym is used

for each sample site with the number of water samples collected. Red oval shape with red letter indicates isolation of STEC-

specific phage, and green rectangular shape with green letters indicates STEC bacterial isolation.

https://doi.org/10.1371/journal.pone.0190534.g002
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the cattle that shed O157:H7 the most had lower prevalence of O157-specific phages, whereas

the low O157:H7 shedder cattle had higher prevalence of the phages [17]. The antibacterial

effect of the free STEC-specific phages isolated from either produce-growing environment or

animal-associated habitats showed the potential of these free lytic phages as bio-control agents

to prevent STEC contamination.

In current study, the samples used for the isolation of free phages and STEC strains were

collected from May to September 2016, in which covered late spring, summer and early fall

seasons. The results showed that July had the highest overall prevalence of STEC-specific

phages regardless of types of environment (human impact vs. agriculture impact) of the sample

sites without any isolation of STEC bacteria, followed by June with the second highest preva-

lence of free phages (Fig 3). However, in May and August, STEC strains were frequently iso-

lated from the sample sites, while no free phage was found. It was interesting to observe in this

study that the more free STEC-specific phages were present, the less isolation of STEC strains

was obtained during the same period of time. Ravva et al. evaluated the fecal contamination in

Salinas area by use of male-specific coliphages, and their findings indicated that the DNA coli-

phages were predominantly isolated in summer time, which was consistent with our results

regarding prevalence of STEC-specific phages [12]. In addition, a previous study evaluated the

seasonal prevalence of O157 STEC and non-O157 STEC in Salinas area and found that overall

prevalence of STEC strains was lower during summer and fall periods [11]. Their findings

were correlated with our findings, in that higher prevalence of STEC-specific phage might

account for the low prevalence of STEC bacterial isolates during summer time.

The results showed that, though not statically significant (P = 0.079), the sample sites with

higher rain precipitation were likely to have higher prevalence of free phages (Table 2). This

could be due to higher water levels by rain precipitation resulting in the spread of phages

through affluent river flow all over the area, which was consent to the earlier observation that

river flow may play an important part of facilitating phage dissemination. On the other hand,

the current results also indicated that there was no significant difference (P = 0.717) between

solar radiation and phage isolation, with the average radiation intensity of 476 Ly and 465 Ly

at overall phage positive and negative sample sites, respectively (Table 2). Previous study

Fig 3. Samples with positive of STEC-specific phages and STEC strains throughout sampling period displayed by

sample month.

https://doi.org/10.1371/journal.pone.0190534.g003
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indicated that the bacteriophage Lambda was resistant to UV radiation in a lab setting and it

was able to remain viable under high-dose UV (300mJ/cm2) [18]. Although this study did not

design to evaluate the environmental fitness to the bacteriophages, the current data likely sug-

gest that the environmental factors, rain precipitation and solar radiation, had minimal effect

on the prevalence of free STEC-specific phages.

Moreover, the electron microscopy showed that these STEC-specific phages had different

morphologies belonging to Siphoviridae or Myoviridae family (Fig 4). Although phage mor-

phology was not tightly correlated with specific serogroup of the host strains, the results

revealed that both O45- and O157-specific phages that were isolated by use of generic E. coli

Table 2. Effect of the environmental factors, rain precipitation and solar radiation, on the isolation of free STEC-specific phages from the overall

sample sites.

Environmental factorsa Sample sites P value

Phage positive Phage negative

Rain precipitation (Inch±SD b) 0.007±0.024b A 0.003±0.008A 0.0791

Solar radiation (LY±SD) 476±341 B 465±111B 0.7169

aLeast-squares means were calculated within each factor, and values within each factor with the same letter (A, B) are not significantly different (P>0.05).
bData presented are mean ± SD (standard deviation).

https://doi.org/10.1371/journal.pone.0190534.t002

Fig 4. The morphology of the STEC-specific phages isolated from Salinas area. (A) O157-specific bacteriophage, (B)

O145-specific bacteriophage, (C) O45-specific bacteriophage, (D) O179-specific bacteriophage.

https://doi.org/10.1371/journal.pone.0190534.g004
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cocktail were likely to be Myoviridae family, while O145- and O179-specific phages isolated by

STEC cocktail were Siphoviridae family.

In conclusion, this is the first study to determine the prevalence of STEC-specific phages

against serogroups of O26, O45, O103, O111, O121, O145, and O157 in pre-harvest produce

environment in the US. The present study discovered STEC-specific bacteriophages, including

serogroups of O45, O145, O157 and O179, which did not harbor stx genes. The findings sug-

gest that the free STEC-specific phages were commonly isolated in the locations close to city or

area with predominant human impact, and were likely disseminated from one place to another

through river stream. The season, particular summer, contributed to higher prevalence of free

STEC-specific phages in pre-harvest produce area in this study, even though rain precipitation

and solar radiation did not have significant influence. Most interestingly, these results possibly

suggest the mitigating effect of the free STEC-specific phages on its STEC bacterial hosts in the

produce-growing area, i.e., the prevalence of lytic STEC-specific bacteriophages is negatively

correlated with STEC strains in the pre-harvest produce environment. Further analysis is

needed to evaluate effects of other environmental factors or the interaction of the environmen-

tal factors in long-term sampling plan.
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