

Industry Perspectives on Non-O157

TIMOTHY A. FREIER, PH.D. IAFP 2011

Commitment to Food Safety

- The global meat industry is dedicated to providing high quality, nutritious and <u>safe</u> products
- American Meat Institute Food safety is not a competitive issue
- Data and best practices for food safety are routinely shared within the meat industry
- Cargill "Our food safety goal is to provide high quality, safe food, every time, everywhere."
- Many examples of collaboration between industry, government, consumer groups and academia
- Everyone has the same goal public health protection

E. coli non-O157 STEC

- STEC = Shigatoxin producing *E. coli*
- VTEC = Verotoxin producing *E. coli*
- EHEC = Enterohemorrhagic *E. coli*
- pSTEC = Pathogenic STEC
- ETEC = Enterotoxigenic *E. coli*
- EPEC = Enteropathogenic *E. coli*
- EIEC = Enteroinvasive *E. coli*
- EAEC = Enteroaggregative *E. coli*
- DAEC = Diffusely adherent *E. coli*

The "Big Six"

- O26, O45, O103, O111, O121, O145
- Approximately 50 other STEC serotypes have been known to cause illness

 Over 435 serotypes of STEC have been isolated from cattle, and over 470 from humans

Pathogenicity

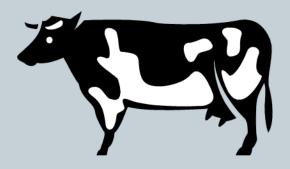
- STEC can cause illness ranging from mild diarrhea to severe illness with high mortality rates (Hemolytic-uremic syndrome or HUS)
 - O145 believed to be most likely to cause HUS
 - O104:H4 an EAEC combined with a STEC
 - × 909 cases of HUS/3941 illnesses, 52 deaths
 - Late-breaking session tomorrow

CDC Foodborne Outbreaks: 1998-2008

	O157	Non-O157
All Foods	298	12
Beef Related	93	0
% Beef Related	31%	0%

Source: CDC Foodborne Outbreak Online Database. http://wwwn.cdc.gov/foodborneoutbreaks/. Accessed February 18, 2011. Slide courtesy of Dr. Betsy Booren, AMI

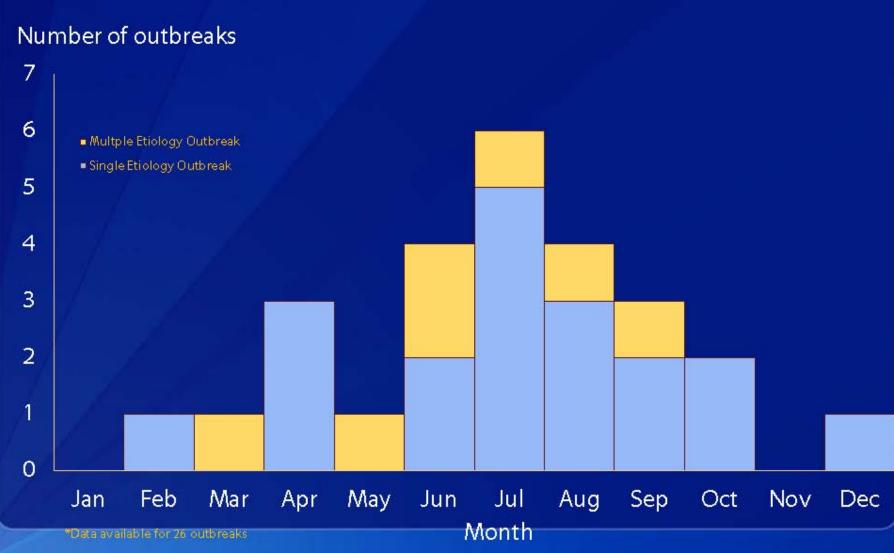
Critical Questions


- How closely does the ecology and physiology of non-O157 STEC mimic *E. coli* O157:H7?
- Do control measures for *E. coli* O157:H7 also work to control non-O157 STEC?
- How do we define STEC?
 - O By serology?
 - O By virulence?
- What is the public health risk of non-O157 STEC in meat?
- Will testing beef products benefit public health?

Ecology of non-O157 STEC

- Widely believed that ruminants, especially cattle, are a natural reservoir (often cited, rarely sourced)
- Probably also common in wild ruminants and other animals
- Seasonality?
 - Believed to track with O157
- Regionality?
 - May be slightly lower in west and upper midwest compared to southeast and northeast US (Bosilevac and Koohmaraie, 2011)

Ecology of non-O157 STEC


- Super-shedders (> log 4 / g feces) or Persistent-Shedders (positive fecal samples for > 3 consecutive months) are well known for *E. coli* O157:H7 and are believed to play an important role
 - Transmission within herds
 - Reinfection of animals
 - Total burden in the environment
 - Cause of positive ground beef and trim

Ecology of non-O157 STEC

- Limited data available for non-O157 STEC
- Study in dairy cattle (Menrath et al., 2010):
 - \circ 14 out of 140 cows were defined as super-shedders (*stx* positive by PCR screening on at least 4 consecutive months and in > $\frac{1}{2}$ of the total samples)
 - Found 24 different STEC serovars (O113:NM and O22:H8 most prevalent)
 - A cow kept in a herd with a super-shedder was 2 times as likely to test positive for stx
 - Prevalence was highest in summer, lowest in spring

Number of reported outbreaks of Non-O157 STEC Infection, 1990-2008, by Month*

Focus on Prevention

- The global beef industry is already applying a variety of interventions aimed at reducing *E. coli* O157:H7
- Interventions range from practices during dressing to prevent intestinal and hide contamination from reaching the carcass to specific pathogen-reducing interventions such as steam, hot water, oxidizing chemicals and organic acids
- The STECS are all very closely related no real reason to believe their resistances would be substantially different

Hide-On Carcass Wash and Sanitizing Assembly

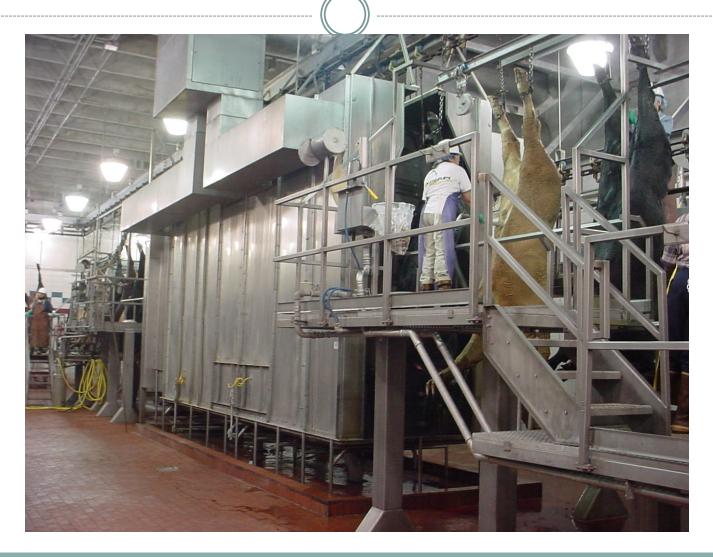
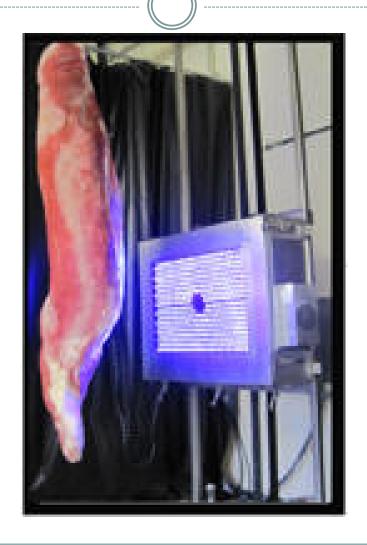



Photo from Chad Company, www.chadcompany.com

VerifeyeTM Fecal Identification System

Antimicrobial Spray Cabinets

Photo from Chad Company, www.chadcompany.com

Control of non-O157 STECs by Interventions

- Nonspecific interventions targeting *E. coli* O157:H7 also impact non-O157 STECs, supported by numerous studies:
 - ARS Clay Center study on commonly used antimicrobials (Kalchayanand et al., 2011)
 - ARS Wyndmoor brine-injected gas-grilled steak study (Luchansky et al., 2011)
 - o GMA pepperoni study (Enache and Mathusa, 2010)
 - o GMA apple juice study (Enache and Mathusa, 2010)

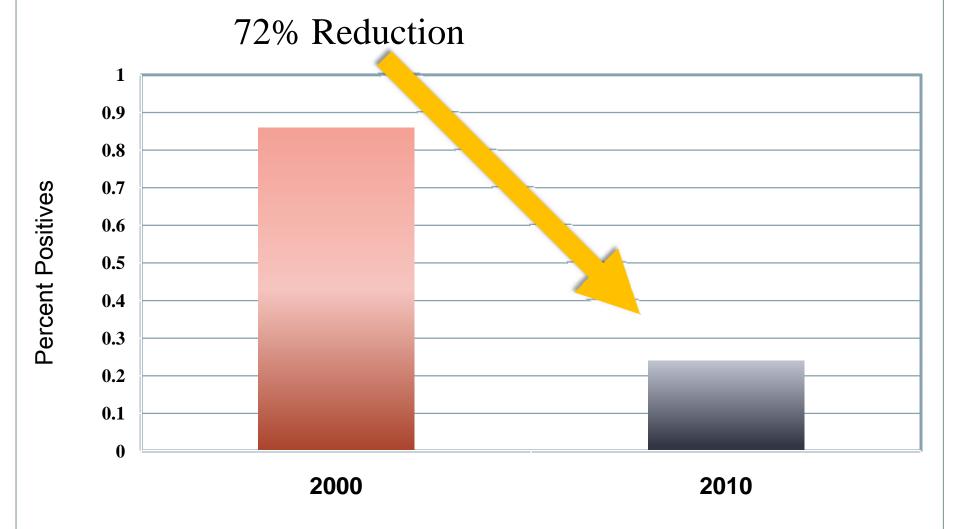
Commonly-Used Interventions

- Most relevant to the beef slaughter industry, work done at USDA Clay Center
- Will be covered in much more detail this afternoon in Symposium S9
- Conclusion: all antimicrobial compounds tested (sodium hypochlorite, peroxyacetic acid, FreshFx, lactic acid, activated hydrobromic acid and hot water) used by the meat industry appear to be effective against non-O157 STEC

Kalchayanand et al., 2011, final report to AMI

Control of non-O157 STECs by Interventions

- Vaccines such as Epitopix SRP vaccine are expected to be effective against non-O157 STECs, but the data is just beginning to be gathered
 - Siderophore Receptor and Porin proteins allow bacteria to scavenge iron from the host – highly conserved in pathogenic gastrointestinal bacteria
 - The vaccine causes antibodies to be produced against the SRP proteins, killing the bacteria by depriving them of iron
- Bacteriophage treatments of live animals may be possible, but finding and maintaining a cocktail of phage active against all pSTEC will be extremely challenging


E. coli O157:H7 as an Indicator/Index for STEC

- Indicator Organism indicates a process control failure
 - Coliforms indicate undercooking
- Index Organism signals an increased likelihood of presence of a pathogen from a similar source
 - Generic *E. coli* indicates presence of *Salmonella*

E. coli O157:H7 as an Indicator/Index for STEC

- The beef industry does extensive testing for *E. coli* O157:H7 at various stages of production
 - Some live animal and environmental testing
 - Hide testing
 - Carcass swabs
 - Extensive final product testing
 - **▼** Primal, trim and ground beef
- Preliminary results indicate that *E. coli* O157:H7 could serve as a very good process control indicator and a good index organism for all STEC

Prevalence of *E. coli* O157:H7 in Ground Beef*

^{*} Microbiological results of raw ground beef products analyzed for Escherichia coli O157:H7. Slide courtesy of Dr. Betsy Booren, AMI

Impact to Meat Industry of naming non-O157 STECs Adulterants

- How much product would need to be destroyed or cooked?
 - If screening for STEC (stx1/stx2), about 15 -24 % of samples could be expected to test positive
 - If screening for EHEC (stx1/stx2 plus eae) up to 5 % of samples might be positive
 - If screening for pSTEC (stx1/stx2, eae, subA and nle) with cultural confirmation, around 0.24 % positives expected (same as USDA 2010 E. coli O157:H7 prevalence)

(Hill et al., 2011; Bosilevac and Koohmaraie, 2011)

Current Methods

- Only a couple methods are commercially available as beta test versions and have had limited validation
- Most methods are a combination of enrichment and PCR, with or without immunoconcentration
 - Our preliminary work indicates it is best to clean up the sample first with IMS, then run PCR
- Without going to cultural confirmation (at least 5 days), many screens are going to be "false positives"
 - o Are genes all in the same bug?
- Without a finalized, validated method and a large baseline study, it is impossible to accurately predict what the impact to industry would be

Public Health Benefit

- Only a single outbreak of non-O157 STEC in the US has been linked to beef (3 mild illnesses, *E. coli* O26, Pennsylvania, 2010)
- CDC is beginning a major FoodNet Case-Control Study that will answer many questions about attribution and virulence
- USDA is funding a \$25 million AFRI grant that will fill many research gaps about ecology, physiology and detection
- Since the majority of non-O157 STEC illnesses appear to be due to environmental exposure and fresh produce consumption, control at the farm might have the biggest public health benefit

Non-O157 STEC Outbreaks¹ – U.S.

Year	State	Serogroup	Setting	Vehicle
1990	Ohio	O111	Home/family outbreak	Unknown
1994	Montana	O104	Home	Pasteurized milk
	Montana	O121	Camp	Unknown
1999	Texas	O111	Camp	Salad bar; Ice from barrel
	Connecticut	O121	Community	Recreational lake water
	Minnesota	O145	Daycare	Person-to-person
2000	Minnesota	O111	Camp	Animal contact - calves
	Washington	O103	Banquet hall	Water-based punch
	Utah	O111	Camp	Irrigation water
2001	Minnesota	O111, O51	Camp	Animal contact - calves
	Minnesota	O26	Swimming beach	Recreational lake water
	South Dakota	O111	Daycare	Person-to-person
2004	New York	O111	Community	Unpasteurized apple cider
2005	Nevada	O26	Daycare	Person-to-person
	Oregon	O145	Camp	Drinking water
	New York	O45	Correctional facility	Ill food workers

¹ Centers for Disease Control and Protection. http://blogs.cdc.gov/publichealthmatters/files/2010/05/nono157stec_obs_052110.pdf ● Accessed June 10, 2011. Slide courtesy of Dr. Betsy Booren, AMI

Non-O157 STEC Outbreaks¹ – U.S.

Year	State	Serogroup	Setting	Vehicle
2006	North Carolina	O45	Family farm	Animal contact - goats
	Nebraska	O121	Daycare	Person-to-person
	Utah	O121	Catered event	Lettuce
	Massachusetts	O26	Community	Strawberries, blueberries
2007	Maine	0111	Daycare	Person-to-person
	North Dakota	0111	Elementary school	Person-to-person
	North Dakota	0111	Private home	Ground beef
	Colorado	O121, O26, O84	Correctional facility	Pasteurized American cheese, margarine
	New Hampshire	O45	Fair – petting zoo	Animal contact
2008	Oklahoma	O111	Restaurant	Unknown
	Minnesota	0111	Daycare	Person-to-person
2010	Multi-state ²	O145	Food service	Romaine lettuce

Home

Ground beef

026

Multi-state³

¹ Centers for Disease Control and Protection. http://blogs.cdc.gov/publichealthmatters/files/2010/05/nono157stec_obs_052110.pdf • Accessed June 10, 2011.

² Centers for Disease Control and Protection. http://www.cdc.gov/ecoli/2010/ecoli_o145/index.html. Accessed June 10, 2011.

³ Food Safety and Inspection Service. http://www.fsis.usda.gov/News_&_Events/Recall_050_2010_Release/index.asp. Accessed June 10, 2011. Slide courtesy of Dr. Betsy Booren, AMI

Public Health Benefits

- While very few illnesses have been attributed to the non-O157 STEC/beef pairing in the US, it is known that these organisms can occur in cattle
- Consideration should be given to focusing on pathogenic STEC, not the "top 6" serotypes
- It should be possible to use the molecular risk assessment concept to develop rapid methods that would target the pathogenic STEC group
- Further risk assessment is necessary to determine if testing beef for additional STEC would have any impact on public health

Public Health Benefits

Results of a large ground beef survey by USDA ARS:

- Of 4,133 samples of commercial ground beef, 7.3 % were culture confirmed to contain STEC
- Only 10 samples (0.24%) had virulence factors that indicate a significant public health risk (pSTEC)
- Nearly 1/3 of the pSTEC isolated did not fall in "top 6"
- 4 of the 10 pSTEC would have been missed by the current FSIS non-O157 STEC method
- In these 4,133 samples, only 4 "top 6" isolates were found and most of these lacked virulence genes (were not pSTEC)
- "Narrowly focusing on only the described "top six" STEC will identify numerous isolates of little pathogenic concern while missing others that should not go unnoticed"

(Bosilevac and Koohmaraie, 2011)

Summary Comments

- Focus should be on prevention
- The industry is ready and willing to do what it takes to make safe product — this makes good business sense and it's the right thing to do
- *E. coli* O157:H7 can serve as an indicator of process control and an index organism that will cover all STECs
- Many significant research gaps remain
- A validated test method that will give results in a timely manner and find pSTEC does not exist, even in Beta format
- Reducing levels in live cattle may have the best impact
- All regulatory and industry efforts should be focused on public health outcome