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Numerous interplaying factors affect the host and/or the microbiota housed within the gastrointestinal tract, yielding different 
metabolic states.

http://mic.microbiologyresearch.org/content/journal/micro/


2

Selber-Hnatiw et al., Microbiology 2019

Received 03 June 2019; Accepted 21 August 2019; Published 04 December 2019
Author affiliations: 1Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada.
*Correspondence: Chiara Gamberi, ​chiara.​gamberi@​concordia.​ca
Keywords: human gut microbiota; microbiota–host interaction; gut ecology; metabolic networks; genetic regulation; diet; food additives; metabolic 
disease; obesity; type 2 diabetes; atherosclerosis; bariatric surgery; exercise.
Abbreviations: ABC, ATP Binding Cassette; AGB, Adjustable Gastric Banding; AMPK, 5` AMP-activated Protein Kinase; γ-BB, gamma-butyrobetaine; 
BIB, Bilio-pancreatic diversion with or without duodenal switch; BMI, Body Mass Index; BPD/DS, Bilio-pancreatic diversion with or without duodenal 
switch; CD, Crohn's Disease; CDI, C. difficile Infection; CFU, colony forming unit; CRC, Colorectal Cancer; CVD, Cardiovascular Disease; FFAR, Free 
Fatty-Acid Receptor; Fiaf, Fasting-Induced Adipose Factor; FMO, Flavin monooxygenase; FMT, Fecal Matter Transplant; FXR, Farnesoid X-Receptor; 
GB-IL, Gall Bladder Diversion to the Ileum; GI, Gastrointestinal; GIP, Glucose-dependent Insulinotropic Peptide; GIP, Gastric Inhibitory Peptide; GLP-1, 
Glucagon-like Peptide-1; GMT, Gut Matter Transplantation; GPCRs, G Protein-Coupled Receptors; GRAS, Generally Regarded as Safe; IL, Interleukin; 
LPS, Lipopolysaccharide; NAFLD, Non-alcoholic Fatty Liver Disease; NAPEs, N-acyl phosphatidylethanolamines; NASH, Non-alcoholic Steatohepatitis; 
NNS, non-nutritive Sweeteners; NOD, Non-Obese Diabetic; PYY, Peptide YY; qPCR, Quantitative PCR; r, ribosomal; RYGB, Roux-en-Y Gastric Bypass; 
SCFA, Short-Chain Fatty Acids; SG, Laparoscopic Sleeve Gastrectomy; SVSG, Vertical Sleeve Gastrectomy; T1D, Type 1 Diabetes; T2D, Type 2 Diabetes; 
TLRs, Toll-like Receptors; TMAO, Trimethylamine N-oxide; TMAO, Trimethylamine N-oxide; Treg, T regulatory; VBG, Vertically Banded Gastroplasty.

Foreword
This review is the result of a pedagogical project carried out 
during a third-year microbiology undergraduate course at 
Concordia University in Montréal. The purpose of this activity 
was to examine the web of metabolic interactions between the 
intestinal microbiota and the human host from a biological 
perspective, to learn relevant course topics actively. The 
endeavour taught the students how to research the primary 
scientific literature and identify relevant information to write 
a collaborative review as well as experience first hand the 
dynamics of a collaborative scientific undertaking. Thus, the 
final choice of cited sources was influenced by the pedagogical 
scope of this project and we apologize to the colleagues whose 
important contributions could not be cited.

Intestinal microbiota, genetics and 
environment
The digestive tract constitutes the largest surface area in the 
human body, with a size of 30–40 m2 in adults [1]. Such a 
massive expanse houses various microbial communities of 
obligate anaerobes such as genera Bacteroides, Clostridium, 
Lactobacillus, Escherichia and Bifidobacterium, as well as 
yeasts and other micro-organisms living in reciprocal and 
dynamic relationships with the human host (Fig. 1). Areas 
along the digestive tract are colonized by different microbial 
species with diverse abundance, with the highest microbial 
counts being found in the colon and distal gut. Indeed, 

1012 colony-forming units (c.f.u.) ml−1 were found in the large 
intestine and about 104 c.f.u. ml−1 of bacteria were found in 
the upstream small intestine (Fig. 1) [2]. These microbial 
communities carry out a wide range of biochemical activi-
ties that affect the human body, including metabolite produc-
tion, physiological regulation and interaction with the host’s 
cellular response and immunity [3–11]. Moreover, the intes-
tine is uniquely exposed to changing environmental factors 
such as diet, xeno-antibiotics, pathogens and other conditions 
relating to life history, e.g. physical activity [12]. Occupying 
such a variable niche, the intestinal microbiota responds to 
both environment and host status following the principles 
of biological adaptation and contributes in turn to the host’s 
fitness and homeostasis.

Microbial diversity is thought to contribute a functional 
reservoir of the microbiota–human entity and effectively 
expand the metabolic capabilities of the human host beyond 
those encoded by its own genome [13]. The gut microbiota 
may also participate in non-cell-autonomous developmental 
processes [14]. Moreover, the host genetics has been found 
to influence microbiota composition; thus, each individual 
may potentially be regarded as a unique ecosystem. Dynamic 
changes within the same individual, on the other hand, may 
be observed within healthy states in response to varying 
conditions (e.g. dietary changes [15–17]), while disturbances 
of the gut microbiota called dysbioses have been found in 
multiple diseased states. Well-studied disease-associated 
dysbioses include obesity [18, 19], type 2 and type 1 diabetes 
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(respectively T2D, T1D) [20, 21], atherosclerosis [22], 
cirrhosis [23] and cancer [24].

Micro-organisms present along the gastrointestinal (GI) tract 
support food breakdown and ferment complex carbohydrates 
and amino acids, produce short-chain fatty acids (SCFAs; e.g. 
acetate, propionate and butyrate) and contribute to lipid and 
amino acid metabolism, protein digestion and energy balance 
[25–37]. For example, Bifidobacteria and lactic acid bacteria, 
Lactobacilli, produce essential vitamins that humans cannot 
synthesize [38]. In the small intestine, species belonging to 
the genus Bifidobacterium utilize carbohydrates and fatty 
acids to synthesize vitamin K and water-soluble B vitamins 
de novo [38]. The gut microbiota was also found to metabo-
lize potentially toxic compounds such as indoles, derived 
from tryptophan in vivo breakdown. Notably, Clostridium 
sporogenes can convert indole to indole-3-propionic acid, 
a powerful antioxidant and potential Alzheimer’s disease 
treatment [39]. Therefore, the human gut microbiota is being 
extensively studied for its deep influence on global physiology 
and metabolism, for its adaptive potential and for overall 
effects on host pathophysiology [40–42].

Heritability of the intestinal microbiota
Microbial ancestry, in addition to diet and lifestyle, is thought 
to affect individual microbial diversity. Analyses of the faecal 
microbiome of 1126 twin pairs revealed a close relationship 
between the microbiota and heritable microbial taxa [43]. 
Moreover, the microbiota from identical twins was more 
closely related than that of fraternal twins [43–47], corrobo-
rating evidence that one’s genetic makeup may influence the 
type and taxonomical composition of the human gut micro-
biota and despite a small-sample study with contradicting 
results [48]. Heritable bacteria were similarly abundant 
among genetically close relatives and included, among others, 
species belonging to the bacterial family Christensenellaceae 
and archaeal methanogens [49]. Interestingly, the pres-
ence of Christensenellaceae also distinguishes omnivorous 
mammals from strict herbivores and carnivores [50]. The 
micro-organisms themselves actively contribute to shape the 
consortium by secreting regulatory peptides and molecules 
influencing the metabolic profile of co-existing species. 
Species cross-talk is thought to underlie the observation that 
individuals with lean body mass index (BMI) harboured anti-
correlated abundance of the families Methanobacteriaceae 
and Dehalobacteriaceae, Firmicutes and Tenericutes vs the 
families Bacteroidaceae and Bifidobacteriaceae [49].

To minimize the effects of host genetics and test a causal link 
between microbial consortia and metabolic state, the micro-
biota of patients with Crohn’s disease (CD) has been studied 
in genetic relatives (twins, parents and non-twin siblings) 
using DNA fingerprinting [51, 52]. A dysbiotic signature 
was present in twin CD patients, and absent in unaffected 
relatives, despite their shared genetic background [51]. CD 
twins displayed under-represented butyrate-producing 
bacteria, including Faecalibacterium prausnitzii [53], Bifido-
bacterium adolescentis [54], Dialister invisus and unknown 

species of Clostridium cluster XIVa, as well as an increase 
of Ruminococcus gnavus [51, 55].Unaffected relatives of CD 
patients harboured abundant mucin-degrading bacteria 
phylogenetically related to Clostridium nexile, and Rumino-
coccus torques (both belonging to non-butyrate-producing 
members of Clostridium cluster XIVa) and Clostridium comes 
[51]. Clostridia have been previously linked to CD [56, 57], 
and C. comes may contribute to CD pathogenesis through its 
interaction with host immunity [51, 58]. Thus, a shift in the 
normal microbial community and altered mucin degradation 
was found to result in dysbiosis and systemic inflammation, 
all contributing to the CD presentation.

Microbiota-induced changes of gene expression
Gut colonization by the microbiota was found to elicit 
transcriptional changes in the intestinal cells. Comparative 
transcriptomics of fractionated epithelia from the jejunum, 
ileum and colon derived from germ-free mice and siblings 
colonized in adulthood showed regional specificity for 86 % 
of 2256 microbiota-responding genes, including metabolic 
genes in the colon and immune-related genes in the ileum 
[59]. Upon microbial colonization, functions related to 
protein biosynthesis became enriched in the crypts – those 
related to cholesterol and lipid metabolism in the ileum tip 
and those related to glutathione-S-transferase activity in the 
colon tip – while amino-acid transport and glycogen metabo-
lism appeared to be reduced, suggesting regional, and likely 
cell-specific, differences in the response to microbiota [59]. 
While the proximity of the intestinal mucosa to the micro-
biota may easily justify reciprocal influence, growing evidence 
points to deeper physiological connections operating through 
the host hormonal signalling.

Diet influences the intestinal microbiota
Among the environmental factors interacting with the micro-
biota, the host’s diet can strongly influence the intestinal 
microbial population. From a biological viewpoint, microbial 
adaptation to available nutrients may improve the health and 
survival of the host–microbiota unit in different climates and 
in response to seasonal fluctuations of food supplies. Indeed, 
observations of early development have indicated that the 
gut microbiota responds dynamically to the changing diets 
of developing infants [45]. Regardless of age and genetic 
background, diet seemed to contribute to the observed 
geographical differences in gut microbiota composition 
among different human populations [19, 60–64]. In adults, 
fibre-rich diets correlated with the prevalence of Prevotella, 
Bifidobacteria and Lactobacilli, high-carbohydrate diets with 
Methanobrevibacter, Prevotella and Candida, and high-fat-
and-amino-acid-rich diets with Bacteroides [65, 66]. When 
fed an obesogenic ‘lard diet’ high in saturated fat, both human 
and mice subjects gained weight, became insulin-resistant, 
and displayed inflammation in white adipose tissue and 
immune activation, as compared to individuals fed identical 
calories from a diet high in polyunsaturated fats. Western-type 
diets rich in fatty acids were found to increase the expression 
of the Toll-like receptors (TLRs) and alter the permeability 
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of the intestinal barrier, promoting inflammation, which has 
been described in detail elsewhere [63, 67–71].

Food additives
While the global effects of diet on the intestinal microbiota are 
well recognized, much less is known about the specific effects 
of single dietary components, including the food additives 
used in modern-day chemical engineering, food optimization, 
storage and distribution. As such, there is growing concern for 
the potential to influence the human microbiome directly or 
indirectly and harm host metabolism through the use of food 
additives. Emulsifiers and surfactants such as polysorbate-80 
and carboxymethylcellulose, used to texturize and stabilize 
emulsions in preserved foods for human consumption, are 
recognized by the United States Food and Drug Administra-
tion (US FDA). However, neither additive is found in the US 
FDA list of generally recognized as safe (GRAS) products for 
consumption and negative effects were recently identified. 
In mice, polysorbate-80 and carboxymethylcellulose were 
found to decrease microbiota diversity and Bacteroidales 
levels, increase the representation of mucolytic bacteria, 
halve the protective mucus layer of the intestinal epithelium 
and reduce the production of anti-inflammatory n-butyrate 
[72]. Because these effects were absent in germ-free mice, and 
could be transferred to other animals via microbiota trans-
plantation, emulsifiers appeared to act through the intestinal 
micro-organisms [72]. Further investigation of the human 
microbiota ex vivo revealed that emulsifier administration 
changed the microbiota transcriptional activity, especially 
increasing expression of the pro-inflammatory lipopolysac-
charide (LPS) and flagellin genes [73]. Higher flagellin expres-
sion is predicted to increase bacterial motility and the capacity 
to penetrate the protective mucus layer of the intestine [73]. 
Moreover, flagellin activated the host’s TLR5-dependent 
inflammatory response in vivo, which in turn induced he 

secretion of antibacterial peptides, and may contribute to 
the observed taxonomical shifts in the microbial consortia 
in polysorbate-80- and carboxymethylcellulose-administered 
animals [73]. Thus, it appears that emulsifiers cause a cascade 
of biological effects simultaneously in the microbiota and 
host, and impinge on the host’s genetic resilience to offset 
detrimental changes and maintain balance. Indeed, wild-type 
mice displayed low inflammation in response to emulsi-
fiers; however, animals genetically susceptible to intestinal 
inflammation and carrying interleukin-10 (IL-10) or TLR5 
mutations showed extreme disruption of the microbiota 
composition and developed severe colitis [72].

Non-nutritive sweeteners (NNSs) are non-caloric alternatives 
to sugars that are relatively indigestible and pass through 
the digestive system without being assimilated. They are 
commonly used in diet soft drinks, chewing gum and sugar-
free desserts. Despite their long-standing use to offset obesity, 
it seems that they may, paradoxically, contribute to it and to 
other metabolic disorders through at least two pathways 
[74–76]. The first involves disruption of taste perception and 
energy intake in the host and is independent of the microbiota 
[77] thus, is not further discussed here. A second pathway, 
however, appeared to be linked to the gut microbiota. NNS 
consumption in mice increased fasting glycaemia and glucose 
intolerance, regardless of diet, effects that could be transferred 
to other animals via faecal transplantation [78]. Studies in rats 
have shown that three common NNSs, saccharine, sucralose 
and aspartame, also affected the microbiota [79–81]. These 
earlier observations were confirmed in subsequent studies 
using rodents and swine (reviewed in [82]). In both mice and 
humans, NNSs altered the taxonomical composition of the 
intestinal microbiota and changed microbial gene activity and 
metabolism. Despite attenuating the increase in Firmicutes-to-
Bacteroidetes ratio normally seen as a consequence of high-fat 

Fig. 1.  Bacterial distribution and abundance in the human lower gastrointestinal tract. The GI tract contains environments with distinct 
conditions that favour colonization by different micro-organisms. This figure highlights the changes of pH in the stomach and intestine 
with the relative microbial counts and gives examples of abundant resident taxa [332–339].
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diets, aspartame consumption heightened total bacteria (espe-
cially Enterobacteriaceae and Clostridium leptum), upregu-
lated genes encoding mono- and oligo-saccharide uptake 
components, and was also processed into propionate that 
stimulated gluconeogenesis and increased insulin sensitivity 
[83]. Saccharin consumption augmented species of the order 
Bacteroidales, reduced members of the genus Lactobacilli and 
differentially altered taxa of the order Clostridiales in ways 
resembling the changes accompanying T2D [82]. Many NNSs 
are bacteriostatic for several species, including those involved 
in the aetiology of dental caries [81, 84–88]. Saccharin also 
decreased the expression of phosphotransferases involved 
in carbohydrate uptake [82], which may conceivably lessen 
some bacterial fermentative capabilities. Microbial metabolic 
changes were associated with the host’s higher energy uptake 
and elevated glucose and lipid synthesis, all recognized 
obesity risks. Saccharin-induced changes in the micro-
bial populations were reproducible in host-free contexts, 
suggesting direct effects on the microbial metabolism [82]. 
Moreover, saccharin-grown microbial cultures induced the 
above host metabolic changes when transplanted in animals, 
even without saccharin administration [82]. Human subjects 
were found to respond to saccharin differentially. In saccharin 
responders, consuming NNSs clearly altered the gut micro-
bial composition in as little as 4 days, suggesting that higher 
energy harvest from dietary sources could rapidly increase 
glycaemic levels and glucose intolerance [78]. The microbiota 
perturbation appeared reversible upon cessation of saccharin 
administration, at least in some individuals [82]. Some NNSs 
can be metabolized by both microbiota and host [89], likely 
with varying individual efficiency [82, 90]. Corroborating the 
link between the microbiota and host genetics, the individual 
capacity to respond to saccharin correlated with the micro-
biota composition in responders vs non-responders prior to 
saccharin administration [82]. Given the extreme microbial 
metabolic diversity and observations of differential meta-
bolic response even in genetically related bacterial strains 
[81], it is conceivable that specific NNSs may preferentially 
affect certain taxa and contribute to the observed patterns 
of dysbiosis. The superposition of such adaptive responses, 
however, appears to converge into fewer resulting metabolic 
(possibly diseased) states.

Microbial SCFAs and their effects 
on the gut microbiota and host 
metabolism
SCFAs are prominent byproducts of the fermentation of 
indigestible polysaccharides from dietary fibre by the intes-
tinal microbiota. They are found in the large intestine in 
high tens-of-millimolar concentrations [91, 92]. The taxo-
nomical composition of the gut microbiota is thus expected 
to determine the fermentation type. SCFAs can be utilized 
as an energy source by the colonocytes [92–97]. N-butyrate, 
for example, is up-taken by mitochondria and undergoes 
aerobic fatty acid oxidation to produce acetyl-CoA, which 
enters the Kreb’s cycle [98]. SCFAs can become substrates 

for cholesterol and long-chain fatty acid synthesis, as well 
as precursors for gluconeogenesis [28]. SCFAs may serve as 
building blocks, presumably through their conversion into 
glucose, although this pathway may be secondary to utilizing 
glucose from other sources [28]. SCFAs may also function as 
signalling molecules, possibly via chromatin acetylation, and 
affect the host’s lipid and glucose levels, liver, skeletal muscle 
and immunity [99–108]. In mice, gut-generated propionate 
prompted hepatic gluconeogenesis, while butyrate and acetate 
were lipogenic [28]. Butyrate regulates claudin 1 and mucin 
gene expression and other tight junction proteins [109]. Func-
tional tight junctions are essential to the intestinal barrier, the 
integrity of which is important for immune balance to reduce 
the risk of endotoxemia (the release of toxic pathogen-derived 
metabolites in the blood), minimize inflammation and reduce 
adipose cell activation [110, 111].

In dysbiosis, aside from host-related factors e.g. diet and 
exercise, altered cocktails of microbially-produced SCFAs 
may influence obesity, insulin sensitivity, weight gain and 
retention, possible comorbidities, and numerous health risks 
[28, 35, 107, 112]. Fermenting complex carbohydrates and 
plant-derived polysaccharides, Firmicutes and Bacteroidetes 
produce up to 70 % of the total SCFA intake [28]. Firmicutes 
are the main producers of n-butyrate, while Bacteroidetes are 
the main producers of acetate and propionate [28, 113, 114]. 
SCFAs bind to G protein-coupled receptors (GPCR) in the 
host cells. Among these, GPR41 (also called free fatty acid 
receptor, FFAR3) and GPR43 (FFAR2) display 41 % of identity 
at the primary sequence level [115]. GPR41 and GPR43 bind 
acetate, propionate and butyrate at low affinity (EC50=0.5 mM) 
and are expressed in many tissues, including white adipose 
tissue and pancreatic β and α cells, and mediate inflamma-
tion and species-specific responses [115–118]. Studies in mice 
have implicated GPR41 and GPR43 in colitis, asthma and 
arthritis [113, 119–126]. GPR43 has been directly linked with 
obesity [113, 124, 125, 127–129].

SCFAs were also found to influence host hormonal signal-
ling [113, 130]. Weight control and energy metabolism are 
regulated in part by the anorexic peptide hormones glucagon-
like peptide-1 (GLP-1), glucose-dependent insulinotropic 
peptide (GIP) and pancreatic peptide tyrosine tyrosine (PYY) 
normally secreted by enteroendocrine cells. GLP-1 and PYY 
are known to influence levels of satiety and feeding behav-
iour, generally promoting weight loss and hypoglycaemia, 
and lowering the diabetes risk [113, 131]. SCFAs stimulated 
PYY and GLP-1 secretion [132], improved glucose tolerance, 
increased intestinal gluconeogenesis and decreased weight 
gain [133, 134]. In lean mice, oral supplementation with 
butyrate and propionate stimulated pro-anorexic hormones, 
improved insulin sensitivity, and regulated both satiety and 
body weight, even when combined with a high-fat diet [135]. 
Infusion of acetate and butyrate increased GLP-1 and PYY 
secretion independently of GPR41 and GPR43, suggesting 
that SCFAs may be utilized as energy sources by colonic 
enterocytes [107, 135]. In rat colon, GPR43 and GPR41 ligand 
binding had no effect on GLP-1 secretion and glucose toler-
ance, although a GPR41 agonist elevated PYY release [94]. In 
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both humans and mice, GPR41 activation promoted satiety-
inducing leptin and PYY production [26, 136, 137], while 
GPR43 activation suppressed insulin-dependent fat accu-
mulation [125]. When fed high-fat diets, GPR43-deficient 
mice (GPR43−/−) displayed higher weight gains than control 
mice and were also obese on a normal diet [125]. Conversely, 
adipocyte-specific GPR43 overexpression produced leaner 
mice than the wild-type, due to suppressed insulin signal-
ling in adipose tissue [125]. Hence, GPR41 and GPR43 have 
direct effects on body weight and feeding. The response to 
microbiota-produced SCFAs via GPR41 and GPR43 recep-
tors appeared to be conserved in many mammalian species. 
Important to control body weight and glycaemia, propionate 
activated intestinal gluconeogenesis via fatty acid receptor 
GPR1/FFAR3 signalling, while butyrate instead functioned 
through cyclic AMP, and succinate functioned through an 
alternative mechanism [133].

Two intestinal SCFA producers, Bacteroides thetaiotaomicron 
and Methanobrevibacter smithii, could affect GPR41 activity 
[26]. Upon B. thetaiotaomicron and M. smithii inoculation, 
germ-free and conventional knockout GPR41−/− mice exhib-
ited slower weight gain and significant weight reduction, 
as compared to the controls, possibly because of decreased 
nutrient absorption [26]. GPR43−/− GPR41−/− double knockout 
mice fed a high-fat diet displayed aspects of global improve-
ment in pancreatic β-cell function, including restored glucose 
homeostasis and greater insulin secretion, in addition to 
improved glucose tolerance [113, 138, 139].

Microbiota and environment
Host body mass and obesity
Obesity is considered to be a complex and largely preventable 
condition with increasing prevalence worldwide. Caused by 
a growth in adipose tissue and increased BMI [140], obesity 
can lead to additional conditions, including diabetes mellitus, 
insulin resistance, dyslipidemia, hypertension, atheroscle-
rosis and epigenetic dysregulation [141]. Animal models of 
obesity have suggested that the gut microbiota composition 
may influence obesity independently of diet, likely due to 
the differential capacity of extracting monosaccharides and 
energy from food in obese vs non-obese individuals and 
the induction of hepatic lipogenesis [35, 142–144]. Indeed, 
the presence of a microbiota impacts on body fat, as faecal 
transplant from conventionally reared mice into germ-free 
animals of the same genotype increased total body fat [37]. 
Homozygous mice mutants in the leptin gene are a widely 
used obesity model (C57BL/6Job/ob, herein ob/ob). Different 
compositions of the faecal microbiota were found in the 
ob/ob mice homozygotes, their lean ob/+ and +/+ siblings, 
and their ob/+ mothers fed the same chow diet [25]. Specifi-
cally, the ob/ob mice harboured 50 % less Bacteroidetes and a 
greater proportion of Firmicutes. Supporting the conclusion 
that obese mice have distinct metabolic potential and higher 
lipogenesis, microbial obesity-associated genetic tags were 
enriched in carbohydrate-degrading enzymes, e.g. glycoside 
hydrolases, ATP-binding cassette (ABC) transporters and 

various fermentation enzymes [25]. Similar results were 
obtained in human cohorts. Terminal restriction fragment 
length polymorphism and next-generation sequencing 
analyses of the faecal microbiome from obese and non-
obese Japanese subjects revealed that the former harboured 
less Bacteroidetes and increased Firmicutes compared to the 
latter [145]. In contrast, 16S ribosomal (r)RNA sequencing 
data from the Human Microbiome Project [146] did not show 
a quantitative association between BMI and the Firmicutes-
to-Bacteroidetes ratio, or the relative abundance of the five 
major gut bacterial phyla, namely Bacteroidetes, Firmicutes, 
Actinobacteria, Proteobacteria and Fusobacteria [147]. This 
initial discrepancy suggested that multiple factors may 
contribute to obesity, some of which may escape detection, 
depending on host characteristics, co-morbidities and/or 
analysis sensitivity [148]. Moreover, BMI values may need to 
be tailored to different ethnicities [149]. Despite discrepancies 
and possible individual and/or population differences [150], 
there is accumulating evidence pointing to the obese state 
being often characterized by altered Firmicutes-to-Bacteroides 
ratios [21, 25, 35, 145, 151–156], deviating from the 51.9 % 
Firmicutes to 37.68 % Bacteroidetes ratio generally considered 
healthy [157]. Metanalyses of the microbiota from lean and 
obese subjects with inflammatory bowel diseases have indi-
cated a trend for reduced diversity in obese vs lean patients, 
regardless of the Firmicutes-to-Bacteroidetes ratio [148].

Obese mice and humans tend to respond to a switch to 
low-calorie diet inducing weight loss by adjusting their 
Firmicutes-to-Bacteroidetes ratio [34]. Moreover, the human 
obese microbiota can reproduce the obesity profile when 
transplanted into mice [158]. Diet composition, adiposity and 
the microbiota, however, appear to interact in many reciprocal 
ways that are challenging to study. Using a murine model 
and keeping parameters such as individual weight controlled, 
dietary fat appeared to influence the microbiota. Both body 
weight and diet seemed to affect representation of the genus 
Allobaculum [159], Firmicutes that respond to dietary fat 
[110]. Circulating leptin correlated with mucin production 
by the enterocytes both in vivo and in cell culture [160, 161] 
which reduced representation of the mucus consumers Akker-
mansia and Allobaculum and favoured Mucispirillum, a group 
of mucus colonizers [158]. In human obese patients, the genus 
Mucor, normally prevalent in non-obese subjects, increased 
after diet-induced weight loss [162]. Population analysis of 
169 obese and 123 non-obese Danish individuals showed that 
the former displayed a ‘low-gene-count’ (<480, 000 genes, with 
an average of 380,000), whereas healthy subjects displayed 
‘high-gene-counts’ (average 640, 000) [163], implying that 
the obese state is associated with differential microbial 
diversity and reduced diversity. The low-gene-count obese 
microbiota featured increased species representation from 
the phyla Proteobacteria and Bacteroidetes, with potential pro-
inflammatory microbes such as R. gnavus (which has been 
linked to IBD) [51, 164], as well as Parabacteroides, Campy-
lobacter/Shigella, Dialister, Porphyromonas, Staphylococcus 
and Anaerostipes. The high-gene-count lean microbiota, on 
the other hand, included Verrucomicrobia, Actinobacteria 
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and Euryarchaeota, with abundant anti-inflammatory species 
such as F. prausnitzii, Anaerotruncus colihominis, Butyrivibrio 
crossotus, and species of the genus Akkermansia. The high 
ratio between Akkermansia and R. torque/gnavus appeared to 
favour a resilient microbial ecosystem producing high levels of 
n-butyrate, displaying methanogenic/acetogenic metabolism 
and high H+, and producing scarce hydrogen sulfide, associ-
ated with overall reduced incidence of metabolic disease and 
obesity [163]. Compared to the lean high-gene-count one, 
the low-gene-count obese microbiome had genetic potential 
to produce noxious metabolites through dissimilatory nitrate 
reduction and aromatic amino acid degradation, consumed 
hydrogen to reduce sulfate, and displayed improved oxidative 
stress response and higher mucolytic capacity, which presum-
ably facilitate its retention in the intestinal environment 
[163]. Note, high levels of hydrogen sulfide inhibit butyrate 
oxidation and colonocyte mitochondrial function and favour 
pathobiont proliferation [165]. In contrast, the high-gene-
count lean microbiome had potential for high organic acid 
and hydrogen production, with the latter being utilized for 
methano- and aceto-genesis [163] . In human subjects, higher 
levels of faecal SCFAs were also associated with central obesity 
(i.e. waist circumference), hypertension, subclinical measures 
of cardiometabolic disease (e.g. inflammation, glycaemia and 
dyslipidemia) as well as a measure of gut permeability (i.e. 
lipopolysaccharide-binding protein) [166]. Inflammation, 
in turn, promotes insulin resistance and hyperphagia (over-
eating) [68]. Microbially produced SCFAs may be converted 
into more complex lipids in the liver [107] and are ultimately 
deposited into adipose cells, contributing, when in excess, 
to the pathophysiology of obesity [157]. The prototypic 
Western diet was observed to support a bloom of Firmicutes 
(e.g. Eubacterium dolichum) and mollicutes at the expense 
of Bacteroidetes. Mollicutes can efficiently metabolize simple 
sugars that are abundant in the distal guts of obese individuals 
[157], which were found to be proportional to adiposity levels 
therein [167]. Transplantation of just E. dolichum (similar to 
the entire intestinal microbiota) from obesity-prone rats into 
healthy normal animals was sufficient to increase markers 
of adipogenesis and lipogenesis [157, 168]. Finally, bacte-
rial dysbiosis seemed to be only one of the features of the 
obese microbial consortia. In fact, different proportions of 
fungi were also found, with Eurotiomycetes decreased to less 
than 1 %, increased populations of members of the families 
Dipodascaceae and Saccharomycetaceae (class Saccharomy-
cetes, phylum Ascomycota) and class Tremellomycetes, and 
correlated with poor-quality host glucose and lipid metabolic 
profiles and metabolic disorders, including insulin resistance, 
as compared with non-obese counterparts [162]. Conversely, 
the fungal families Mucoraceae, Nectriaceae, Ceratocysti-
daceae, Corticiaceae, Debariomycetaceae and Hypocraceae, 
and the genera Mucor, Penicillium, Monilliela and Ceratocystis 
(classes Agaricomycetes and Eurotiomycetes, phylum Zygomy-
cota) were found to be associated to microbiota protective 
against metabolic disorders [162]. Knowledge of the response 
of other components of the microbial consortia (e.g. viruses) 
is very limited.

Diet, microbiota and obesity
Obese and diabetic individuals were found to have high 
capacity for dietary lipid absorption and elevated intracel-
lular bile acids, which inhibit the synthesis of hepatic bile acid 
[169, 170]. The microbiota can affect triglyceride storage and 
release in response to lipid ingestion and energy demands, 
and participates in bile acid synthesis. In fact, secondary 
bile acids are first synthesized by the liver and then micro-
bially processed [171]. Lactobacillus and Bifidobacteria can 
produce bile salt hydrolase, the enzyme that catalyzes bile acid 
deconjugation, reducing lipid emulsification capacity [172], 
and affects the host systemic lipid metabolism, lowering 
cholesterol and the uptake of certain lipids [173]. Indeed, 
changes in microbial consortia were confirmed to alter bile 
acid metabolism in the ileum [174]. Interestingly, it has been 
proposed that bile acid metabolism may be an example of 
microbial long-range communication reminiscent of quorum 
sensing [171].

In contrast to the lipid and bile acid-related energy storage 
mechanisms mentioned above, fatty acid oxidation was 
explored in a lean mouse phenotype to investigate how gut 
microbes affect energy harvest. Germ-free mice were less 
likely to become obese when fed an obesogenic diet and were 
found to have higher-than-normal phosphorylated (active) 
5′ AMP-activated protein kinase (AMPK) in muscle and 
liver cells [175]. AMPK, upon sensing low energy charge, 
stimulated cellular catabolism and fatty acid oxidation, while 
simultaneously inactivating anabolism [176]. Moreover, obese 
mice, both germ-free and conventional, displayed reduced 
capacity for enzymatic fatty acid oxidation and higher levels 
of lipogenic factors, including fasting-induced adipose factor 
(Fiaf), an inhibitor of lipoprotein lipase that promotes fatty 
acid uptake and oxidation in adipocytes [175, 177]. Recolo-
nization of the intestine of germ-free mice with B. thetaio-
taomicron inhibited Fiaf gene expression and increased both 
lipoprotein lipase activity and triglyceride storage in adipo-
cytes [37, 178].

N-acyl phosphatidylethanolamines (NAPEs) are lipidic 
precursors that are normally synthesized by the enterocytes in 
the proximal intestine in response to feeding and are hydro-
lyzed to N-acyl-ethanolamides. Endogenous or administered 
NAPEs accumulate in the hypothalamus and function as 
anorexigenics, modulating food intake and reducing adiposity, 
insulin resistance and hepatic lipid accumulation [179–181]. 
Enterocytes from obese patients do not produce sufficient 
NAPEs. Additionally, high-fat diets may inhibit NAPE secre-
tion [180, 182, 183]. Thus, bacteria from commensal strain 
Escherichia coli Nissle 1971 were engineered to produce heter-
ologous NAPEs from Arabidopsis thaliana to test the remedy 
potential of boosting NAPE production by means of the gut 
microbiota. Oral administration of NAPE-producing E. coli 
to C57BL/6J mice fed an obesogenic diet promoted the main-
tenance of body weight and decreased adiposity compared 
to controls, as long as the processing enzymes were present 
[181]. Remarkably, the positive effects persisted for up to 4 
weeks after the last administration and were slowly reversed, 
with the eventual return to the obese state [181]. While these 
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results have proven, in principle, the potential of manipulating 
the microbiota to manage diet-induced obesity and associ-
ated metabolic diseases, adaptive microbial flexibility may 
in practice challenge the use of this strategy in therapeutic 
settings. Potential hurdles may reside in the distinct metabolic 
differences of the engineered bacteria once they occupy the 
human intestinal niche, where the availability of synthesis 
building blocks may vary and substrate or micro-organism 
competition may be present. A cautionary tale came from 
the realization that NAPE-producing E. coli yielded different 
profiles of NAPE compounds in laboratory growth conditions 
vs in animals, indicating that some biosynthetic capabilities 
may be context-dependent [184].

Antibiotics and obesity
Antibiotics can modulate the microbial gut communities in 
the short and, possibly, the medium to long term [185, 186]. 
Antibiotic administration was often found to be obesogenic to 
the treated mice [187]. Indeed, low-dose antibiotics have been 
used to boost livestock growth [188]. Compositional changes 
of the microbiota in response to low-dose penicillin treatment 
in early life were found to be transient, and the microbiota 
gradually renormalized after cessation of administration. 
However, the associated metabolic changes included altered 
ileal expression of obesity-promoting genes and were, instead, 
long lasting [187]. In a different model, cefoperazone admin-
istration rapidly reshaped both the microbial community and 
its activity (measured as concentrations of sugar alcohols, 
SCFAs and bile acids), which eventually reached conditions 
of high carbohydrate and low SCFAs, which favoured spore 
germination and colonization of pathogenic Clostridium 
difficile [189]. Microbiota composition improved 6 weeks 
post-treatment, approaching a metabolic profile resembling 
untreated age-matched animals. Underscoring that antibiotic 
treatment can permanently alter the intestinal ecosystem, 
remodel the microbiota structure and modify its metabolic 
potential, the new consortium was no longer susceptible to 
C. difficile infection and both microbiome and metabolomic 
analyses of post-treatment animals remained distinct from 
both the age-matched control and the pretreatment status 
[189].

Co-morbidities
Obese individuals are more prone to develop T2D and 
colorectal cancer (CRC) than non-obese subjects [111, 190]. 
Onset of sporadic colorectal cancer may be facilitated by 
the activity of colonic microbiota [191–193], while certain 
intestinal microbiota compositions may be protective [24]. 
Several potential micro-organism targets may be relevant to 
CRC, including Bacteroides fragilis (associated with tumori-
genesis, producing DNA-damaging genotoxins), and other 
pathogenic bacteria, commonly present in adenomas and 
CRC, such as Fusobacterium nucleatum, Porphyromonas 
asaccharolytica, Parvimonas micra, Prevotella intermedia, 
Alistipes finegoldii and Thermanaerovibrio acidaminovorans 
[193–195]. One study demonstrated that compositional 
changes of gut bacteria paired with cell stress from innate 

immunity activation promoted tumour growth in the colon 
[196].

Microbiota and diabetes
T2D is a rising disease for which genomic studies have 
indicated decreased diversity and functional shifts of the gut 
microbiota [197, 198]. With a presentation of high glycaemia, 
altered lipid metabolism and high blood pressure that link it 
to obesity, and numerous metabolic dysfunctions, T2D affects 
almost 350 million people worldwide [143, 198–201] and is 
predicted to become one of the top 10 causes of death by 2030 
[202]. T2D patients also display immunological abnormali-
ties, including reduced T regulatory (Treg) cells and chronic 
inflammation, similar to diet-induced obese mice [203, 204]. 
T2D subjects and mice models often present increased 
intestinal permeability with bacteraemia and activation of 
the inflammatory response [204–206]. Studies of small and 
larger cohorts suggested that, like obesity, T2D is associated 
with changes in the microbial consortia that are reminiscent 
of, yet distinct from, those found in obese subjects. Analyses 
of 60 000 T2D-associated gut microbial markers from a 
metagenomic linkage group of 368 Chinese T2D patients and 
control individuals revealed moderate dysbiosis with reduced 
butyrate producers, e.g. species belonging to the genera Rose-
buria and Faecalibacterium, Eubacterium and Clostridiales sp. 
SS3/4, and concurrent expansion of non-butyrate-producing 
Haemophilus parainfluenzae, which may have an uncharacter-
ized antagonistic relationship with a T2D-enriched bacteria 
related to the genus Subdoligranulum, and variable opportun-
istic pathogens with mucin-degrading and sulfate-reducing 
properties, e.g. Akkermansia muciniphila and Desulfovibrio 
sp. 3_1_syn3 [197]. The bacterial metagenome displayed 
enhanced capability for sugar and amino acid transport, 
sulfate reduction and xenobiotic processing, and reduced 
n-butyrate synthesis, vitamin and cofactor metabolism, and 
motility [197]. Notably, genes expressing membrane trans-
porters and markers of oxidative stress resistance were also 
activated, which implies that the gut environment of T2D 
patients stimulates bacterial defence mechanisms and is 
consistent with the observed persistent low-grade inflamma-
tion found in diabetic patients [111, 197]. A small study of 18 
T2D and 18 normal middle-aged male patients showed that 
the total intestinal bacterial count was indistinguishable in the 
two groups, with increased Firmicutes in the normal reference 
group and a trend toward increased Proteobacteria and Bacte-
roides in the T2D group [20]. The increased Bacteroides-to 
Firmicutes ratio, however, did not correlate with BMI, as one 
could have predicted on the basis of the obesity studies, indi-
cating that the ‘T2D microbiota’ and the ‘obese microbiota’ 
are distinct [20]. A study of post-menopausal women with 
53 T2D patients, 49 with pre-diabetic state and 43 normal 
subjects, found similar gene counts in all groups (unlike what 
was found in the obese microbiota), with elevated Lactoba-
cillus species, and a decrease in five Clostridium species, with 
no association with BMI [207].
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Underscoring the versatility of the intestinal microbiota, 
the Chinese and European T2D cohorts revealed common 
metabolic potential and potential discriminating power in the 
abundance of Roseburia and Faecalibacterium prausnitzii, yet 
enough species-levels differences to produce distinct clusters 
[207]. While such differences may relate to a combination of 
genetic and lifestyle factors, sex and medications, the meta-
bolic commonalities appeared to be more predictive of T2D 
than other parameters, including BMI [21]. In particular, the 
use of anti-diabetic medications was not thoroughly consid-
ered, which, in light of recent findings concerning their 
impact on the microbiota (discussed below), may account 
for some of the observed differences. The anti-inflammatory 
action and improved insulin sensitivity associated with the 
butyrate producers could be transferred to male metabolic 
syndrome patients via faecal transplantation that increased 
composition diversity, boosted Roseburia intestinalis levels 
2.5-fold and prevented the decrease of Eubacterium hallii 
levels observed in the controls [21, 208]. When identifying 
specific strains to decrease T2D and/or insulin sensitivity, 
Lactobacillus reuteri GMNL-263 was found to decrease T2D 
morbidity [209].

A particularly well-studied relationship is that of T2D and 
A. muciniphila, a mucin-degrading Gram-negative intestinal 
bacterium that inhabits many animals and is involved in the 
biological processes implicated in T2D and obesity [210, 211]. 
A. muciniphila growth conditions are relatively permissive, 
with temperatures ranging from 20 to 40 °C, and pH from 
5.5 to 8, enabling these bacteria to adapt effectively and 
co-evolve with their host [212, 213]. An astounding 11 % of 
A. muciniphila proteins are involved in mucin degradation 
for energy, carbon and nitrogen acquisition [212], supporting 
growth and colonization of the intestinal environment even 
under stress, when nutrition from the host dwindles [214]. As 
a byproduct of mucin degradation, A. muciniphila can form 
acetate and propionate that benefit neighbouring bacteria, 
promoting a healthy intestinal barrier [212]. Adhesion of 
administered A. muciniphila improved intestinal permeability 
and reduced the low-grade inflammation and LPS-induced 
endotoxaemia typical of T2D and obesity and was positively 
correlated with gut and systemic health improvements in vivo 
[110, 111, 210, 211]. Consistently, reduced faecal counts of A. 
muciniphila were found in mouse models of obesity and T2D, 
featuring a thinner mucus layer, intestinal dysbiosis, disrupted 
gut barrier function and altered glucose homeostasis [211]. 
Note that A. muciniphila elicited interleukin-8 production, a 
marker of inflammation, albeit at levels 100 times lower than 
E. coli, possibly because of its benign LPS composition that 
does not cause endotoxaemia [210, 215]. The T2D dysbiosis is 
thought to reduce GPR signalling because of an altered SCFA 
profile, thereby favouring lipid accumulation and obesity.

T2D pharmacology and the intestinal microbiota
The anti-diabetic metformin was strikingly found to accu-
mulate in the intestinal mucosa at 300 times higher than 
hematic levels [216]. Consistently, metformin modulated 
the microbiota, increased both the abundance and activity 

of Akkermansia [217, 218], improved the Bacteroidetes-to-
Firmicutes ratio [218, 219] and reduced markers of inflam-
mation interleukin-6 and interleukin-1β in adipose tissue, 
suggesting that at least part of metformin effects are mediated 
by the microbiota [218]. Metagenomic analyses revealed that 
mice fed a high-fat diet harboured significantly decreased 
Akkermansia and Alistupes populations and increased 
proportions of species from the genera Anaerotruncus, 
Lactococcus, Parabacteroides, Odoribacter, Lawsonia, Blautia 
and Lactonifactor [217, 220]. Metformin administration 
normalized these differences, supported health-promoting 
Akkermansia [217] and stimulated the microbial expression 
of metalloproteins and transporters [221]. More pronounced 
shifts were observed in animals fed high-fat diets, suggesting 
that metformin may affect the microbiota as a function of 
diet [217]. Metformin stimulated the proliferation of mucin-
producing goblet cells that contribute to intestinal barrier 
integrity and promote immunomodulating Treg cell produc-
tion [217, 220]. Metformin treatment and oral administration 
of Akkermansia were shown to restore Treg cell population in 
mice [217], thus increasing the capacity to quell inflamma-
tion and oxidative stress in T1D and T2D diabetic models 
[217, 222]. In human diabetic patients, metformin similarly 
shifted microbiota taxonomic composition [220, 223]. 
However, the metagenomics of patient datasets from different 
countries indicated substantial differences that will have to 
be investigated [223]. Recognition of the outer membrane 
protein Amuc_100 by TLR2 was recently found to recapitulate 
the Akkermansia-dependent effects [224]. While the mecha-
nistic details of Akkermansia response to metformin remain 
largely unknown and may be complex [225], improved micro-
biota parameters and the overall condition of T2D patients 
suggest that microbiota manipulation may be beneficial in 
T2D.

Antibiotic effect on insulin sensitivity and obesity
Antibiotic-induced dysbioses appeared to increase the 
likelihood of developing T1D in non-obese diabetic (NOD) 
mice. In addition to genetics, T1D has a recognized envi-
ronmental component [226]. Among genetically susceptible 
infants, those who develop T1D have an unstable prediabetic 
microbiota characterized by reduced diversity and expanded 
Bacteroides representation compared to those who do not 
develop the disease [227]. Conceivably, antibiotics may 
precipitate the condition towards T1D. Commonly used 
antibiotics, including vancomycin and neomycin (discussed 
below), preferentially target SCFA-producing Gram-positive 
bacteria, including beneficial Firmicutes. Vancomycin- and 
neomycin-induced diabetogenic microbiota was established 
early in NOD mice, with each antibiotic producing distinct 
alterations of the SCFA profile, likely reflecting differential 
remodelling of the microbial community. The dysbiotic status 
itself (rather than particular microbial species) appeared to 
be pro-inflammatory and drive autoimmunity [228]. Male 
patients treated with a vancomycin analogue to remedy infec-
tive endocarditis (a bacterial infection localized to the inner 
surface of the heart) significantly gained weight following a 
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6-week intravenous treatment [229]. Vancomycin impaired 
peripheral insulin sensitivity in obese men, likely because of 
its targeting of n-butyrate-producing bacteria (e.g. Firmicutes, 
E. hallii and F. prausznitzii), promoting a reciprocal increase in 
Gram-negative Proteobacteria (e.g. Lactobacillus plantarum) 
and altered bile acid profile [230]. Antibiotic administration 
to young mice resulted in increased lipogenesis and gastric 
inhibitory peptide (GIP), a hormone that induces insulin 
production and also affects bone remodelling [32, 231]. Thus, 
diabetogenic microbiomes may develop because of antibiotic 
exposure [171, 228]. The epidemiology of human obesity and 
its possible relationship with antibiotic use has been exten-
sively discussed [32, 232–234].

Proatherosclerosis, atherosclerosis 
and the human microbiota
Atherosclerosis is a clinically silent chronic vascular disease 
in which plaques of accumulated cholesterol, fat and 
calcium form inside the arteries and attract macrophages. 
Atherosclerotic plaques contain microbial DNA, suggesting 
that the plaque microbiota may be due to the relocation of 
micro-organisms from the oral or gut communities to the 
arterial walls, where they initiate an inflammatory response 
and promote the development of atherosclerotic lesions 
(atheromas) [235]. 16S rRNA pyrosequencing and quantita-
tive (q)PCR comparison of the microbiomes from several 
body sites with the atherosclerotic plaques revealed that the 
Firmicutes Veillonella and Streptococcus, common members 
of dental plaques and gut colonizers, and Chlamydia, were 
similarly found in atherosclerotic plaques [235–237]. 
Pseudomonas luteola (previously Chryseomonas), already 
implicated in endocarditis, was only found in plaques [235]. 
Notably, Streptococcus abundance appeared to correlate with 
LDL cholesterol and total cholesterol, which are common risk 
indicators for atherosclerosis [235]. A twofold increase of C. 
pneumoniae was identified in aortic tissue of patients suffering 
from cardiovascular disease (CVD) [235, 238]. The origin of 
the plaque microbial DNA is still debated and may derive in 
part from the phagocytic activity of macrophages [235].

Microbial involvement in atherosclerosis may be direct, 
via relocation or the metabolism of cholesterol, lipids and 
dietary components that may contribute, at least in part, to 
the accumulation of pro-atherosclerotic metabolites favoring 
plaque formation. Among the latter, trimethylamine N-oxide 
(TMAO) is thought to activate immunity and lead to plaque 
build-up, possible arterial rupture and atherosclerosis 
[239–242]. The capacity to produce TMAO from dietary 
components was introduced in an apolipoprotein E-deficient 
mouse model (ApoE-/-) by faecal transplantation and found to 
result in atherosclerosis [243–245]. Thus, dysbiotic microbiota 
overproducing TMAO may contribute to disease progression 
[243, 246]. TMAO is synthesized in two distinct pathways 
from dietary trimethylamine (TMA) molecules formed by 
microbial degradation of choline, phosphatidylcholine and 
l-carnitine found naturally in red meat, eggs and nowadays 
in some energy drinks [239, 242, 247–250]. Although harmful 

in large quantities, these nutrients are essential: choline is a 
building block for neurotransmitters and is crucial for liver 
metabolism; phosphatidylcholine supports the structural 
integrity of cell membranes and facilitates cell–cell commu-
nication; l-carnitine, although conditionally essential, 
participates in energy production [251]. TMA is normally 
excreted with urine, while TMAO is a cardiovascular risk 
predictor that contributes to inflammation, plaque forma-
tion and atherosclerosis [242, 251]. In the direct pathway 
of TMAO synthesis, TMA molecules are transported to the 
liver, oxidized primarily by flavin monooxygenase 3 (FMO3) 
[239, 247], and transformed into TMAO. Likely more relevant 
for atherosclerosis, in the indirect pathway l-carnitine is 
first converted into gamma-butyrobetaine (γ-BB) [252], 
then into TMA and eventually into TMAO by hepatic FMO3 
[242, 243, 247]. Multiple steps of the indirect pathway 
appear to rely on the intestinal microbiota. Bacteria of the 
phyla Firmicutes and Proteobacteria were found to influence 
the initial conversion of l-carnitine to γ-BB [242, 247–250]. 
Microbial dysbiosis can lead to increased TMAO synthesis 
[253]. Bacteria (e.g. C. pneumoniae, Staphylococcus spp., 
Streptococcus spp., K. pneumoniae, P. vulgaris, Burkholderia 
and Pseudomonas aeruginosa) have been implicated in 
accelerating CVD progression [254]. In one study, 8 out of 
79 species from the dominant phyla Firmicutes and Proteo-
bacteria were found to metabolize choline to produce TMA. 
These included Anaerococcus hydrogenalis, Clostridium aspar-
agiforme, Clostridium hathewayi, Clostridium sporogenes, 
Escherichia fergusonii, Proteus penneri, Providencia rettger 
and strains of Edwardsiella tarda that may have acquired this 
capability through horizontal gene transfer [255]. Germ-free 
mice, on the other hand, displayed greatly reduced levels of 
TMA and TMAO [242, 255].

Attempted microbial manipulations to contrast atheroscle-
rotic disease progression include faecal transplantation, 
narrow-spectrum antibiotics, probiotics, prebiotics and diets 
[239, 256]. Probiotics and prebiotics have shown potential 
for reducing the atherosclerotic plaques [257]. A probiotic 
mixture known as VSL#3, composed of Bifidobacterium 
breve, Bifidobacterium longum, Bifidobacterium infantis, 
Lactobacillus acidophilus, L. plantarum, Lactobacillus para-
casei, Lactobacillus bulgaricus and Streptococcus thermophilus 
administered to ApoE−/− mice reduced atherosclerosis and 
improved microbial diversity [257]. Alternative strategies aim 
at transforming TMA into biologically inert molecules, such 
as methane [258], through biochemical processes carried 
out by the archaea Methanosarcina barkeri normally found 
in ruminators [259]. Candidate archaea to carry out such a 
supplementary function include Methanobrevibacter smithii, 
Methanobrevibacter stadtmanae and the recently identified 
Methanomassiliicoccus luminyensis, all known inhabitants of 
the human intestine [260, 261]. Moreover, rumen-resident M. 
luminyensis B10, which uses hydrogen to reduce methanol, 
was confirmed to consume the byproducts of TMA catabo-
lism [258]. Thus, therapeutic ‘archaebiotics’ may potentially 
limit the accumulation of pro-atherosclerotic metabolites and 
retard atherosclerotic progression. However, some technical 
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challenges must first be overcome before archaebiotics can 
be considered to be of therapeutic value. For instance, M. 
luminyensis is oxygen-sensitive, which reduces its efficacy of 
colonization upon supplementation [258].

Towards targeted microbiota 
manipulation
Bariatric surgery
In contrast to caloric restriction and exercise alone, bari-
atric surgery is considered to be an effective treatment (or 
co-treatment) for obesity and morbid obesity that may 
remedy related comorbidities by markedly reducing adiposity 
for years after the procedure [13, 155, 262–268]. Genetic, 
physiological, environmental, psychological, social, economic 
and political factors (e.g. food tax [269]) contribute to the 
development of obesity to varying degrees. Co-occurring 
psychiatric conditions such as anxiety and mood disorders 
[270], as well as T2D, sleep apnea and CVD may also lead 
to obesity persistence [271]. Strategically reducing and 
restructuring the gut anatomy, bariatric surgery affects the 
feeding process (Table 1). For example, in the Roux-en-Y 
gastric bypass (RYBG), the stomach is reduced and connected 
to the jejunum, bypassing the duodenum. In vertical sleeve 
gastrectomy (VSG), the stomach is instead reduced length-
wise. However, while bariatric surgery has traditionally 
been thought to affect weight loss by reducing stomach 
size, altering food absorption, and by other postprandial or 
metabolic effects [272], growing evidence strongly suggests 
that restriction and malabsorption may instead be secondary 
[273–275]. The efficacy of bariatric surgery, in fact, appeared 
to be largely due to its effects on the intestinal microbiota 
[276]. The impact on host health and the remodelling of the 
human microbiome observed following bariatric surgery are 
summarized in Table 1. Obese patients who had undergone 
gastric bypass surgery featured an increased Firmicutes-to-
Bacteroidetes ratio approaching the microbial profile and 
species richness structure of lean subjects (as measured by 
the Shannon index) [21, 25, 145, 152–156, 277–280].

The anatomical reshaping and bypassing created by these 
surgeries were found to alter the composition, genetic 
content and fermentation profiles of microbes in the gut, 
promoting decreased overall adiposity, rapidly improved 
glucose metabolism and remission of obesity comorbidities 
(Table 1) [271, 274, 277]. The faecal microbiome from patients 
having undergone RYBG and VSG revealed expanded 
Proteobacteria populations including Escherichia, Klebsiella 
and Pseudomonas, and reduced representation of species 
from the phylum Firmicutes, e.g. C. difficile, Clostridium 
hiranonis and Gemella sanguinis [271]. Confirming that 
the physiological changes observed post-bariatric surgery 
depended on the microbiota, mice colonized with micro-
biota from RYBG- and VSG-treated patients maintained a 
lower weight than those colonized with the obese micro-
biota withdrawn prior to the surgical procedure [267, 271]. 
Additional studies have shown that bariatric surgery alone 
was insufficient for remission of obesity and its symptoms, 

without key metabolites contributing to weight maintenance. 
The nuclear bile acid receptor, farnesoid X-receptor (FXR), 
involved in lipid–glucose metabolism [281, 282] appeared to 
be a required mediator, because FXR knockout mice having 
undergone VSG were unable to regulate bile acids and did 
not lose weight when overfed [264]. In light of these observa-
tions, it is tempting to speculate that the changed anatomy 
may alter the microbial environment in ways conducive to 
the host’s health and reminiscent of a previous example of 
environmental normalization [19]. Perhaps more important, 
digestion may be substantially different, especially after 
RYBG, because of the duodenum bypass, which is expected 
to change the composition of the digested food arriving in 
the jejunum, conceivably affecting members of the microbial 
communities differentially.

To better understand the effect of bile acid-mediated weight 
loss following bariatric surgery, wild-type C57BL/6J mice, 
and mutant GLP-1 knockout (GLP-1r−/−), FXR-null (FXRΔ/E) 
and Tgr5−/− mice were fed ad libitum on lean or high-fat 
chow and subjected to gall bladder diversion to the ileum 
(GB-IL) [283]. Farnesoid X-receptor, but not Tgr5 loss of 
function, stimulated weight loss in obese GB-IL mice, while 
among lean mice improvements in glucose tolerance were 
observed, independent of changes in body weight, habitus 
(body build) or food intake [283]. GB-IL lean mice likewise 
displayed improved glucose tolerance, which was conceivably 
attained through improved hepatic insulin sensitivity, better 
GLP-1-mediated bile acid circulation and FXR functionality 
[283–287]. In response to surgery, the faecal microbiome of 
GB-IL mice had improved abundances of A. muciniphila, 
Clostridiales, Oxalobacteraceae, Streptococcaceae and Rumi-
nococcaceae, although Lactobacillaceae and Lachnospiraceae 
members (including the genus Roseburia) were reduced [283]. 
Because these studies strongly suggest that bariatric surgery 
can remodel the microbiota and substantially improve obesity 
in the long term, surgery is regarded as an effective means to 
remedy cases of extreme obesity. However, it is also an inva-
sive procedure with associated risks. Therefore, non-surgical 
manipulations of the microbiota are preferable low-risk alter-
natives to treat moderate obesity and its associated symptoms.

Non-surgical manipulations of the microbiota
Faecal microbiota transplant (FMT) has been successful in 
treating C. difficile infections (CDIs), achieving a success rate 
of 80–90 % in patients of different ages [256, 288], and this has 
inspired optimism about attempting to manipulate the ‘obese’ 
microbiota [289–291]. FMT of normal heterologous micro-
biota into obese patients was found to promote insulin sensi-
tivity as a result of a 2.5-fold increase of n-butyrate-producing 
intestinal microbes such as R. intestinalis [208]. Persistence 
for a minimum of 6 weeks following FMT suggested that a 
gut microbiota transplant (GMT) may offer an alternative 
to bariatric surgery [208]. Currently, the use of FMT or 
GMT as a treatment for any disease other than CDI requires 
approval by the USA Food and Drug Administration (FDA) 
with legitimization of an approved investigational new drug 
permit [292, 293] and may require better understanding of 
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Table 1. 

Restrictive bariatric surgeries

Name Description Health impact Effects on the human 
microbiome

References

Vertical sleeve 
gastric bypass 
(VSG)

Gastric resection of the fundus, creating a tubular gastric 
pouch that connects the esophagus with the duodenum

Remission of T2D, 
nonalcoholic fatty 
liver disease (NAFLD) 
and nonalcoholic 
steatohepatitis 
(NASH). Improved 
glucose tolerance. 
Improved BMI

Increased circulation of bile 
acids, leading to increased 
farnesoid X-receptor (FXR) 
signalling that improves 
gut environment, and in 
turn microbiota diversity

[264, 340–342]

Vertically 
banded 
gastroplasty 
(VBG)

A small stomach pouch is stapled out. A metallic band is 
secured slightly below the pouch to slow the transit of food 
into the lower stomach

Sensation of early 
satiety (i.e. quickly 
filled stomach, 
triggers satiety and 
empties slowly). 
Increased pressure on 
the proximal pouch 
reduces food intake

Significant increase in the 
number of circulating bile 
acids and metabolites (e.g. 
glycochenodeoxycholic, 
glycodeoxycholic, 
glycocholic and 
taurodeoxycholic 
acids). Improved insulin 
sensitivity, incretin 
secretion and postprandial 
glycaemia. Remission of 
NAFLD and significant 
improvement of liver 
enzymes and liver 
triglyceride levels

[343–347]

Laparoscopic 
sleeve 
gastrectomy 
(SG)

Outer stomach is removed while preserving the integrity of the 
pylorus. No intestinal bypass (see also RYGB below)

Decreased weight and 
BMI. Euglycaemia 
via restored fasting 
plasma glucose, 
and glycosylated 
haemoglobin 
levels. Restored 
insulin tolerance. 
T2D remission of 
independent of 
oral antidiabetics. 
Reduced perioperative 
morbidity and 
recovery time, as 
compared to RYGB

Increased Bacteroidetes-
to-Firmicutes ratio at 1 
and 3 months post-surgery 
(increased Bacteroidetes 
and unchanged Firmicutes). 
Increased order 
Lactobacillales

[262, 348–354]

Adjustable 
gastric banding 
(AGB)

A saline-filled silicon band is fitted around the stomach, near 
the esophageal junction, and imposes gastric restriction. Band 
resizing is achieved by adding or removing saline through a 
port

Sustainable weight loss 
and T2D remission

Microbiome effects not yet 
described

[273, 355]

Continued
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GMT, as well as a consensus on the definition of a healthy lean 
donor. Interestingly, GMT has a long history. In the fourth 
century, Chinese patients suffering from severe diarrhoea 
were administered oral–faecal suspensions [294]. Likewise, in 
the sixteenth century, stool was used to treat diarrhoea, fever, 
vomiting and constipation [294]. Additionally, in the 1950s, 
faecal enemas were used to treat human pseudo-membranous 
colitis [295]. In mice, transplantation of ω3-modified faecal 
microbiome protected the recipients against diet-induced 
obesity [296]. Despite these successes, only murine models 
have successfully shown that obesity can be modified through 
microbiota manipulation [35], which restricts the use of 
GMT therapeutically until further evidence of its efficiency 
is gained in patients.

Pre- and probiotics
Supplementation with pro- and prebiotics may help to manip-
ulate the microbiota beneficially. Probiotic consumption 
in mice promoted Roseburia growth [297–299]. Roseburia 
also increased post-VSG in the ceca of WT-VSG mice and 
directly correlated with weight loss, independently of caloric 

intake [264]. Additionally, Roseburia appeared to reduce 
glycaemia, which may underlie observed weight loss effects, 
and may slow down the progression to T2D [8, 300, 301]. 
Compounding such effects, prebiotics improved microbial 
abundance in the gut and reduced the feeling of hunger [302].

Exercise
Exercise has recently been added to the list of environmental 
factors contributing to gut microbial plasticity. In healthy 
animals, physical activity was found to alter the microbiota 
taxonomic composition [303–306]. However, the search for 
changes in the Firmicutes-to-Bacteroidetes ratio have yielded 
discordant results, finding an increase [12, 306, 307], a 
decrease [304, 305, 308, 309] and no change [303, 310]. In 
rats, species from the genera Pseudomonas and Lactobacillus 
increased significantly following exercise. The association of 
Lactobacillus with the mucosa of the small and large intestine, 
where lactic acid, CO2, acetate and ethanol are produced, may 
lead to a health-promoting acidic environment [12]. Lactoba-
cillus and Bifidobacteria, also augmented after exercise, can 
further transform lactate into n-butyrate [304, 311]. Despite 

Restrictive and malabsorptive bariatric surgeries

Roux-en-Y 
gastric bypass 
(RYGB)

A large portion of the stomach and duodenum is 
surgically removed. Nutrients are redirected through 
a small stomach pouch, and into a lower section 
of the small intestine. The remaining stomach and 
duodenum are reattached further down, changing 
the point at which bile acids enter the small 
intestine. Thus, RYGB restricts gastric volume, and 
diverts ingested nutrients away from the proximal 
small intestine

Improvements in weight loss and 
metabolism through the physical 
rerouting of the gut (decreased 
macronutrient absorption). 
Demonstrated changes in food 
preferences, increased satiety 
combined with release of pro-
satiety hormones [glucagon-
like peptide 1 (GLP-1) and 
peptide YY (PYY)] in the gut. 
Improved gastric emptying, bile 
acid metabolism via increased 
signalling through the bile acid 
receptor FXR. T2D remission. 
Improved BMI

Change in the abundance 
and composition of gut 
microbes. Decreased 
Firmicutes-to-Bacteroidetes 
ratio 3–6 months post-
surgery. Expansion of 
Proteobacteria (e.g. 
Enterobacteriaceae) 
communities, and a 
decrease in Firmicute (e.g. 
Clostridium). Improved 
effects of probiotic 
supplementation because of 
reduced stomach (low-pH 
environment, unfavourable 
to microbiota)

[153, 262, 264, 
356–361]

Bilio-pancreatic 
diversion with 
or without 
duodenal switch 
(BPD/DS)

A segment of the duodenum is sectioned (or 
bypassed to a distal portion of the stomach). The 
small intestine is transected to the Treitz and 
ileocecal valve, plus RYGB from the gastric pouch 
to the distal bowel loop. The resulting alimentary 
limb and an attached biliopancreatic limb form a 
channel. A duodenal switch can be augmented by 
the preservation of the lesser curvature, antrum, 
pylorus and opening of the duodenum, as well as by 
lengthening the common channel from 50 cm to 100 
cm in length

Combines nutrient 
malabsorption and restriction, 
causing significant weight 
loss. T2D remission. High 
perioperative mortality

Microbiome effects not yet 
described

[362–364]

Bilio-intestinal 
bypass (BIB)

A shunt is inserted between the beginning and end 
of the small bowel, thereby disabling a large portion 
of the absorptive surfaces. The disabled small bowel 
is connected to the gall bladder via a sling

Improved circulation of bile 
acids, significant reduction in 
BMI and body weight 6 months 
following surgery. Decrease in 
circulating glucose and insulin

Significantly increased 
genera Lactobacillus, 
Megasphaera and 
Acidaminococcus and 
family Enterobacteriaceae. 
Altered SCFAs in faecal 
samples (reduced acetate 
and propionate, increased 
valerate and hexanoate)

[278, 365]

Table 1.  Continued
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differences of experimental models and analyses, the reported 
taxonomic changes post-exercise seem to promote n-butyrate-
producing groups [303]. Another murine model responded to 
voluntary exercise with increased representation of members 
of the order Bacteroidales and n-butyrate producers of the 
phylum Firmicutes, order Clostridiales, families Clostridiaceae, 
Lachnospiraceae and Ruminococcaceae [305]. Other species 
responding to exercise, such as R. gnavus, may protect against 
pathogens [312].

Human studies of elite athletes [313, 314], and one of seden-
tary women who exercised at the minimum levels recom-
mended by the World Health Organization [315] suggested 
that, similar to animal models, exercise may shape the 
intestinal microbiota, favouring health-promoting species, 
e.g. genera Prevotella, Coprococcus (a butyrate producer and 
protector from irritable bowel disease), Bifidobacterium and 
species F. prausnitzii, R. homini and A. muciniphila [313, 315]. 
Athletes also displayed altered Firmicutes-to-Bacteriodetes 
ratio [315]. The effects of exercise were found to be tran-
sient, reversible and affected by multiple factors, including 
diet, age (taxonomical composition varies during life), body 
composition (lean vs obese) and type of exercise (low vs high 
intensity) [316]. Consistent with the high inter-individual 
variability of the human intestinal microbiota, in a cohort 
of overweight women, only 50 % of individuals responded to 
exercise [317]. Similarly, a study including obese women and 
men only found a trend toward variations of the microbiota 
composition, with no significant changes [318]. A recent 
longitudinal study that controlled for diet and type of exer-
cise among various variables highlighted that exercise may be 
more effective in lean than in obese subjects [316]. The link 
between exercise and microbiota is tantalizing and complex. 
Potential mechanisms include short- and long-range effects 
of n-butyrate. N-butyrate has numerous beneficial effects, 
including stimulating the synthesis of protective mucin [319], 
supporting the enterocytic energy metabolism and immune 
balancing. For the latter, intra-epithelial lymphocytes in the 
gut-associated lymphoid tissue were found to respond to 
n-butyrate by producing cytokines that are conducive to the 
creation of an anti-inflammatory environment that is likely 
to influence the microbiota due to its proximity [320–323]. 
While exciting, the link between exercise and microbiota 
must be given proper perspective. The dietary changes that 
often distinguish active and sedentary lifestyles are likely to 
strongly affect the microbiota consortia. This seems to be 
the case for the optimized diet of elite athletes, together with 
individual physiology and age [12, 306, 307, 309]. Exercise 
type also seems to differentially affects host physiology, with 
low to moderate exercise stimulating various, generally posi-
tive, responses, including faster intestinal transit, and high-
intensity training instead negatively affecting the gut barrier 
and blood circulation to the intestine, and slowing intestinal 
transit [324–326]. All such changes are likely to impact on the 
microbiota. Ongoing research will address the open questions 
of what effect(s) exercise has on both host and microbiota, 
including, beyond bacteria, the archaea, fungi and viruses, 
that have not been reported to date.

Conclusions
The microbial communities dwelling in the mammalian 
intestinal tract were found to enhance their host’s metabolism 
while demonstrating a high degree of resilience and adapt-
ability to the rapidly changing conditions of their environ-
ment. The quantity and quality of ingested food may vary 
in both the short and long term in response to food supply 
and seasons, with the microbiota responding dynamically 
to such changes, while simultaneously integrating several 
physiological cues from the host. The taxonomic composition 
of the microbiota is in part shaped by genetic factors [19]. 
Although common consortia traits and organismal relation-
ships may be conserved in close host species (e.g. Firmicutes 
and Bacteroides abundance in both mice and humans), others 
appear to be species-specific and must be considered when 
extrapolating results from rodent models. In humans, the 
gut microbiota displays large individual-to-individual vari-
ations [25] and, simultaneously, enough shared similarities 
to allow clustering of individuals into categories with shared 
similarities. Environmental factors, such as diet, life history 
and chemical exposure, all influence microbiota composition, 
although the weight of their relative contributions has not 
been completely elucidated, except for a substantial contribu-
tion of diet [327]. Exercise also appeared to affect the gut 
microbiota through multiple, perhaps partly indirect, effects 
and the collected data are still controversial. Interestingly, 
germ-free mice displayed higher locomotor activity, which 
may also impact on adiposity in addition to controlling 
insulin metabolism and regulating anorexigenic molecules 
[175]. Medical procedures such as surgery and pharmaco-
logical treatments also affect the gut microbiota, as was found 
in the case of T2D, endocarditis, antibiotic therapy and most 
recently chemotherapy (reviewed in [328]).

The human intestinal microbiota modulates nutrient avail-
ability and absorption for the host and, through changes of 
gene expression, influences hormonal and cytokine signal-
ling, as well as immunity, which in turn reflects on the micro-
biota. In both patients and rodents, dysbiosis characterized 
by decreased microbial diversity is found in cases of diabetes, 
obesity and atherosclerosis, with both direct and indirect 
repercussions on host metabolism, immunity and behav-
iour, which reciprocally affect the microbial communities. 
Despite strong associations between certain dysbiotic patterns 
and disease, the causality between microbiota composition, 
especially at the species level, and specific host conditions 
remains unknown. The host genetics and physiology may 
favour colonization by certain species or, conversely, the 
microbial community may directly regulate the host’s carbo-
hydrate metabolism and energy production in mitochondria 
and lipogenesis, among other things. The bacterial family 
Lachnospiraceae was shown to protect the host from colitis 
[329] and future studies will likely identify more of these 
relationships. An interesting aspect of the microbiota–host 
web is its constant dynamic adaptation, whereby the host’s 
response is individual and may change adaptively over 
time. A high-fat/high-sucrose diet in mice yielded a rapid 
increase of body fat in most animals. However, as the animals 
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were adapting to the dietary changes, the patterns of gene 
expression changed and eventually levelled, except for three 
amylase genes [142]. The precise species composition of 
the intestinal microbiota appears to be a continuum and 
multiple dysbiotic consortia converge into fewer diseased 
states. Intentional shifts in the microbiota can be caused, at 
least in the short term, by changing diet and lifestyle, and 
via he administration of pre-, pro- and antibiotics. The 
effectiveness of the gastric bypass in reducing obesity may 
largely be due to its effects on the microbiota, rather than to 
mere anatomical gastric remodelling. Finally, FMT, and, in 
mice and other animals, also coprophagy, all contribute to 
shape the gut microbial communities. Thus, it has become 
common practice to co-house all mice used experimentally 
to minimize biological variability [330]. The mounting 
enthusiasm at the therapeutic possibilities of manipulating 
the microbiota to promote healthy states is tempered by the 
realization that our knowledge is largely limited to the luminal 
(faecal) bacteria and archaebacteria, likely missing important 
contributions of the mucosa-associated micro-organisms. 
Non-bacterial groups, e.g. fungi and viruses, remain largely 
unknown. Possible differences along the regions of the lower 
gastrointestinal tract are also suspected. A set of common 
guidelines for conducting studies of the microbiota in vivo 
is being advocated to enable comparisons between studies. 
The staggering complexity of the interactions between 
the microbiota and the host also cautions that attempts to 
manipulate the microbiota in patients may become harmful 
[331]. Ongoing efforts towards defining the microbiota–host 
metabolic networks in obesity, diabetes and atherosclerosis 
will improve our potential to ameliorate and possibly resolve 
these and other metabolic diseases.
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