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Abstract: Microorganism contamination and foodborne disease outbreaks are of public concern worldwide. As such, the
food industry requires rapid and nondestructive methods to detect microorganisms and to control food quality. However,
conventional methods such as culture and colony counting, polymerase chain reaction, and immunoassay approaches
are laborious, time-consuming and require trained personnel. Therefore, the emergence of rapid analytical methods is
essential. This review introduces 6 spectroscopic and spectral imaging techniques that apply infrared spectroscopy, surface-
enhanced Raman spectroscopy, terahertz time-domain spectroscopy, laser-induced breakdown spectroscopy, hyperspectral
imaging, and multispectral imaging for microorganism detection. Recent advances of these technologies from 2011 to
2017 are outlined. Challenges in the application of these technologies for microorganism detection in food matrices
are addressed. These emerging spectroscopic and spectral imaging techniques have the potential to provide rapid and
nondestructive detection of microorganisms. They should also provide complementary information to enhance the
performance of conventional methods to prevent disease outbreaks and food safety problems.

Keywords: hyperspectral imaging, infrared spectroscopy, laser-induced breakdown spectroscopy, microorganism, multi-
spectral imaging, surface-enhanced Raman spectroscopy, terahertz time-domain spectroscopy

Introduction
Microorganisms, including bacteria, fungi, and viruses, in food

products are closely associated with the quality and safety of food,
and they have become a public concern throughout the world (Fan
and others 2011; Cheng and Sun 2015a). With the globalization
of food production and commerce, the manufacture and distribu-
tion of food has become a universal and interconnected system.
However, nearly a quarter of the global food supply is damaged
through microbial activity alone, and microbiological contamina-
tion has become the most common source of foodborne diseases
(Papadopoulou and others 2011). Microorganisms in food prod-
ucts during processing and storage can cause mortality, morbidity,
food spoilage, and economic loss, and thereby imperil food quality
and human safety (Calvo and others 2010; Siripatrawan and others
2011). As pathogenic microorganisms have the ability to live inside
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host cells, foods infected by pathogenic microorganisms may result
in severe health consequences for consumers. Therefore, common
preservation techniques such as drying (Sun 1999; Delgado and
Sun 2002; Pu and Sun 2016; Ma and others 2017; Pu and Sun
2017; Qu and others 2017; Yang and others 2017), cooling (Sun
1997; McDonald and others 2001; Wang and Sun 2001; Wang
and Sun 2004; Sun and Zheng 2006) and freezing (Kiani and oth-
ers 2011; Kiani and others 2012; Ma and others 2015; Pu and
others 2015; Xie and others 2015; Cheng and others 2016; Xie
and others 2016; Cheng and others 2017) are often used to main-
tain food quality and safety on the other hand, the establishment
of effective detection methods and the suppression of risks from
microbiological contamination are also of very importance to the
food industry and to public health. Conventional microorganism
detection methods, such as culturing and colony-counting meth-
ods (Chen and others 2003), polymerase chain reaction methods
(Olaoye and others 2011), and immunoassay approaches (Magliulo
and others 2007), are capable of detecting initially low numbers of
cells and have limited requirements of specialized apparatus (Feng
and Sun 2013b). Nevertheless, these methods are normally labo-
rious and destructive, and they also require well-trained operators
and much time to obtain results. Furthermore, they cannot be
employed for on-line monitoring of large numbers of samples.
They are awkward for both the food industry and regulatory au-
thorities, as foods with short shelf-life may suffer from spoilage
before authentic results are obtained.
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In order to overcome these drawbacks, the exploration of rapid
analytical techniques has become an important research topic. The
rapid development in nanomaterial, electronic, optical, and elec-
trochemical sciences has led to a variety of novel analytical meth-
ods: flow cytometry (Fröhling and others 2012), mass spectrom-
etry (Freiwald and Sauer 2009), electronic nose and electronic
tongue (Kodogiannis 2017), biosensors (Park and others 2013),
as well as spectroscopic and spectral imaging techniques (Lu and
others 2011; Cheng and Sun 2015b; Mungroo and others 2016),
all appropriate for the rapid detection of microorganisms. Spectro-
scopic and spectral imaging techniques have become popular and
attractive due to minimal sample preparation and rapid data acqui-
sition. Most of them can achieve nonabrasive, label-free, in situ,
and on-line detection. However, no review is available that focuses
on spectroscopic and spectral imaging techniques for microorgan-
ism detection. Therefore, the current review aims to introduce
the principles of 6 emerging spectroscopic and spectral imag-
ing techniques, including infrared spectroscopy (IRS), surface-
enhanced Raman spectroscopy (SERS), terahertz time-domain
spectroscopy (THz-TDS), laser-induced breakdown spectroscopy
(LIBS), hyperspectral imaging (HSI), and multispectral imaging
(MSI) for microorganism detection. As these techniques develop
very rapidly, this review only covers their recent applications from
2011 to 2017. The review will provide a better understanding
of the rapid detection of microorganisms in food matrices and
encourage early adoption of these techniques in the food industry.

Spectroscopic Techniques
Infrared spectroscopy (IRS)

The infrared (IR) region covers frequencies in the electromag-
netic spectrum ranging from 12500 to 33 cm−1, which can be
subdivided into near infrared (12500 to 4000 cm−1), middle in-
frared (4000 to 400 cm−1), and far infrared (400 to 33 cm−1)
(Zhang 2012). IRS is based on the radiation arising from the ther-
mal emission of an appropriate hot source. If a particular motion
is accompanied by a dipole moment change, then the correspond-
ing chemical bonds or groups will absorb energies at frequencies
corresponding to the molecular mode of vibration when they
are illuminated with IR radiation. They will show a specific fre-
quency in the IR spectrum (Alvarez-Ordonez and others 2011).
Near-IR and mid-IR regions are often used for chemical anal-
ysis and have been employed for microorganism detection. Most
chemical bonds, such as O–H, N–H, C═O, and C–H, absorb
the characteristic frequencies of IR radiation in the mid-IR re-
gion. The incidence-spectral bands, as well as the intensity and the
specificity of the signal, are higher in this region. Owing to fun-
damental transitions, a typical mid-IR spectrum offers absorbance
peaks which roughly fall into 4 spectral windows defined as the
X–H stretching region (4000 to 2500 cm−1), the triple-bond re-
gion (2500 to 2000 cm−1), the double-bond region (2000 to
1500 cm−1), and the fingerprint region (1500 to 600 cm−1)
(Türker-Kaya and Huck 2017). Notably, the fingerprint region
represents bands composed of unique broad and complex con-
tours and is specific to the molecular structure of samples (Lin and
others 2004; Wang and others 2017b). Unlike the mid-IR spec-
tra, the absorption bands in the near-IR region originate from the
overtones (secondary vibrations) of O-H, N-H, C-H, and S-H
stretching vibrations or from stretching-bending combinations in-
volving these groups. These are mostly affected by the formation
of hydrogen bonds and can build characteristic spectra that behave
as the fingerprint of the sample for chemical structure monitoring
(Ozaki and others 2006). Although the molar absorptivity of the

sample in near-IR is normally quite small, the IR radiation pene-
tration depth increases as compared to that in the mid-IR region.

Microorganisms have unique chemical components (such as
nucleic acids, proteins, carbohydrates, and fatty acids) in their
cell membrane and cell wall, which can provide distinct IR ab-
sorption spectra. Nonetheless, most microorganisms appear to
have similar IR spectra because of minor differences in their
chemical compositions. As such, IRS technology combined with
spectral pre-processing and different chemometrics is commonly
applied for the quantification and the differentiation of microor-
ganisms, and also for taxonomic level classification of food ma-
trices (Davis and Mauer 2011; Tito and others 2012; Shapaval
and others 2013a). Some commonly used spectral pre-processing
methods include baseline correction, smoothing, normalization,
and the first and second derivative transformations (Davis and
Mauer 2010). After spectral pre-processing, chemometrics includ-
ing partial least square regression (PLSR), stepwise multiple linear
regression (SMLR), support vector machine (SVM), and artifi-
cial neural network (ANN) are employed for quantitative analysis.
Principal component analysis (PCA), partial least squares (PLS),
discriminant analysis (DA), random forest (RF), and least squares
support vector machine (LS-SVM) are used for the discrimina-
tion and the classification of microorganisms. In order to evaluate
the performance of prediction models, the correlation coefficients
(R) and root mean square errors (RMSE) of a calibration set, a
prediction set and cross-validation (Rc, Rp, Rcv; RMSEC, RM-
SEP, RMSECV) are calculated. A model with excellent prediction
performance should have a high R, a low RMSE, and a small dif-
ference between RMSEC and RMSECV or RMSEP (Cheng and
others 2017).

IRS has become a relatively mature technology for detecting
groups of microorganisms due to its simplicity, rapidity, and ap-
plicability. To date, the spectral reference databases for various
microorganisms have been established and validated, and some
commercially manufactured IRS equipment for microbiology is
available (Davis and Mauer 2010). In the past decade, IRS has
been widely used for the discrimination and the classification of
various microorganisms at the levels of species, subspecies, strains,
serotype, and haplotype based on the IR absorbance patterns of
cell components. For example, Davis and Mauer (2011) demon-
strated the potential of IR combined with hierarchical cluster anal-
ysis (HCA) and canonical variate analysis (CVA) for discriminating
Listeria monocytogenes at haplotype, serotype, and strain levels simul-
taneously, which gave a discrimination accuracy of 91.7%, 96.6%,
and 100%, respectively. All of the classifications were completed
within 18 h. In addition, a variety of research studies have shown
evidence that IRS could be employed in the quality control of
food products, such as the detection of pathogens (Alexandrakis
and others 2011), the evaluation of food spoilage (Tito and others
2012), as well as the study of structural changes in microorganisms
under stress conditions (Alvarez-Ordonez and others 2011).

However, most of the studies were carried out using expen-
sive and bulky desktop instruments, which have relatively poor
flexibility and adaptability for microbial determination in practi-
cal applications. Duan and others (2014) used a portable near-IR
spectrometer for the rapid and nondestructive detection of to-
tal bacteria in flounder fillet. They combined genetic algorithm
(GA) and back-propagation artificial neural network (BP-ANN)
algorithms with IR spectra in the range of 600 to 1100 nm to
develop the prediction model. These exhibited a better predic-
tion efficiency (R = 0.985, RMSE = 0.095) than the usually
exploited PLS model (R = 0.948, RMSE = 0.17). In order to
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Figure 1–The mechanisms of (A) Raman scattering effect and (B) surface-enhanced Raman scattering effect.

make IRS suitable for industrial utilization, Shapaval and others
(2013a) developed a high-throughput micro-cultivation protocol
for the high-throughput Fourier transform infrared (FTIR) spec-
troscopic characterization and identification of molds depending
on spectral libraries. Based on ANN analysis, the fungal samples
were correctly identified with 94% accuracy at genus and species
levels. Afterwards, authors established a novel library-independent
approach based on high-throughput cultivation by FTIR spec-
troscopy for microbial source (20 spoilage mold strains) and 80%
to 100% of the molds were correctly identified at the genus or
species level (Shapaval and others 2016). The main advantage of
the library-independent approach is that the contamination source
can be identified, even if the microorganism is not represented by
strains of the same species or genus in the spectral library. However,
mycelium cultivation might be a limitation of that work (Shapaval
and others 2016).

In most cases, the phenotypic expression of closely related mi-
crobial strains is difficult to differentiate by IRS due to their
biochemical similarities and same responses to a standard growth
medium. Shapaval and others (2013b) reported that the cultiva-

tion conditions (such as growth medium, growth temperature, and
incubation time) affected the metabolic pathway of microorgan-
isms, thereby triggering different biochemical compositions of the
cells, which would have to be controlled and standardized strictly
for their FTIR spectra. The authors attempted to differentiate 91
food spoilage yeast strains of 12 different genera by FTIR spec-
troscopy employing different cultivation media (YP, YPD, YMB,
SAB, and SD). The radial basis function PLS model suggested that
a YMB selective medium provided the best differentiation results
for 9 of the 12 yeast genera with sensitivity above 90%. This in-
formation provided a competitively complementary approach for
epidemiological studies.

Surface-Enhanced Raman Spectroscopy (SERS)
Different from the vibrational spectra obtained with IR absorp-

tion, Raman spectroscopy is based on scattering effects, which
provide structural and chemical information of samples and permit
the quantitative and qualitative analysis of individual compounds.
When a sample is irradiated by monochromatic light with a fre-
quency of v0, a portion of the irradiation is scattered. There are
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2 types of light scattering: elastic and inelastic (Figure 1A). In
the case of elastic scattering (also called Rayleigh scattering), the
photon frequency or energy is the same as that of the incident
light (E = E0). Due to deactivation or excitation of molecular
vibrations, the photon might gain (anti-Stokes Raman scattering)
or lose part of the energy (Stokes Raman scattering) during in-
elastic scattering, leading to a shift in photon frequency (Das and
Agrawal 2011). The difference in frequency is called Raman shift
(�ν in cm−1), which relies on the molecular geometry and the
chemical composition of the molecules responsible for scatter-
ing (Herrero 2008). Normally, functional groups such as –C–S–,
–S–S–, –S–H–, –C═C–, –C═S–, and –N═N– provide stronger
Raman signals when they exhibit more polarizability during the
molecular vibration (Dijkstra and others 2005). Nonetheless, the
Raman scattering intensity is always very low and the enhance-
ment of Raman effects is often necessary for trace analysis (Lee
and Herrman 2016).

The first SERS effect (Figure 1B) was observed by Fleischmann
and others (1974) who found that the Raman signals of pyridine
molecules adsorbed onto a roughened silver surface was orders of
magnitude stronger than the “normal” Raman scattering. Since
then, the SERS technology has developed rapidly due to advances
in Raman instrumentation and nanofabrication. Two different en-
hancement mechanisms, known as electromagnetic and chemical
enhancements, are widely accepted for explaining the SERS ef-
fect. Electromagnetic enhancement is the dominant mechanism
which occurs when incident photons excite the electrons on the
roughened noble metallic nanostructures, resulting in the local-
ized surface plasmon resonance of the metal surface and induc-
ing the electromagnetic field response for the formation of the
SERS effect. On the other hand, chemical enhancement is an-
other contributory factor causing various effects, including chem-
ical interactions and charge-transfer between the molecule and
nanoparticle, as well as the excitation of a higher electronic state
of the molecule (Cialla and others 2012). Up to now, there are
various noble metallic and semiconducting nanoparticles available
for SERS substrates, which are normally fabricated into colloidal
solutions, isolated nanostructures on a substrate, nanostructured
films or electrodes, or arrays of coupled anisotropic nanostruc-
tures such as rhombus-like nanostructures, hexagonally arranged
metallic nanotriangles, and coupled nanoparticle–nanowire sys-
tems (Sharma and others 2012).

SERS-based microorganism detection is generally classified into
2 approaches. One is direct detection of the intrinsic vibrational
fingerprint of microorganisms, and the other is indirect detec-
tion using a SERS nanotag (such as QSY21) as a quantitative
reporter. Recent applications of SERS and its combination with
other separation or capturing technologies for detecting microor-
ganisms are summarized in Table 1. As SERS is highly sensitive
to many chemical components, for successful microorganism de-
tection, the SERS spectra should be reproducible and reliable.
Therefore, SERS-active nanostructures should be reproducible
and should avoid any contamination from the environment and
any interference from the microbial metabolites.

The metal colloid solution with nanoscale-size features is easily
and cheaply prepared and has been widely used for SERS-active
substrates. Researchers have successfully employed different metal
substrates to detect a variety of microorganisms. Xie and others
(2013) easily differentiated 7 foodborne pathogens of Enterobacte-
riaceae by Au-colloid based SERS coupled with PCA and HCA
algorithms. David and others (2013) evaluated the ability for de-
termining Bacillus bacterial spores using a portable spectrometer

coupled with Ag colloidal substrates. In this study (David and
others 2013), the dipicolinic acid was regarded as the biomarker
of bacterial spores, and rapid quantification of dipicolinic acid at
5 ppb (29.9 nM) levels was achieved. This was obviously lower
than the infective dose of 104 B. anthracis cells for inhalation an-
thrax. However, the method was limited by the dipicolinic acid
extraction procedure from the spores.

In employing SERS-active substrates, the large variations in
shape and size of nanoparticles, and the aggregation of colloidal
metal nanoparticles are the main bottlenecks for improving the
detection reproducibility. On the one hand, the introduction of
stabilizers (for example, gelatin, polyvinyl alcohol, and polyvinyl
pyrolidone) can control the metallic aggregation during the syn-
thesis to transform metallic nanoparticles into stable solid sub-
strates (Sundaram and others 2013). On the other hand, the sub-
strates with highly uniform structures, such as the well-designed
nanoparticle arrays, often give high sensitivity and reproducibility
for SERS-sensing. Liu and others (2012) fabricated the Ag/AAO
nanoparticle arrays substrate with Ag nanoparticle size and inter-
particle gaps about 30 nm and 10 nm, respectively, for the label-free
and rapid detection of Staphilococcus aureus, Klebsiella pneumoniae,
and Mycobacterium smegmatis. Their resultant substrate had a high
reproducibility and exhibited almost 100% classification accuracy
in these bacteria. In another study, Hennigan and others (2012)
described a strategy using Ag nanorod array-based SERS for the
direct detection of avian mycoplasmas, and their PLS-DA model
resulted in sensitivity and specificity of above 93% for classifying
different species of avian mycoplasmas. In addition, the quasi-3D
(Q3D) Ag nanostructure arrays were built for strain-level detec-
tion and identification of Vibrio parahaemolyticus in situ (Xu and
others 2013). However, when the bacterial concentrations were
below 105 CFU/mL, the cells adhering to the substrate surface
were too few to generate a measurable Raman signal.

In order to enable SERS for microorganism detection in real
foodstuffs, it is necessary to develop some sample pretreatment
approaches to separate or concentrate the microorganism from
food matrices prior to SERS detection. These approaches mainly
involve physical (such as centrifugation and filtration), chemical
(such as lectins and dielectrophoresis), physicochemical (such as
metal hydroxides), or biological approaches (such as immuno-
magnetic separation and bacteriophages) which can increase the
microbial cellular adhesion ability to the substrate (Stevens and
Jaykus 2004). Wu and others (2013) modified the Ag nanorod
arrays substrates with a coating known as vancomycin, which
could prevent the surface from reacting with unwanted substances,
in order to capture 6 foodborne pathogens in mung bean sprouts.
By combination with a two-step filtration process, this system
could achieve foodborne pathogenic bacteria identification with a
limit of detection (LOD) as low as 100 CFU/g mung bean sprouts
within 4 h. Additionally, Wu and others (2015) also demonstrated
the capability and advantages of their method to differentiate 27
bacterial isolates from 12 species with various strains and serotypes,
and achieved 100% accuracy for the discrimination between
Gram-positive and Gram-negative bacteria. The spectral features
used for strain and serotype differentiation were mainly from ade-
nine and the surface proteins, respectively. In another study, Bacillus
anthracis spores in orange juice were rapidly captured and detected
with LOD of 104 CFU/mL using an aptamer-functionalized Ag
dendrites substrate (He and others 2013). In addition, Wang and
others (2015) proposed a SERS biosensor consisting of a SERS
substrate and a novel SERS tag for the detection of Staphylococcus
aureus based on aptamer recognition. The Ag-coated magnetic
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nanoparticles substrate was modified by the aptamer, and the
SERS tag was AuNR-DTNB@Ag-DTNB core-shell plasmonic
nanoparticles or DTNB-labeled inside-and-outside plasmonic
nanoparticles. This biosensor could achieve a LOD as low as 10
cells mL−1 for S. aureus detection, and it had a good linear rela-
tionship ranging from 10 to 105 cells/mL S. aureus concentration.

Immunomagnetic separation is an antibody-based isolation
method that has been widely used for capturing the target mi-
croorganism from a complex food matrix directly. Najafi and oth-
ers (2014) immobilized the capture antibodies (cAbs) on magnetic
iron nanoparticles coated with gold nanoparticles (Fe3O4/Au sub-
strate) for sensing E. coli O157 in apple juice. By eliminating sam-
ple preparation procedures, such as centrifugation and filtration,
a capture efficiency of 84–94% and LOD of 102 CFU/mL for
E. coli O157 in apple juice was achieved within 1 h. In addition,
Cho and others (2015) combined the magnetic separation, mem-
brane filtration, and silver intensification with SERS for the rapid
detection of E. coli O157:H7 in ground beef, and an extremely
low concentration of E. coli O157:H7 (about 10 CFU/mL) was
identified within 3 h, showing a great potential for effectively
routine monitoring of pathogens in foods.

Microfluidic platform is an emerging tool to conduct microfab-
rication for controlling and studying fluid behavior at the micro-
scale. In recent years, the integration of microfluidics and SERS
has drawn attention for its microorganism detection (Figure 2).
For example, an immunoassay microarray flow-through system
was developed by Knauer and others (2012). With this system, the
E. coli bacteria were captured when they were pumped through the
antibody spots inside the microarray chip channel, and the SERS-
active Ag colloids were then brought in contact with the bound
bacteria for SERS measurements. Recently, the nanotag-labeled
E. coli DHα5 cells were effectively captured and concentrated with
a nano-electrode array, which was integrated by embedding the
vertically aligned carbon nanofibers to the bottom of a microflu-
idic chip (Madiyar and others 2015). This method yielded a LOD
of 210 CFU/mL by a portable Raman probe, and the established
system was reusable and amenable to field applications.

Terahertz time-domain spectroscopy
The terahertz (THz) radiation region occupies the electromag-

netic spectrum from 0.1 to 10 THz (3.3 to 333.6 cm−1), filling the
frequency gap between microwave and far-IR regions. The THz
gap remained unexplored until the advances during the 1980s in
effective THz sources and detectors. THz radiation can excite the
low-frequency biomolecular (such as protein and DNA) motions,
including the vibration and rotation of the molecular skeleton from
intra-molecular and inter-molecular modes connected by weak
and conformation-related interactions such as hydrogen bonds,
van der Waals force, and hydrophobic interactions (Wang and oth-
ers 2017a). Thereby it is available for acquiring unique structural
and dynamic information that is absent in other electromagnetic
spectroscopies (Yang and others 2016b). With the technologi-
cal innovation in optics and electronics, THz-based spectroscopic
sensing and imaging techniques have developed rapidly, especially
for the THz-TDS, which has been widely utilized in security
screening, biomedical research, and food quality evaluations (Park
and others 2014a).

Different from infrared and Raman spectroscopies, by which
only the intensity of light at specific frequencies can be obtained,
both the amplitude and the phase of the THz waves are mea-
sured using THz-TDS, and both the absorption coefficient and
the refractive index of samples can thus be evaluated (Mantsch and

Naumann 2010). The exploration of THz spectral fingerprints can
complement the knowledge of spectral data obtained from IR and
Raman spectroscopy for microbial detection. Furthermore, the
detection of biological tissue samples with THz radiation is not
easily affected by scattering due to its longer wavelengths. More at-
tractively, THz waves can pass through many commonly used non-
polar dielectric materials such as plastic, clothing, cardboard, paper,
masonry, textiles, and ceramics with little attenuation. Moreover,
its minimal radiation photon energy compared with X-ray radia-
tion would not lead to light ionization or bio-molecule damage
(Ok and others 2014). Consequently, THz-TDS is suitable for
noninvasive sensing targets under covers in containers.

The detection of microorganisms in the THz frequency range
has generated interest. Microorganisms are complex biological ob-
jects. When THz waves excite the microbial cells, their cellular
components can contribute to low-frequency biomolecular mo-
tions and result in specific THz spectroscopic features. This is criti-
cal for microbial spores and cell detection, as well as for monitoring
the changes in cellular components (Globus and others 2012). In
addition, Globus and others (2012) demonstrated the capability of
THz-TDS for the rapid estimate of the living state of Escherichia coli
and Bacillus subtilis. On the other hand, Yang and others (2016a)
recently assessed the living state of bacteria from the same species,
and they reported that the small differences in hydration levels be-
tween bacterial cells was another crucial reason accounting for the
different absorption coefficients of THz spectra, which allowed for
the bacterial species identification and classification. Furthermore,
THz-TDS also shows the potential for detecting unknown bacte-
ria after the establishment of the microbial THz spectral reference
databases, which consist of the absorption coefficients delineated
by their hydration levels.

However, microorganisms are transparent in the THz frequency
range and the sizes of typical microorganisms are often extremely
smaller than the THz wavelength (λ) (in the order of �λ/100).
Such a size mismatch normally results in a low scattering cross-
section, thus hindering the sensitivity of the measurement of mi-
crobial cells with small quantities (Park and others 2014b). In some
cases, THz antennas and metamaterials could generate strong lo-
calized and enhanced fields, which enable the sensitive measure-
ment of a small number of chemical and biological substances
by studying the frequency shift of resonances (Park and others
2014a). The resonance frequency shift of metamaterials deposited
with microorganisms is normally associated with the dielectric
constant and the density of the microorganism within a gap area.

Kurita and others (2014) used a metallic mesh sensor, which can
measure the dielectric property of a material, to specifically detect
E. coli in THz region. Anti-E.coli antibodies were immobilized
on the metallic mesh surface for capturing the E. coli. Kurita and
others (2014) demonstrated that there was a significant relation-
ship between the THz frequency shift and the concentration of
E. coli, which could be used for the quantitative measurement of
E. coli concentration. However, the high LOD of 106 CFU/mL
was unsatisfactory and thus further studies are required. Park and
others (2014a) fabricated a metamaterial sensor that is an array
of a square ring with a micro-gap at the center for the highly
sensitive, high-speed, and on-site detection of microorganisms
(Figure 3). Extremely small amounts of microorganisms includ-
ing bacteria, molds, and yeasts were detected in both ambient
and aqueous environments by the THz metamaterial. Addition-
ally, selective detection would be possible when the substrates were
functionalized with specific antibodies to the target microorgan-
ism. In another study, silicon-based THz bowtie antennas were
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Figure 2–Representative SERS-microfluidic systems for microorganism detection. (A) a microfluidic chip consisted of 2 inlets and 1 outlet connected
with a capillary pump (Mungroo and others 2016); (B) a microfluidic chip with 6 injection ports (Walter and others 2011); (C) an immunoassay
microfluidic system (Knauer and others 2012); (D) an automated PDMS-based optofluidic platform (Lu and others 2013); (E) 2-layered design of the
evaporation microfluidics (Zhang and others 2010); (F) a microfluidic dielectrophoresis device in a “point-and-lid” geometry (Madiyar and others
2015).

prepared by Berrier and others (2012), who selectively identi-
fied the Gram-negative type within the 5 different bacteria that
most likely arose from the structural and chemical differences in
the cell. In conjunction with chemometric methods, Berrier and
others (2012) demonstrated that the proposed technique could be
employed to determine the Gram positive or negative type of an
unknown sample, and thus it might be useful as a rapid antibiotic
efficacy test.

Recently, the THz antenna and the metamaterial sensor fab-
ricated on low-dielectric constant substrates (quartz and flexible
polyimide film) were demonstrated to have higher sensitivity for
microorganism detection than that fabricated on a high-dielectric
constant substrate (silicon) (Park and others 2014b; Tenggara and
others 2017). The substrate with small thickness also performed
at higher sensitivity due to its effective dielectric constant, which
offered another valuable opportunity for building a THz sensor
with high sensitivity. Mazhorova and others (2012) proposed a
suspended-core THz fiber sensor for E. coli detection based on
the evanescent field effect. In their study, T4 bacteriophages were
bio-functionalized with the fiber core for binding and eventually
destroying their target bacteria, which unambiguously resulted in
a strong increase of the fiber absorption. Therefore, E. coli was
effectively measured with a LOD of 104 CFU/mL that need
not depend on the microbial “fingerprint” features in the THz
spectrum.

Laser induced breakdown spectroscopy (LIBS)
LIBS is a relatively new and versatile spectroscopic technique for

in situ elemental detection and quantitative chemical analysis based
on atomic emission spectroscopy. The basic principle of LIBS
technique is employing a pulsed focused laser and a focusing lens
to generate the plasma which vaporizes a small amount of samples;
a spectrometer is used to collect the plasma light that consists of
vaporized atoms, ions, electrons, and molecular fragments, and
then a detector is used to record the emission signals (Spizzichino

and Fantoni 2014). By monitoring the emission line positions
and intensities, qualitative and quantitative analyses are available.
This technology does not require the target sample to be Raman-
or infrared-active, and it is considered as the only spectroscopy
that can give distinct special signature features of all chemical
species in all environments (Miziolek and others 2006). Therefore,
LIBS technique provides several strengths over the conventional
elemental analysis methods. Because the plasma is produced by
optical radiation, the LIBS approach is able to analyze different
types of samples, including solid, liquid, and gas states, and it is
particularly useful for analyzing a complex matrix directly. More
importantly, this technique only needs a very small amount of
sample, requires minimal sample preparation, and the results are
available rapidly (seconds to minutes) (Harmon and others, 2013).

In the last 3 decades, with the striking technological innova-
tions in the lasers, spectrographs, and detectors, LIBS technique
has been aggressively investigated in the field of biological, med-
ical, nanotechnology applications and for food quality control. In
the case of microorganism detection, research studies on LIBS
technology mainly focus on bacterial identification and differen-
tiation since the initial demonstration in 2003. After that, many
multivariate chemometric analyses are employed to classify bacte-
rial LIBS spectra. The neural networks algorithm combined with
LIBS spectra was demonstrated as a favorable method to identify
and differentiate specific bacterial species (Pseudomonas aeroginosa,
Escherichia coli, Salmonella typhimurium, and the mold genus Candida)
with high accuracy (Marcos-Martinez and others 2011; Manzoor
and others 2014; Manzoor and others 2016). In addition, Putnam
and others (2015) compared different variable selection strategies
and multivariate analysis techniques for LBIS bacterial classifi-
cation. They found that a model composed of 80 independent
variables provided the greatest sensitivity and specificity. Although
the 2 multivariate techniques, discriminant function analysis and
PLS-DA, both provide effective classification of unknown bac-
terial LIBS spectra, PLS-DA performed more precise to identify
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Figure 3–A typical microorganism-sensing using THz metamaterials. (A)
A schematic presentation of THz metamaterials-sensing of
microorganisms. (B) A color-enhanced SEM image of metamaterials
coated by penicillia (Park and others 2014a).

the bacteria at the species-level or strain-level. To differentiate the
microorganism by LIBS, the sample preparation is also a critical
procedure. Gamble and others (2016) reported that both pH and
the mineral cations of the water source used in purification of the
culture must be taken into account. In addition to differentiate
bacterial species, the metabolic state (live and dead) of Escherichia
coli also can be detected based on LIBS spectral emission intensi-
ties of key elements, including Mg, P, K, Na, and Ca (Sivakumar
and others). Also, Multari and others (2013) reported that the
multivariate regression analysis of LIBS data is an ideal method
to differentiate the live bacterial pathogens E. coli O157:H7 and
S. enterica on various foods, including ground beef, lettuce,
eggshell, milk, bologna, and chicken. And yet, despite the LBIS
possesses the advantages of rapid and minimal sample prepara-
tion, Barnett and others (2012) suggested that LBIS might be
limited for the quantitative detection of Salmonella enterica serovar
Typhimurium in real food (milk, chicken broth, and brain heart
infusion) due to its less sensitivity. Therefore, future works should
be focused on improving the sensitivity and specificity of the LIBS
system for the detection various pathogenic microorganisms.

Spectral Imaging Techniques
Hyperspectral imaging (HIS)

HSI, also known as imaging spectrometry, integrates both imag-
ing or computer vision (Sun and Brosnan 2003; Sun 2004; Du and
Sun 2005; Jackman and others 2009; Jackman and others 2011; Xu
and Sun 2017; Xu and others 2017) and spectroscopic techniques
into 1 system. In comparison with routine imaging or spectro-
scopic techniques, HSI can measure both spatial information and
spectral parameters for each pixel in the image simultaneously

(ElMasry and others 2012). A hyperspectral image, expressed as
a hypercube I (x, y, λ), is a 3-dimensional (3D) block of data
containing 1 wavelength λ and 2 spatial (x, y) dimensions. It can
be considered either as a spectrum I (λ) at each individual pixel
(x, y), or as an image I (x, y) at each individual wavelength λ

(Cheng and others 2017). Each position within the specimen dis-
plays a unique spectral fingerprint of that pixel, which can be used
to characterize its chemical component. As such, hyperspectral
imaging can be used for the identification and the quantification
of chemical compositions as well as the visualization of their distri-
bution simultaneously (Wu and Sun 2013; Ravikanth and others
2017).

In terms of HSI, several systems including visible (Vis), near-
IR, FTIR, fluorescence, as well as Raman HSI are available, which
have great flexibility and offer multi-choices for inspecting diverse
food products (Gowen and others 2015). Among them, visible
and near-infrared (Vis-NIR) HSI is the most widely used system
for assessment (ElMasry and others 2013; Cheng and Sun 2015;
Cheng and others 2015; Cheng and others 2015; Pu and others
2015; Pu and others 2015; Xiong and others 2015; Cheng and
others 2016; Cheng and others 2016; Dai and others 2016; Ma
and others 2016; Pu and others 2016; Xu and others 2016; Cheng
and Sun 2017; Cheng and Sun 2017; Li and others 2017).

Depending on the relative arrangement between the illumina-
tion system and the optical detector, HSI is commonly based on
3 types of sensing modes, namely, reflectance, transmittance, and
interactance (ElMasry and others 2012). The hypercube I (x, y, λ)
can be acquired by point-scanning, line-scanning, area-scanning,
and single-shot approaches (Wu and Sun 2013). HSI was initially
established for remote sensing applications, but it has been available
for application in such diverse fields as medicine, pharmaceuticals,
and food science. In terms of agro-food inspection, researchers
have employed hyperspectral images to detect and quantify mi-
croorganism distribution in real samples (Siripatrawan and others
2011).

The principle underlying HSI for microorganism detection is
based on the assumption of metabolites that can provide character-
istic fingerprints to indicate the contamination of microorganisms
in food matrices (Siripatrawan and others 2011). Similar to
IRS analysis, the collected HSI data are often combined with
various chemometrics to build the prediction models. In order to
enhance the model performance, preprocessing and wavelength
selection schemes are crucial. Therefore, Vis-NIR HSI has been
applied to evaluate microbial infection in vegetable and meat
products. Table 2 summarizes recent advances in microorganism
detection.

Siripatrawan and others (2011) assessed E. coli contamination
in packaged fresh spinach by HSI ranging from 400–1000 nm.
Reflectance spectra were obtained and combined with PCA and
ANN to predict the number of E. coli with R2 of 0.97. ANN
was used to construct a prediction map that visualized spatial in-
formation of E. coli contamination. For meat and meat products,
highly perishable due to moist and nutritious surfaces suitable for
bacteria growth, reliable and rapid detection of microorganism
contamination is necessary. Tao and others (2012) collected the
scatter images of E. coli-contaminated pork and then fitted them
by Lorentzian distribution function, giving 3 parameters, namely
a (asymptotic value), b (peak value), and c (full width at b/2).
Afterwards, multiple linear regression (MLR) models were devel-
oped based on the parameters of a and “a&b&c” for predicting
E. coli contamination, these were validated with good performance
having RCV of 0.877 and 0.841, respectively.
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In many cases, although the prediction models with full wave-
lengths can give a good performance in the assessment of microor-
ganisms, the data processing efficiency would be limited due to the
large number of wavelengths involved in the calibration. There-
fore, it is important to select the most informative wavelengths
(MIWs) that are most relevant to microorganism prediction across
the whole wavelength range by employing algorithms (such as
stepwise regression, genetic algorithm, and successive projections
algorithm). Many studies indicated that the predictions established
on MIWs could also give satisfactory results for evaluating En-
terobacteriaceae (Feng and others 2013; Cheng and Sun 2015b),
Pseudomonas (Feng and Sun 2013b), and lactic acid bacteria (He
and others 2014) in contaminated meat products.

The total viable count (TVC) of bacteria is a useful indicator
for assessing the contamination extent of food products. When
the TVC of bacteria exceeds a certain limit, it indicates that the
food may be dangerous and may cause health problems owing to
the generation of toxic compounds in the food or in its eater.
In recent years, the application of HSI in different spectral col-
lection modes, including reflectance, absorbance, scattering, and
light diffuse reflectance, to assess the TVC in pork (Huang and
others 2013; Tao and Peng 2015), chicken (Feng and Sun 2013a),
beef (Peng and others 2011), and fish (Cheng and Sun 2015a)
have been investigated. A typical TVC detection using HSI tech-
nology is shown in Figure 4. In addition, psychrotrophic bacteria
can grow at low temperatures, and they are regarded as emblem-
atic spoiling organisms of various chilled meats. Barbin and others
(2013) measured the TVC and psychrotrophic plate count (PPC)
in chilled pork during storage by HSI in the near-IR range. The
PLSR models gave good prediction with R2 of 0.86 and 0.89 for
log (TVC) and log (PPC), respectively. The results suggested that
HSI technology has promising potential for rapid, nondestructive,
and reliable evaluation of microbial presence in meat.

Besides quantitative analysis of the number of microorganisms
in food matrices, the potential for the differentiation and the clas-
sification of microorganisms by HSI technology have also been
demonstrated. For example, 3 Fusarium species (Fusarium subgluti-
nans, Fusarium proliferatum, and Fusarium verticillioides) inoculated
on potato dextrose agar could be differentiated with reasonable
accuracy based on HSI and PCA analysis (Williams and others
2012). Also, Yoon and others (2013) rapidly identified colonies of
the big-6 non-O157 shiga-toxin-producing E. coli serogroups on
rainbow agar plates by HSI at wavelengths ranging from 750 to
1000 nm. The classification accuracy based on the k-nearest neigh-
bor classification (kNN, k = 3) was 95% at pixel level and 97% at
colony level. In another study, Park and others (2015) analyzed the
scattering intensity of spectral images from various Gram-negative
and Gram-positive pathogenic bacteria by an acousto-optic tun-
able filter (AOTF)-based hyperspectral microscope imaging, and
they found that a classification accuracy of 99.99% and kappa
coefficient of 0.9998 were achieved by combining the scattering
intensity data and SVM analysis. Recently, pathogenic and non-
pathogenic bacteria and similar species of the same genera were also
differentiated by Vis-NIR HSI (Kammies and others 2016). All
the foregoing studies confirm that the detection and the discrim-
ination of microorganisms to specific bacterial genera/groups can
provide more insights to better understand the ecology of bacte-
ria, thereby providing effective approaches for food safety control.
However, most of the studies were focused on microorganisms
inoculated on agar plates. Therefore, future work should consider
using the HSI technique to classify microorganisms contaminating
real food matrices.

Multispectral imaging (MSI)
MSI is another spectral imaging technology based on HSI tech-

nology. As aforementioned, the HSI technique provides a 3D hy-
percube that contains rich spatial information in full wavebands,
which leads to difficulties in data processing, thus causing awk-
wardness in industrial online applications. In order to overcome
this drawback, a simplified version known as MSI is available.
There are some similarities between MSI and HSI techniques.
For instance, both of them can gain the spatial and spectral infor-
mation simultaneously in the form of a 3D hypercube, and the
data acquisition process is nondestructive. The distinctive differ-
ence between these 2 methods depend mainly on the number
of spectral bands involved in the hypercube. In general, there are
more than 100 contiguous and regular spectral bands in the case
of HSI, whereas normally only fewer than 20 noncontiguous and
irregularly spectral bands are relevant to the food quality and safety
evaluation for MSI. It should be noted that the feature wavelengths
for MSI online analysis are commonly selected by a HSI system.
Consequently, the robustness of HSI models for selecting feature
wavelengths will significantly influence the successful application
of a MSI system (Pu and others 2015). Although MSI systems
cannot provide fine details in the spectral signatures in every im-
age pixel from the objects, in general, the instrumental complexity
and cost, as well as data acquisition time of MSI systems, are sig-
nificantly lower than those of HSI systems. Recently, MSI systems
combined with chemometrics have been employed for microor-
ganism detection in meat products, and the main steps are shown
in Figure 5.

Dissing and others (2013) assessed the spoilage degree in pork
meat based on the prediction of TVC using MSI. They classified
the pork meats stored at temperatures of 0, 5, 10, 15, and 20 °C
and packaged in aerobic and modified atmosphere conditions into
3 categories of fresh, semi-fresh, and spoiled. The multispectral
images acquired at 18 unregularly distributed wavelengths (405,
435, 450, 470, 505, 525, 570, 590, 630, 645, 660, 700, 850, 870,
890, 910, 940, and 970 nm) in conjunction with various chemo-
metrics were employed to predict the quality of these meats. For
the microbial counts, a good predictive result with overall classifi-
cation performance of 80.0% was achieved, providing a promising
approach for evaluating pork spoilage. Panagou and others (2014)
assessed the potential of MSI for the rapid and nondestructive de-
termination of the microbiological quality of beef fillets during
aerobic storage at refrigerated and abuse temperatures. A PLS-
DA model was established for the classification of beef fillets with
different spoilage degrees, achieving an overall correct discrimina-
tion rate of 91.8% and 80.0% for model calibration and validation,
respectively. In addition, based on the developed PLSR models,
the quantitative estimation of TVC, Pseudomonas spp., and Bro-
chothrix thermosphacta showed regression coefficients ranging from
0.90 to 0.93 (Panagou and others 2014). In another study, Ma
and others (2014) estimated aerobic plate count (APC) numbers
in cooked pork sausages by combining the MSI technique with
PLSR analysis, presenting a good result with R2 of 0.89. All these
studies demonstrate that the MSI technique has the potential to be
an alternative and promising approach for practical and industrial
online applications.

Challenges and Future Outlook
Spectroscopic and spectral imaging techniques, along with the

advantages of rapid, nondestructive, label-free, in situ, or on-line
detection, are attractive and competitive for the food industry.
Nonetheless, foodstuffs are heterogeneous in nature, thereby some
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Figure 4–Main steps of microorganism determination in meat products by HSI technique (Cheng and Sun 2015a).

challenges remain to be resolved for microorganism detection in
food matrices.

A primary challenge for spectroscopic and spectral imaging
techniques relates to their complex fingerprints. Therefore, ex-
tensive data pretreatments and appropriate chemometrics are of-
ten required to build reliable and robust prediction models. The
microorganism reference databases built by spectral pretreatment
and multivariate analysis should have sufficient generality. How-
ever, this is difficult due to the high intraspecies phenotypic
biodiversity of microorganisms, which makes the building of a
worldwide accessible reference database a challenge. Furthermore,

the existence of significant redundant data in hyperspectral im-
ages poses a challenge for data mining and data processing. The
complexity and high cost of the instruments needs to be con-
sidered. SERS is highly sensitive to fingerprints that are often
characteristic of analytes, rendering it attractive for measuring
microorganisms in complex matrices. However, biological flu-
orescence will result in an interfering background, limiting the
practical applications of SERS in the food industry. In addi-
tion, improving the reproducibility of substrates for SERS analysis
is also a challenge. With respect to THz-TDS, the absorption
by water, as well as the size mismatch between the microbial
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Figure 5–Main steps involved in application of MSI technology and chemometrics to obtain the contamination map of microorganisms in meat
products (Ma and others 2014).

cells and terahertz wavelength, can hamper the sensitivity for
microorganism detection. The major challenge of LIBS results
from its low sensitivity for the minor mineral elements analysis in
microorganisms.

In the future, more effective algorithms should be used for spec-
tral data processing and microorganism reference database build-
ing. Employing new algorithms to select informative wavelengths
across the whole wavelength range is important for implementing
MSI systems, which are more efficient, inexpensive, and suitable
for on-line detection of microorganisms. In the case of SERS and
THz-TDS techniques, attention should be given to couple the
SERS substrates and THz antennas or metamaterials with a mi-
crofluidic platform. By integrating with capture approaches, such
as antibodies and aptamers on the lab-on-a-chip device, the resul-

tant sensors should be able to reduce the interference from food
matrices and provide the selective and sensitive detection of the
target microorganism in situ. In addition, the incorporation of
the ATR technique into the THz-TDS would significantly elim-
inate interference from moisture, and the combination of LIBS
with other spectroscopic (such as laser-induced Raman and fluo-
rescence) techniques can unite the features of them. The research
into microbial quantification and discrimination, as well as studies
on microbial cellular modification in response to food-processing
stress, by spectroscopic and spectral imaging technologies will also
be of interest in the future. Finally, the acceleration of developing
portable spectroscopic and imaging systems with simplicity and
reliability should facilitate early adoption of these technologies in
the food industry.
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Conclusions
The principles and recent advances of spectroscopic and spectral

imaging techniques, including IRS, SERS, THz-TDS, LIBS, HSI,
and MSI, are summarized in this review. In general, spectroscopic
and spectral imaging techniques can achieve rapid, nondestructive,
or label-free detection, rendering them attractive for routine mi-
croorganism detection in the food industry. However, there also
some challenges for realizing this goal. With the development in
instruments and algorithms, as well as the integration of microflu-
idic platforms, the spectroscopic and spectral imaging techniques
will provide alternative methods for microorganism detection in
the future.
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Nomenclature
AAO Anodic aluminum oxide
ANN Artificial neural network
APC Aerobic plate count
BP-ANN Back-propagation artificial neural network
CA Clustering analysis
CVA Canonical variate analysis
DA Discriminant analysis
FTIR Fourier transform infrared
GA Genetic algorithm
HCA Hierarchical cluster analysis
HSI Hyperspectral imaging
IRS Infrared spectroscopy
kNN k-nearest neighbor classification
LDA Linear discriminant analysis
LIBS Laser-induced breakdown spectroscopy
LOD Limit of detection
LS-SVM Least squares support vector machine
MLR Multiple linear regression
MSI Multispectral imaging
MIWs Most informative wavelengths
PCA Principal component analysis
PLS Partial least squares

PLSR Partial least squares regression
PPC Psychrotrophic plate count
RF Random forest
SERS Surface-enhanced Raman spectroscopy
SI-PLS Synergy interval partial least squares
SIMCA Soft independent modeling of class analogies
SMLR Stepwise multiple linear regression
SVM Support vector machine
THz-TDS Terahertz time-domain spectroscopy
TVC Total viable count
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