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ABSTRACT: Food process models are typically aimed at improving process design or operation by optimizing some
physical or chemical outcome, such as maximizing processing yield, minimizing energy usage, or maximizing nutri-
ent retention. However, in seeking to achieve these objectives, one of the critical constraints is usually microbiological.
For example, growth of pathogens or spoilage organisms must be held below a certain level, or pathogen reduction for
a kill step must achieve a certain target. Therefore, mathematical models for microbial populations subjected to food
processing operations are essential elements of the broader field of food process modeling. However, the complexity
of the underlying biological phenomena presents special challenges in formulating, validating, and applying micro-
bial models to real-world applications. In that context, the narrow purpose of this article is to (1) outline the general
terminology and constructs of microbial models, (2) evaluate the state of knowledge/state of the art in application of
these models, and (3) offer observations about current limitations and future opportunities in the area of predictive
microbiology for food process modeling.

Introduction
The previous 2 articles described the status of food process

modeling from 1st-principle and observational perspectives. If
the complexity of a given system or process is currently beyond
the reach of 1st-principle models, various observational model-
ing techniques can be applied. Nevertheless, in the case of purely
data-driven, observational models, the relationships between in-
put and output parameters are still governed by fundamental laws
of physics and chemistry, even if the model form does not directly
reflect those laws.

However, when trying to model a biological system, the com-
plexity can be orders of magnitude greater than for a purely phys-
ical system, reflecting a diverse set of cellular processes. This im-
plies special challenges in developing knowledge, model forms,
and application tools, with respect to extendibility, robustness,
and validity across the domains of interest.

Given those special challenges, it is necessary to recognize the
importance and unique role that microbial models play in food
process modeling. The ultimate purpose of most process models
(such as heat and mass transport) is to optimize system perfor-
mance. In those cases, the objective function reflects a physical
or chemical outcome such as maximizing process yield, mini-
mizing energy usage, or maximizing nutrient retention. In con-
trast, the microbial outcome is typically a constraint in the sys-
tem/process model; for example, a processor must ensure that
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microbial growth does not exceed a certain level or that pathogen
reduction achieves a certain target.

Those constraints might derive from government regulations or
internal specifications for a given food product. However, given
that the target of interest is often a pathogenic organism, it is typ-
ically impractical or impossible to directly and experimentally
verify that a given commercial process is achieving the target,
because pathogens cannot be introduced into commercial op-
erations. Therefore, mathematical models for microbial growth,
survival, and inactivation are essential elements in food process
models, and understanding the impact of model form, the domain
of validity, and the underlying uncertainty is critical to proper use
of such models.

A comprehensive review of previous work in predictive micro-
biology for food processing is beyond the scope of this article. For
that degree of depth, the reader is directed to 3 different books
in this field. McMeekin and others (1993) cover the wide range
of model forms in predictive microbiology, with particular atten-
tion to comparing Bělehrádek-type (power-law) and Arrhenius-
type secondary models. McKellar and Lu (2004a) is a more re-
cent coverage of the field, extended to introduce developments
in software/databases and risk assessment. Finally, Peleg (2006)
provides a thorough thesis aimed at challenging many of the tradi-
tional practices in the field and proposing alternative approaches
to microbial modeling. All 3 books are valuable contributions,
and the reader is encouraged to explore them accordingly.

Given those previous, in-depth summaries and analyses of the
field, the narrow purpose of this article is to assess the current
status of predictive microbiology, with respect to applications to
food process modeling. Specifically, this article will (1) outline the
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general terminology and constructs of microbial models, (2) eval-
uate the state of practice in applications of these models, and
(3) offer observations about current limitations and future
opportunities in the area of predictive microbiology for food
process modeling.

What Are Microbial Models?
For the purposes of this article, microbial models are mathe-

matical expressions that describe the number of microorganisms
in a given food product or system, as a function of relevant intrin-
sic or extrinsic variables, generally on a macroscopic scale. As
such, most microbial models quantify populations of organisms,
or probabilities of the presence of organisms, but rarely model
(yet) the behavior or cellular level functions of single organisms.

Microbial models can be classified as primary, secondary, or
tertiary (Whiting 1995). Primary models describe how the num-
ber of microorganisms in a population changes with time under
specific conditions. Secondary models relate the primary model
parameters to environmental or intrinsic variables such as tem-
perature or pH. Tertiary models combine primary and secondary
models with a computer interface, providing a complete predic-
tion tool. Most of this article is organized around this classification
scheme; however, the section “What Are the Key Limitations” will
address how separating primary and secondary model fitting can
impact the error and uncertainty for microbial models.

A 2nd layer of classification can be applied across microbial
models. Peleg (2006) noted that quantitative models can be clas-
sified as either empirical, phenomenological, fundamental, prob-
abilistic, or population dynamic models. Selection of model type
depends highly on the quality of knowledge about the system
and the quality and quantity of data available from that system.
Currently, insufficient knowledge and data are available to imple-
ment truly fundamental/mechanistic models for microbial growth
or inactivation, so most of the models being used are either purely
empirical or some type of phenomenological model.

Finally, microbial models can be classified as growth, inactiva-
tion, survival, or combined models. Growth models describe an
increase in population over time. Inactivation models describe a
decrease over time, resulting from the application of some lethal
treatment (such as heat or radiation). Although the term “survival”
is often used interchangeably with “inactivation,” some survival
models describe a decrease over time, or probability of survival
over time, for the special case when the environmental conditions
are neither clearly lethal nor supporting of growth (McKeller and
others 2002; Yu and others 2006). A few combined models have
been constructed to describe changes in a microbial population
subjected to conditions that vary from the growth to inactivation
ranges (Whiting and Cygnarowicz-Provost 1992; Jones and others
1994; Ross and others 2005; Corradini and Peleg 2006). Membre
and others (1997) applied a purely empirical model to describe
growth, survival, and death of Listeria monocytogenes at low
temperatures with high concentrations of phenol and NaCl. For
combined models, if separate semimechanistic or phenomeno-
logical modeling forms are applied for each physiological state,
then this type of model requires special consideration to avoid
discontinuities at the interface between growth, survival, and in-
activation. Overall, getting 1 mathematical function to describe
the complete range of microbial responses is a significant task that
is probably not necessary for most food process models, which
typically are designed to simulate a single unit operation that is
affecting growth or survival, but not both. Additionally, in the
case of modeling growth for spoilage or pathogenic organisms,
if the population reaches the mortality phase, then the product
has likely spoiled beyond utility, and the decreasing population
of viable organisms is not relevant.

What Is the State of Knowledge/State of the Art?

Primary models
Growth models. Microbial growth is generally assumed to fol-

low a pattern consisting of a lag phase, an exponential growth
phase, a stationary phase, and a death phase (Figure 1). Nearly all
models for microbial growth ignore the death phase and are based
on the assumption of a sigmoidal growth function. The various
forms of the sigmoidal functions are a mixture of empirical and
semimechanistic equations (McKellar and Lu 2004b). The sim-
plest form deconstructs the sigmoidal response into a 3-part (or
2-part, if ignoring the stationary phase) linear function (Buchanan
and others 1997). Zwietering and others (1990) reparameterized
5 different forms of sigmoidal curves in order to relate the model
parameters to biologically meaningful terms (that is, lag period,
maximum specific growth rate, and asymptotic value). However,
many published studies report growth model parameters that do
not necessarily have this direct linkage to the biological phe-
nomenon.

The most frequently used primary growth models are the mod-
ified Gompertz and Baranyi (Baranyi and others 1993) equations,
the first being a sigmoidal relationship and the second being
based in part on the concept that the rate of bacterial growth
is controlled by the rate of a “bottleneck” biochemical reaction.
Several researchers have compared the performance of these 2
models plus some other models applied to different microorgan-
isms (Buchanan and others 1997; Juneja and others 1999; Baty
and Delignette-Muller 2004). For example, Baty and Delignette-
Muller (2004) found that the Gompertz model seems to be in-
fluenced more by the quality of the data set than is the Baranyi
model. They also concluded that the Baranyi model provided the
best fit for the majority of their data and gave reasonably precise
estimates of the lag time. Another study also found that the Gom-
pertz equation can overestimate the model parameters, which
could bias the comparison with a different model (Membre and
others 2004). In comparing the performance of 4 different growth
models when fitting a L. monocytogenes data set, McKellar and
Lu (2004b) showed that the nonlinear regression procedure had
as much, or more, influence on the goodness of fit as did the
model form. They illustrated an extremely important point—that
the data, model form, and fitting procedures all influence the
quality of any primary model for a given application.

Inactivation models. The relationship between microbial pop-
ulations and time, when subjected to a lethal treatment (assum-
ing a constant temperature or concentration of the lethal agent),
has been reported to follow a variety of patterns (Figure 2). It is
presumed here that these inactivation patterns are due to bio-
logical responses and do not reflect experimental artifacts, even
though the latter is clearly a possibility in many studies. Some
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Figure 1 --- The sigmoidal (plus death) pattern of a typical
microbial growth curve.
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inactivation data exhibit (A) a tailing pattern, (B) an increase in
population, due to spore activation, before inactivation, (C) a
shoulder or lag prior to inactivation, or (D) a sigmoidal pattern
with both a lag and a tail. However, the vast majority of inactiva-
tion data that are published are presumed to follow a log-linear
pattern with time, and nearly all inactivation modeling applica-
tions use the log-linear form. The appropriateness of any particu-
lar model form is a question clearly without a consensus answer
in the field of predictive microbiology, and there is no particular
reason to assume that one model form would be universally valid
for all organisms, substrates, and processes.

Among the choices, the log-linear models are derived from a
mathematical analogy to 1st-order reaction kinetics, such that:

dN/dt = −kN (1)

and therefore

ln(N/N0) = −kt (2)

where N is the number of surviving bacteria, k is the inactiva-
tion rate constant, and t is time. From this log-linear relation-
ship, the commonly used D-value (time required to achieve a
1-log reduction in the population) can be computed as ln(10)/k.
This log-linear relationship has been used since the beginning of
predictive microbiology, when the focus was on inactivation of
Clostridium botulinum spores in low-acid canned foods. In nearly
all food microbiology textbooks, it is the only inactivation model
that is described.

However, in recent years, significant evidence and work have
addressed observed nonlinearities in inactivation data. There
are nearly as many alternative model forms as there are pub-
lications addressing this subject. Some are purely empirical,
while others seek to advance a mechanistic or phenomenological
explanation.

Among those, perhaps the most prominent has been the use of
the Weibull model, as proposed by Peleg (2006). An underlying
premise is that every cell in a microbial population has its own
resistance to the lethal agent, and that resistance can be expressed
as the time of exposure until that cell is no longer viable. The
Weibull population function is then one choice for describing
the distribution of resistance within a population. The cumulative
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Figure 2 --- Various published forms of microbial inactiva-
tion functions, describing (A) tailing, (B) spore activation
and inactivation, (C) a shoulder/lag, and (D) a sigmoidal
response.

distribution of the Weibull function can be expressed in a variety
of forms (Peleg 2006), including:

log
(

Nt

N0

)
= −btn (3)

where b is a nonlinear rate parameter, and n is a shape fac-
tor. When n < 1, this function appears as a concave, upward,
semilogarithmic inactivation curve (Figure 2A). When n > 1, it
appears as a concave downward curve (Figure 2C). When n = 1,
the Weibull-based model reduces to a log-linear model consistent
with the previously described 1st-order kinetic. Consequently, the
Weibull model is capable of describing a wider range of inacti-
vation phenomena, where the log-linear result is just a special
case. In applying the Weibull model to 55 different inactivation
data sets, van Boekel (2002) showed n > 1 for 39 cases, n < 1
for 14 cases, and n = 1 for only 1 data set.

Given such compelling evidence that microbial survival curves
are rarely log-linear (and that the analogy to chemical kinetics is,
at best, imperfect), one might wonder why use of the simple log-
linear model has persisted for nearly a century in food microbiol-
ogy (and remains the dominant model used in food microbiology
publications). Certainly, there are a variety of reasons. Traditional,
while not a compelling logical argument, is no less a strong force
in the scientific community than in society at large. As genera-
tions of microbiologists were trained using these techniques, and
subsequently wrote the monographs, textbooks, and government
regulations in this field, perpetuation of log-linear models is not
a surprising outcome.

However, there are other, more pragmatic reasons. Certainly,
the computational simplicity of the log-linear model, requiring
only linear regression of survivor data, was important in earlier
days, but is a less compelling justification today, given the avail-
ability of software and computing power for nonlinear regression
(even of large data sets). However, the log-linear model is a single
parameter model, whereas the Weibull (or other alternative mod-
els) require 2 or more parameters to be estimated. As trivial as that
might seem at first glance, models with more parameters inher-
ently require more data in order to achieve satisfactory parameter
estimates via nonlinear regression of the survivor data, and qual-
ity microbial inactivation data are neither trivial nor inexpensive
to generate.

Lastly, if we accept that most microbial inactivation curves are
truly nonlinear, it can be argued that this could have a significant
negative impact on product safety, particularly if tailing exists
and is ignored by using and extrapolating log-linear models. We
might wonder, then, why the practitioners and users of micro-
bial models, and regulatory agencies, have not rushed to revise
the paradigm for modeling microbial food safety. The answer,
perhaps, is that compelling evidence has not yet been presented
that using the “erroneous” log-linear model form is significantly
impacting product safety or quality. This is not meant to be an ar-
gument for the log-linear assumption, but only an assessment for
why its use has persisted in spite of significant scientific evidence
to the contrary.

Secondary models
There is significant information about the impact of individual

variables (particularly temperature) on the growth and inactiva-
tion of bacteria. For example, several reviews have summarized
significant heat resistance literature for various pathogens, as in-
fluenced by food material, temperature, pH, and so on (Doyle and
Mazzotta 2000; Doyle and others 2001). Unfortunately, much of
that information is specific to a certain product, organism, and
methodology, and is not integrated into validated secondary mod-
els that can be used to predict future outcomes.
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Ideally, the fundamental mechanisms relating to the treatment
variables and the microbial response would be known, and an
appropriate secondary model form could be adopted. However,
in reality, little is known about most of these responses, so there is
a wide variety of secondary models that are used in both growth
and inactivation models.

Along with the traditional, log-linear primary inactivation
model, many published studies utilize an Arrhenius-type model,
so that ln(k) is linearly related to the inverse absolute temper-
ature. McMeekin and others (1993) extensively compared the
Arrhenius-type model to Bělehrádek-type (power-law) models.
The Arrhenius-type model, again deriving from an analogy to
chemical kinetics, has several flaws, including the implicit prop-
erty of an “activation energy” of inactivation that is not a function
of temperature.

Peleg (2006) argues instead for a log-logistic model form. While
the log-logistic secondary model is not mechanistic, it does have
the advantage of exhibiting properties that are more consistent
with the observed biological phenomenon. When applied to an
inactivation rate constant, this includes predicting a zero value
at temperatures below the lethal range, and an increase in the
inactivation rate that is somewhat linear with temperature.

For many growth models, such as those used in the USDA
Pathogen Modeling Program (USDA 2003), the secondary mod-
els for lag phase duration and maximum growth rate are purely
empirical response surface models. Baty and Delignette-Muller
(2004) compared a variety of models for growth lag phase dura-
tion and reported that differences among formulations (including
those derived from different biological explanations) resulted in
estimates that were quite close, and that the uncertainty of the
estimates was typically larger than the differences among esti-
mates. Also, as expected, the quality of the original data set is
particularly important in generating the estimates. In any case,
great caution should be exercised to avoid extrapolation when
using purely empirical secondary models; in particular, response
surface models can yield nonsensical results if applied outside the
domain of the data from which the parameters were estimated.

In the area of inactivation, several researchers have reported
D- and z-values for various microorganisms in different types of
meat (such as Veeramuthu and others 1998; Juneja 2000; Juneja
and others 2001, 2003; Smith and others 2001; Murphy and oth-
ers 2003, 2004). However, for the same type of meat and microor-
ganism, there are notable differences in the estimated parameters.
Among these studies, the D-values for Salmonella in turkey meat
at 60 ◦C ranged from 4.6 to 13.2 min, given different serovars, fat
contents, heating methods, and recovery methods. This illustrates
how the variation in methodologies has influenced the body of
knowledge in this arena, and ultimately influences the secondary
model parameters.

Tertiary models (tools)
If a tertiary model is defined as the integration of a primary and

secondary models with a user-friendly interface (Whiting 1995),
then there are very few true tertiary models available to the end
users who need these tools. Two tertiary modeling tools are freely
available and widely used in the United States—the AMI Process
Lethality Spreadsheet (AMI-PLS; www.amif.org), available from
the American Meat Inst. (AMI 2002), and the Pathogen Model-
ing Program (PMP, v.7.0) developed by the USDA—Agricultural
Research Service (USDA 2003). Additionally, the latest version of
ComBase (www.combase.cc) now includes a modeling tool that
utilizes its database to generate growth or inactivation curves
(Baranyi and Tamplin 2004).

The AMI-PLS spreadsheet uses log-linear kinetics to calculate
the number of surviving organisms, given transient product tem-
perature data supplied by the user. However, this tool does not ac-

count for any product effects, and relies on the user to supply ther-
mal resistance data (which is particularly problematic for small or
very small processors) or to use the “default” values without con-
sideration of their validity for the user’s specific product case.
Therefore, although this tool technically implements primary
(D-value) and secondary (z-value) models, it requires user-
supplied model parameters. As such, it is really just a calcula-
tor designed for a targeted user group (processors of ready-to-
eat meat and poultry products). Nevertheless, it is broadly used
within this industry, because it is (1) freely downloadable from
the web, (2) relatively simple to use, (3) meets a specific industry
need, and (4) is recognized and utilized by regulatory personnel.

In contrast, the PMP is an example of a tertiary model that
includes greater functionality, calculating pathogen growth, sur-
vival, or inactivation as a function of temperature, pH, sodium
chloride, and sodium pyrophosphate concentration, with a very
straightforward user interface. However, one problem is that al-
most all of the models within the program were parameterized
using broth-based data, so that applicability to a specific food sys-
tem is not assured. The growth models are modified Gompertz
equations, and the inactivation models are log-linear. The sec-
ondary models are 2nd-order response surface equations. Given
4 independent environmental variables, this results in single sec-
ondary models with as many as 15 parameters. In the PMP, the
Gompertz equations are implemented with a presumed (fixed)
asymptotic value; therefore, with secondary models for each of
the 2 remaining Gompertz parameters, that results in 30 param-
eters for each growth model. In some of these cases, the indi-
vidual terms of the response surface models are not statistically
significant; however, the models include all of the terms (Martino
2006). Although the original, broth-based data sets were large
(hundreds of curves), so that 30 parameters could be realistically
estimated from the data, there should be some concern of over-
fitting when a model includes so many parameters. Nevertheless,
several studies have tested the validity of the PMP growth mod-
els against independent data in food products and have shown
reasonably good predictions (Campos and others 2005; Martino
and others 2005).

Additionally, the existing thermal inactivation models in the
PMP do not account for nonisothermal conditions, limiting their
application to real-world food processing applications. Never-
theless, the PMP is an excellent example of what is required for
predictive microbial models to achieve broad acceptance and
utilization: ease of acquisition (meaning a free web download)
and a simple user interface.

Finally, more mathematically sophisticated, spreadsheet-based
tools have been deployed via the web (www-unix.oit.umass.
edu/∼aew2000) by Peleg (2006). These tools utilize a Weibull pri-
mary model for inactivation and log-logistic secondary models, so
they account for a broader range of inactivation behavior and can
be applied to nonisothermal temperature profiles. However, there
are 2 limitations to these tools being broadly utilized as tertiary
models. First, the major limitation is that the user must supply a
full set of model parameters for the Weibull/log-logistic functions,
which necessitates that sufficient organism/substrate-specific tests
have been previously conducted to generate estimates of those
parameters for the users. Second, although relatively simple to
use for an expert in the field, the tools are not “street ready,”
in terms of having user interfaces that make them accessible to
practitioners in the field (such as typical food processors or gov-
ernment inspectors). However, they are still an important step in
making these models available in a useable form.

Ultimately, the “correctness” of a tertiary model is not going to
be the determining factor affecting its utilization and impact. A
tertiary model will have real impact on the food safety system only
when it is readily available, meets a specific industry need, is easy
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to use by the relevant practitioners, relates product characteristics
to microbial outcomes, and is validated for the case of interest.

Risk models
Risk modeling is a subject that requires a much broader discus-

sion than is possible here. However, it is important to recognize
that microbial models are a critical piece of risk models, but not
the only piece. A risk model encompassing the entire food sys-
tem for a given pathogen or food product must also include pro-
cess/systems models for the critical operations within the process,
and often “expert knowledge/estimates” are utilized in filling
in knowledge/data gaps in the system model. In that context,
van Gerwen and Zwietering (1998) described the importance of
comparing process variation against microbial model variation
when determining which model to use; given the complexity
of most food systems, it is desirable to use the simplest model
possible. Ross and McMeekin (2003) also noted that the un-
derlying uncertainty in microbial growth models (and assump-
tions made in the applications of those models) can translate into
large errors in risk estimates; therefore, it appears that highly reli-
able/accurate/precise estimates of microbial risk are not yet feasi-
ble, and risk models are still relatively qualitative tools for ranking
risks and making broad policy or regulatory decisions. To date,
the USDA and FDA have, to varying degrees, completed risk
assessments for L. monocytogenes, Salmonella, and Clostridium
perfringens in ready-to-eat meat and poultry products, and pro-
vided extensive documentation of the assumptions, sensitivities,
and conclusions of the risk assessments.

What Are the Key Limitations?
Clearly, utilization of microbial models in food process mod-

eling is limited by a variety of factors. This section attempts to
outline those factors in terms of the data domain, the experimen-
tal methodologies, model uncertainty, and the degree to which
state-of-the-art microbial modeling techniques are (or are not)
currently being integrated into food process models.

Data domain
Microbial model parameters are rarely estimated using a data

set that covers the entire domain of interest, and are even more
rarely validated using independent data across the domain of in-
terest (which is why using phenomenological or semimechanistic
models is preferred, as they behave better when interpolated and
extrapolated). Broth-based models are widely used and then ap-
plied to real food systems; however, assumptions that broth-based
growth models are conservative, because of the ideal growth con-
ditions, might not be valid (Tamplin and others 2005). For inac-
tivation, it is widely known that bacterial pathogens tend to be
more resistant to heat in real food products than in broth-based
media; however, there are relatively limited data available from
tests conducted in actual food products. Additionally, more com-
plex models mean more parameters, therefore requiring more
data. However, although microbial growth and inactivation data
are being published regularly, the global data set will always fall
short of covering the entire domain of interest for the broad food
safety system. Quite simply, generating microbial response data
in food systems is nontrivial and costly research.

ComBase (Baranyi and Tamplin 2004) is a significant and im-
portant initiative that is compiling thousands of data records for
microbial responses in food systems. ComBase is making avail-
able, for the first time, a unified assemblage of diverse data, which
will enable an entirely new line of investigations. As the database
expands, researchers will be able to conduct systematic, compar-
ative analyses of the available data for a given organism or sub-
strate, and evaluate the quality and scope of those data. However,

the power of the database is, of course, limited by the quality of
the original data and information published in the studies gener-
ating those data.

Methodologies
One of the largest problems affecting the quality and utility of

microbial response data and models is the lack of standard meth-
ods for conducting a given type of study. Standard methods exist
for various laboratory methods, such as sampling and enumer-
ating various types of bacteria. However, there are not standard
protocols for conducting, for example, thermal inactivation stud-
ies for Salmonella in meat or poultry products. Therefore, given
the challenge of limited data noted above, the problem is com-
pounded by the fact that data generated for a given organism in a
given substrate across 2 studies (from 2 different research groups)
are likely to have been generated using different treatment proto-
cols (and probably different serovars or cocktails of serovars of the
organism of interest). Additionally, many published studies fail to
report some of the critical experimental parameters, such as the
minimum limit of detection, which can have a major impact on
the interpretation of model fitting and validation.

Similarly, the statistical methodologies vary widely from study
to study. Logarithmic transformation of microbial counts before
fitting models can result in important differences in parameter es-
timates, when compared to models fit via nonlinear regression of
the model against the untransformed data. Also, the nonlinear re-
gression procedures, and initial estimates, can significantly affect
the parameter estimates and goodness of fit of a model. Similarly,
the criteria by which a given model or model terms are accepted
can impact the robustness of the model, particularly if the model
is overfitted to a given data set.

Additionally, if the primary model regression and the secondary
model regressions are conducted sequentially (a 2-step regres-
sion), important contributions to overall model uncertainty can
be ignored, and the overall model error can increase. Martino and
Marks (2007) showed that a 1-step, global regression (including
the secondary models in the primary model and conducting a
single regression) reduced the model error by 15%-20% when
compared to a 2-step regression for L. monocytogenes growth.

Ultimately, experimental microbial response data are needed
for fitting and validating microbial models. Given that the mea-
sure of interest, microbial counts, is a biological variable, repeata-
bility and reliability of experimental measures are critical issues.
Unfortunately, unlike physical measures, such as temperature and
pressure, there is no simple point-sensor for measuring bacterial
populations, so that measurements are still generally generated
by plating the substrate and counting colonies (or some indirect
measure, such as turbidity or optical density of a liquid substrate).
Such measurements will always entail a relatively large variabil-
ity. The long-term goal should be to move toward some standard
methods for common experiments, such as growth and thermal
inactivation studies. The short-term goal should be to require a
standard battery of parameters to be reported with any published
study in this field, and to ideally require that the microbial data
be deposited in ComBase to advance the overall scientific effort
in this field.

Variability and uncertainty
Many models are reported and used as if they are deterministic;

however, realistically, all microbial models have some degree
of underlying uncertainty. That uncertainty includes the original
experimental error, uncertainty in the primary model form and
regression, and uncertainty in the secondary model and fitting
procedures. Often, when confidence intervals are reported for
a given model, they neglect significant portions of the overall
model uncertainty.
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For example, the USDA PMP reports 95% confidence inter-
vals with computed growth curves; however, these confidence
intervals are computed based solely on the error in the secondary
(response surface model) fit, thereby neglecting the error in the
original experimental data and the error in the primary model
fit, which can actually be greater than the secondary model un-
certainty. In testing this specific case, for modeling the growth
of L. monocytogenes, Martino (2006) showed that the relative
contributions of the primary model regression, secondary model
regression, and experimental replications to the overall model
error were 1.02, 1.48, and 0.26 log(CFU/mL), respectively.

Additionally, the reported confidence intervals reflect the range
in which the mean value is 95% likely to fall. In applications, the
intervals of interest should be the much broader prediction inter-
vals, which capture 95% of the individual future outcomes. This
is necessary, if the model is to be used to relate the probability
of bad outcomes to the acceptable limits. Unfortunately, a great
portion of published values for microbial models fail to include
any statistical measures of uncertainty, and this creates a real lim-
itation in drawing meaningful conclusions when applying those
models to real applications.

Integration into process models
All of the analyses discussed previously focused on microbial

models as independent tools. In fact, most existing microbial
modeling tools are “stand-alone” tools that are not integrated with
process models. The user is either inputting fixed environmen-
tal variables or plugging in experimental time–temperature data.
None of the previously mentioned tertiary models is integrated
into process models. This is one of the great gaps in applying
microbial modeling tools to broader efforts in process modeling
and improvement.

With respect to integration of microbial models into process
models, Lebert and Lebert (2006) presented a conceptual struc-
ture comprising 3 elements: (1) process models for heat and mass
transfer, (2) predictive microbial models, and (3) the thermody-
namics of material properties. In their analysis of 5 previous stud-
ies that have reported such integrated models, only two actually
included all 3 elements, and both of them were applied only to
model food products (that is, broth or gel systems).

In a specific application to the real-world case of cooling
cooked hams, Amézquita and others (2005) integrated a growth
model for Clostridium perfringens growth into a heat transfer
model for product cooling. In this case, the predicted temperature
history of the product was the only input into the microbial growth
model; nevertheless, validation experiments indicated excellent
agreement between predicted and observed microbial growth,
with root mean squared errors ≤ 0.4 log(CFU/g) in 6 out of 7 of
their test scenarios.

Similarly, Pradhan and others (2007) and Watkins (2004)
both integrated a log-linear model for thermal inactivation of
pathogens into finite element solutions for combined heat and
mass transport during moist-air impingement cooking of chicken
breasts and meat patties, respectively. In both cases, good agree-
ment was reported in validations for both the physical and bio-
logical outcomes. However, in both of these studies, the thermal
inactivation model was a simple log-linear model that did not
account for changing substrate properties or other factors affect-
ing instantaneous inactivation rates during the process. Generally
similar approaches also have been applied to single-sided frying
of beef patties (Pan and others 2000; Ou and Mittal 2007).

As part of the multinational BUGDEATH project (James and
Evans 2006), Valdramidis and others (2006) went 1 step further.
They started with a sigmoidal-type primary model for thermal
inactivation of L. monocytogenes during surface pasteurization
and notably tested 3 different secondary models (response sur-

face, Arrhenius-type, and Bigelow-type) that included the effects
of both temperature and water activity, which can be particu-
larly important in processes where surface moisture conditions
are dynamic.

In a very interesting recent article, Mackey and others (2006)
reported on a study in which they heated a finite cylinder of
agar, with Salmonella Typhimurium embedded in the cylinder,
and subjected the cylinder to heating. They predicted and mea-
sured the temperature profile in the cylinder and predicted the
aggregate inactivation (given D and z from isothermal laboratory
tests). They then plated slices of the cylinder (using differential
components in the medium for the surviving Salmonella), to vi-
sualize the “ring of survivors” in the cylinder as an experimental
validation of the temporal and spatial change in microbial popu-
lation. Although the substrate was a simplified model food, and
the microbial model was only log-linear, the overall methodology
was novel and the results quite useful in assessing the integrated
model performance.

However, when researchers are focusing on developing and
testing process models (incorporating elements such as heat trans-
fer, mass transfer, viscoelastic mechanics), microbial models that
get included tend to be relatively simple. Therefore, the microbial
piece of the process model very rarely accounts for the effect of
changing product factors (beyond temperature) or adaptive mi-
crobial populations. As such, there remains a gap between the
state of the art in microbial modeling and the state of the art in
process modeling that needs to be bridged in order to fully real-
ize the potential of both modeling fields. There is a real need for
research that directly links and validates both the physical and
microbiological components of process models.

What Are the Future Opportunities?
A positive spin on the limitations described previously results

in a list of opportunities for improved application of microbial
models in food process modeling and process improvement ef-
forts.
� While most existing models treat microbial cells as either alive

or dead (a binary function), the reality is that there is a full spec-
trum of cell states ranging from healthy to nonviable, with the
population between those extremes exhibiting characteristics
of sublethal injury. There is significant opportunity to improve
population-based modeling of microbial inactivation by incor-
porating functions that account for this degree of injury within
the population. Sublethally injured cells can be significantly
more resistant to subsequent lethal treatment, and may also
have greater virulence (for pathogens).

� The introduction of ComBase has created a significant oppor-
tunity for improved synthesis and utilization of data sets within
a given domain of interest, and for analysis of the factors af-
fecting variability in those data sets.

� Given that there will never be sufficient experimental data to
develop and validate microbial models across all the important
application domains, there is great opportunity to apply ad-
vanced data synthesis and sampling methods (boot-strapping,
Monte Carlo simulations, and others) in order to generate im-
proved estimates of model parameters and the uncertainty of
resulting model predictions.

� As quantitative information about cellular functions and ge-
nomics continues to explode, there will be unique opportuni-
ties to connect that field of study (focused on the molecular
level) with the existing field of predictive microbiology (fo-
cused on the population level) to continue development of
microbial growth and inactivation models that better reflect
mechanistic understanding of the relationship between rele-
vant variables and the cellular and population responses.
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� Finally, there is immediate opportunity to bridge the gap be-
tween the knowledge domain about microbial responses to
environmental variables and the knowledge domain advanc-
ing food process modeling efforts. The knowledge and tools
exist on both sides of this gap, so that microbial modeling
knowledge can result in more significant and direct impact
in process improvement efforts. This will occur when process
models incorporate more sophisticated microbial models ac-
counting for varying effects of product properties and process
dynamics.
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