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The application of molecular tools to study the
drinking water microbiome – Current understanding
and future needs

Ya Zhang and Wen-Tso Liu

Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign,
Urbana, IL, USA

ABSTRACT
Despite the long history of water research, understanding how the
drinkingwatermicrobiome is shaped at the user end is rather chal-
lenging owing to the complexity in community assembly, water
matrices, physical structures, and chemical gradients from source
to tap. The application of molecular tools that primarily base on
the use of rRNA gene sequences has substantially expanded our
view of the drinking water microbiome. In this review, we critically
evaluate currently available cultivation-independent tools for
monitoring the drinking water microbiome and summarize the
ecological patterns we have observed so far on the longitudinal
and temporal dynamics, geographical distributions, and structural
and functional characteristics of the drinking water microbiome
(including those in recycled water systems). Studies on four full-
scale systems in the United States and Europe further exemplify
the application of ecological theory into drinking water micro-
biome studies. Finally, we discuss howmeta-omics are able to pro-
vide new perspectives on microbial function and interspecies
relationship within the drinking water ecosystem. This review pro-
motes an integral understanding of the drinking water micro-
biome and the transformation of drinking water microbiology
from a descriptive discipline to an ecology-driven science that
attempts to elucidate mechanisms for predicting and shaping the
microbiome at the user end.
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1. Introduction

Sanskrit and Greek writings, from as early as 4000 BC, document drinking
water treatment technologies ranging from filtering through charcoal,
exposing to sunlight, boiling, and other forms of straining. The Egyptians
even documented using chemical alum to facilitate the settling of sus-
pended particles around 1500 BC (Halliday, 2004). This water treatment
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history also documents the waterborne disease outbreaks including cholera
and typhoid fever that occurred during medieval Europe when waste and
wastewater were discharged in cities and previous treatment technologies
were forgotten or ignored (USEPA, 2000). It wasn’t until the 1700s that
Europe reestablished the regular use of drinking water treatment filtration
technologies as an effective means of removing particles from water (USEPA,
2000). The effectiveness of these water treatment technologies could not be
successfully measured until after the invention of cultivation technique and
the germ theory of disease between 1850s and 1890s (Koch & Duncan, 1894;
Twisselmann, 2003). The concept of microbial ecology in drinking water dis-
tribution system (DS) was introduced in 1945 by Wilson (Wilson, 1945), and
suggested that the ecological niches inside a DS could be determined by
knowing the type and number of bacteria developed. After more than
70 years, our understanding of the microbial ecology of drinking water sys-
tems has been transformed in a remarkable way with cultivation-independent
approaches that primarily base on the use of rRNA gene sequences (Figure 1).
Current drinking water production plants apply physical and chemical

means to remove unwanted chemicals and microorganisms, and some use
microbiological processes such as sand filters and granular activated carbon
filters to biologically remove excessive nutrients and break down soluble
organic matters present in source water (Figure 2). The evolution of these
systems has resulted in two distinct practices related to chlorination for
biological safety and the exposure to harmful substances from disinfection
by-products (DBPs). One (most countries in the world) proposes to main-
tain a minimal level of residual disinfectants to suppress (APHA, 1905;
Bartlett and Stirling, 2003; Fischer et al., 2005; Herzenberg et al., 2002;
Koch and Duncan, 1894; Langer-Safer, Levine, & Ward, 1982;

Figure 1. History on the development of major microbiological methods (upper half), and the
introduction of key regulations and rules in drinking water production, primarily based on the
US system (bottom half). Source: Zhang and Liu, forthcoming. Reprinted with permission.
# Water Research Foundation.
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Leeuwenhoek, Liu & Stahl, 2007; Manz et al., 1993; Maxam and Gilbert,
1977; Metzker, 2010; Payment et al., 2003; PRT, 1996; Schardinger, 1892;
Smith, 1895; Stein, Marsh, Wu, Shizuya, & DeLong, 1996; Twisselmann,
2003; USEPA, 1989a, 1989b, 1991, 1998, 2002, 2006a, 2006b, 2013;
Vanderkooij et al., 1982, Woese and Fox, 1977) microbial regrowth in DS
and the other (the Netherlands, Switzerland, Austria, and Germany) tries
to substantially reduce available carbon for regrowth during distribution
instead of adding disinfectant residuals (Figure 2).
The assemblage of microbes within drinking water is referred to as the drink-

ing water microbiome (106–108 cells/L) (Henne, Kahlisch, Brettar, & Hofle, 2012;
Lautenschlager, Boon, Wang, Egli, & Hammes, 2010; Vanderwende, Characklis,
& Smith, 1989). As these microorganisms play critical roles in treatment plant
operation and drinking water quality, regulatory agencies have implemented
rules and regulations for the microbiological quality of drinking water to protect
public health. However, these standards are outdated because they still rely on
heterotrophic plate count (HPC) and indicator microorganisms (Escherichia coli
and total coliforms) proposed more than 100 years ago to determine the
adequacy of water treatment and the integrity of the DS.
To advance our understandings of the drinking water microbiome, this

review concentrates on describing: i) what cultivation-independent tools have
been developed for the analyses of the drinking water microbiome; ii) what
knowledge we have gained on population dynamics and the microbial ecology
of the drinking water microbiome; iii) how meta-omics techniques can pro-
vide new perspectives on the complexity of the microbial community within
drinking water ecosystems; and iv) what are the current challenges that need
to be overcome to enable critical research advances. The goal is to guide the
operational practices in drinking water utilities so that they can create and
maintain a ‘healthy’ or common drinking water microbiome in the DS, and
to enlighten future research on the drinking water microbiome. This review
focuses on water production and distribution system up to the point where it

Figure 2. The configuration of typical drinking water systems. A) A complex system in
Switzerland, B) a simple system in a mid-size town in the US. Source: Zhang and Liu, forthcom-
ing. Reprinted with permission. # Water Research Foundation.
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enters a building. Due to significant differences in the challenges faced by
premise plumbing, it is not discussed in this review. Readers can refer to the
following reviews published dedicatedly to premise plumbing (Dai et al.,
2017; Wang et al., 2017; Wang, Edwards, Falkinham, & Pruden, 2013).

2. Current methods for monitoring the drinking water microbiome

To routinely monitor and characterize the drinking water microbiome, a
suite of methods has been developed and used to measure microbial dens-
ity, microbial composition and structure (including spatial arrangement
and the presence/absence and concentrations of specific opportunistic
pathogens), and microbial activities (Table 1). Detailed description is
reported below. It should be noted that no single method can provide all
the information. The current strategy is to combine several methods to
improve the view of the drinking water microbiome in the studied systems.
Also, all the methods have known biases associated with and should be
used with caution.

2.1. Methods for measuring microbial density

Cultivation is still the most widely-used technique to quantify microbial
density in drinking water sector since late 18th century (Figure 1). HPC
and bacterial indicators (i.e., total coliforms and E. coli) were introduced to
determine the adequacy of water treatment and the integrity of the DS
(Bartram, Cotruvo, Exner, Fricker, & Glasmacher, 2004; Frankland, 1894;
Koch & Duncan, 1894; Payment, Sartory, & Reasoner, 2003). As isolating
and enumerating disease-causing microorganisms are primary concerns in
drinking water studies, selective and differential media techniques have
been developed to cultivate almost all known pathogens. For example, the
buffered charcoal yeast extract agar is a selective medium developed to

Table 1. Summary of methods used to measure microbial density, microbial composition, and
microbial activities in drinking water microbiome studies.

Microbial density
Community structure and

composition Microbial activities

Cultivation methods (HPC, selective
and differential media)

Community fingerprint (DGGE,
T-RFLP, PCR-ALH, SSCP)

ATP assay

Cell counting (microscopic
counts, FCM)

16S rRNA gene amplicon analysis
(clone library and Sanger sequenc-
ing, NGS)

Enzymatic activity tests

Molecular methods (qPCR, viable
qPCR, ddPCR)

16S rRNA gene hybridization
(DNA microarray)

AOC assay

Spatial distribution (FISH, SEM)

Note: HPC, heterotrophic plate count; FCM, flow cytometry; qPCR, quantitative PCR; ddPCR, digital droplet PCR;
DGGE, denaturing gradient gel electrophoresis; T-RFLP, terminal restriction fragment length polymorphism;
PCR-ALH: amplicon length heterogeneity; SSCP, single strand conformation polymorphism; NGS, next-gener-
ation sequencing; FISH, fluorescence in-situ hybridization; SEM, scanning electron microscopy; AOC, assimilable
organic carbon.

Source: Zhang and Liu, forthcoming. Reprinted with permission. # Water Research Foundation.
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isolate the once difficult-to-culture Legionella pneumophila in 1980s that
caused the outbreak of Legionnaires’ disease in 1976 (Edelstein, 1981;
Pasculle et al., 1980).
An alternative and most direct way to quantify microbial density is cell

counting. Cells in water samples can be directly counted using microscopy
or stained with fluorescent dyes and counted under an epifluorescence
microscope or flow cytometry (FCM) as total cell count. Fully automated
online FCM can be useful in discerning temporal bacterial dynamics at
high frequency (Besmer et al., 2016; Besmer & Hammes, 2016). The usage
of FCM in DSs is still limited to systems without residual disinfectants. For
drinking water containing residual disinfectants, pretreatment using mem-
brane filtration to concentrate bacteria at an appropriate density is required
due to low cell number and the interference of bacteria-like particles
(Besmer et al., 2016; Lautenschlager et al., 2013; Van Nevel et al., 2017),
which is time-consuming and subjective (Santic, Krstulovic, & Solic, 2007).
Since the mid-1980s, various forms of molecular methods, e.g., quantita-

tive PCR, viable quantitative PCR and digital droplet PCR, have been
developed to provide qualitative and quantitative information related to
total or specific bacterial cells, and to the ratio of live and dead cells (Chen
& Chang, 2010; Lee, Lee, & Kim, 2015; Yanez et al., 2011) (Figure 1).
These molecular tools are mostly based on the use of the 16S rRNA gene
that is conserved among the domains Bacteria and Archaea and composed
of regions that are variable enough to differentiate microorganisms at dif-
ferent levels of specificities (i.e., species, genera … phyla and domains)
(Liu & Stahl, 2007).

2.2. Methods measuring microbial composition

Characterizing microbial populations is an important first step to elucidate
the complexity of microbial ecology in drinking water systems. Two major
types of PCR amplification methods can be carried out. The first type of
PCR-based methods is generally termed ‘community fingerprint’. It ana-
lyzes the amplified 16S rRNA genes and generates a pattern-based profile
of community structure, most commonly represented by a banding pattern
of nucleic acid fragments resolved by gel electrophoresis. In general, these
community fingerprinting methods allow one to rapidly examine the
microbial diversity within a microbial ecosystem, or compare the differen-
ces and similarities on the microbial community structure among different
ecosystems (Liu & Stahl, 2007). Many microbial fingerprinting methods
were developed in 1990s, including DGGE (denaturing gradient gel electro-
phoresis), T-RFLP (terminal restriction fragment length polymorphism),
PCR-ALH (amplicon length heterogeneity), and SSCP (single-strand-con-
formation polymorphism) (Liu & Stahl, 2007).

1192 Y. ZHANG AND W.-T. LIU



The second type of molecular method is to obtain a dataset of 16S rRNA
gene sequences from the extracted community genomic DNA. Initially, this
was achieved through clone library construction of 16S rRNA gene sequen-
ces. In the recent years, the composition of 16S rRNA gene sequences in a
microbial sample can be obtained using the next-generation sequencing
(NGS) technology. Both approaches describe the microbial composition
based on the number of unique 16S rRNA sequences and the abundance of
individual 16S rRNA sequences. The 16S rRNA sequences can be further
compared with all 16S rRNA sequences stored in a public database. This
allows one to infer the phylogeny affiliation of individual 16S rRNA
sequences, and determine whether the sequences are novel or related to
known organisms based on the similarity of sequence homology (e.g.,
<97% similarity for defining a new species). Furthermore, based on the
sequence information, one can design oligonucleotide probes specific for a
target organism or a group of organisms, and then apply them in whole-
cell hybridization or membrane hybridization for confirming the presence
of the targeted organisms or for quantitative measurement of those targeted
organisms in the environment. Likewise, the active members within the
microbial community can be determined using the corresponding RNA-
based analysis instead of DNA-based methods.
DNA microarray technology has emerged as a high-throughput platform

for nucleic acid analysis in environmental microbiology studies (Bodrossy
& Sessitsch, 2004; Li & Liu, 2003; Zhou, 2003). For microbial identification
and community analysis, this platform generally uses rRNA genes as the
phylogenetic marker (Guschin et al., 1997; Liu, Mirzabekov, & Stahl, 2001;
Loy et al., 2002; Peplies, Glockner, & Amann, 2003; Small, Call, Brockman,
Straub, & Chandler, 2001; Wilson et al., 2002). Initially, hundreds up to
thousands of rRNA-based oligonucleotide probes with a length between 15
and 25 nt are designed to target the rRNA gene sequences of interested
microorganisms at different levels of specificities, and then spotted or in-
situ synthesized onto a microarray substrate (Loy et al., 2002; Wilson et al.,
2002). Followed by hybridization with fluorescently labeled rRNA/rDNA
targets and washing at optimal conditions, signals are measured and statis-
tically analyzed to infer microbial community structures in complex envir-
onmental samples (El Fantroussi et al., 2003; Peplies, Lau, Pernthaler,
Amann, & Glockner, 2004; Small et al., 2001).
Finally, the microbial composition can also be determined by examining

the spatial distribution of microorganisms in-situ. Fluorescence in-situ
hybridization (FISH) and scanning electron microscopy (SEM) are the
most commonly used methods to show the spatial structure and arrange-
ment of microbial communities. The development of SEM in the 1950s
(Fischer, Hansen, Nair, Hoyt, & Dorward, 2005) has enabled the
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visualization of 3-dimensional topography of biofilm in water meters
(Hong et al., 2010). Using 16S rRNA gene as a biomarker, FISH technique
was introduced in the late 1980s to identify and quantify microbial popula-
tions at different phylogenetic levels and in combination with other techni-
ques to determine microbial functions in their natural positions (Amann,
Krumholz, & Stahl, 1990; Delong, Wickham, & Pace, 1989).

2.3. Methods measuring microbial activities

To measure microbial activity, currently available methods include ATP
assay, enzymatic activity tests, and assimilable organic carbon (AOC) tests
(Henne et al., 2012; Lautenschlager et al., 2014; Manz et al., 1993; Stutz,
Leki, & Lopez Pila, 1986; Vanderkooij, Visser, & Hijnen, 1982). ATP assay
determines all biologically active bacteria based on the total amount of
ATP measured through bioluminescence assay (Stutz et al., 1986).
Enzymatic activity tests quantify specific enzymes by monitoring the
increase of fluorescence intensities or absorbance owing to the degradation
of substrates by specific enzymatic activities such as polysaccharide-degrad-
ing enzymes (a- and b-glucosidase, cellobiohydrolase, xylosidase, chitinase)
as a function of time (Lautenschlager et al., 2014; Roskoski, 2007). AOC
concentration represents the fraction of dissolved organic carbon that may
readily support microbial growth and is determined by measuring the
maximum level of growth of two bacterial isolates (Pseudomonas fluorescens
P-17 and Spirillum sp. strain NOX) in a water sample, which usually takes
5–7 days (Vanderkooij et al., 1982). However, activity measurements have
not been widely incorporated in drinking water microbiome studies
because they are time-consuming and labor-intensive.

2.4. Limitations of current methods

Current methods for the monitoring of the drinking water microbiome do
have limitations. Cultivation-based methods are known to be time-consum-
ing, low in sensitivity, and ineffective in recovering the majority of micro-
organisms in the community (Berney et al., 2008; Hammes et al., 2008;
Staley & Konopka, 1985). Furthermore, culture-dependent enumeration
methods, though widely used in HPC and E. coli testing, cannot effectively
detect disinfectant-injured or genetically modified bacterial indicators with
inserted antibiotic resistance genes (ARGs) (Li et al., 2017). These microor-
ganisms are commonly found in drinking water environment but largely
overlooked, which can regain activity under the right test conditions and
consequently pose potential health risks to end users. Thus, current studies
mostly rely on molecular tools to gain insights into the drinking water
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microbiome. Table 2 systematically summarizes biases that can occur or be
associated with a few key steps from sampling to data interpretation in
those molecular based methods. Firstly, experimental design in technical
and biological replicates is critical to statistically determine variations
between samples, but is often not considered due to time, manpower, and
cost (Brooks et al., 2015). For example, sample-to-sample heterogeneity
often occur during biofilm samplings. Sampling biofilm in replicates in
full-scale systems can be difficult because of limited access, high cost, and
high chances of contamination (Gomez-Smith, LaPara, & Hozalski, 2015;
Ling, Hwang, LeChevallier, Andersen, & Liu, 2016). The sample-to-sample
heterogeneity can become more significant when integrated analyses of
molecules at different metabolic levels (i.e., DNA, RNA, proteins, and
metabolites) are involved (Muller, Glaab, May, Vlassis, & Wilmes, 2013).
Sample volume and concentration methods also play a crucial role in deter-
mining whether enough biomass can be successfully obtained for down-
stream molecular analyses. At present, no standard practice has been
established for the minimal sampling volume required and the

Table 2. Limitations of current methods as shown by systematic errors reported in
the literature.
Experimental/
analytical steps Range Systematic error References

Sample number (technical
and biological replicates)

2–15 5% (Bautista-de los Santos,
Schroeder, Blakemore,
et al., 2016; Brooks et al.,
2015; Prosser, 2010)

Sample volume and con-
centration methods

100ml–2000 L N/A (APHA, AWWA, & WEF,1998;
Chao et al., 2013; Liu,
Ling, et al., 2013; Wang
et al., 2017; Zhang, Oh,
et al., 2017)

DNA extraction efficiency 1–100% 35%–85% (Brooks et al., 2015; Guo &
Zhang, 2013; Henderson
et al., 2013; Hwang
et al., 2012b)

RNA extraction efficiency 1–100% 50%–80% (Moran et al., 2013; Stark
et al., 2014; Tsementzi
et al., 2014)

Protein extraction efficiency 1–100% 50%–60% (Hansen et al., 2014;
Keiblinger et al., 2012)

PCR biases 1.4N–2N 30%–50% (Brooks et al., 2015;
Duhaime et al., 2012)

rRNA gene copy number �1–20 �10% in abun-
dance estimate

(Angly et al., 2014;
Klappenbach et al., 2001;
Vetrovsky &
Baldrian,2013)

DNA sequencing 90–100% 0.1%–10% (Feng et al., 2015; Jain
et al., 2016; Lee et al.,
2012; Roberts et al.,
2013; Ross et al., 2013)

16S rRNA resolution (length
and targeted vari-
able regions)

Genus–family 12%–15% in underestimat-
ing diversity

(Brooks et al., 2015; Jain
et al., 2017)

Source: Zhang and Liu, forthcoming. Reprinted with permission. # Water Research Foundation.
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concentration method used. Sample volume ranging from 100mL to 2000 L
is necessary and often dependent on downstream analyses used and the
objectives asked. The extraction efficiency of DNA, RNA, and protein from
collected samples can vary from 35 to 85%, and can sometime influence
the taxonomic outcomes of microbiota assessments (Brooks et al., 2015;
Guo & Zhang, 2013; Henderson et al., 2013; Hwang, Ling, Andersen,
LeChevallier, & Liu, 2012b; Moran et al., 2013; Sinha et al., 2017; Stark,
Giersch, & Wunschiers, 2014; Tsementzi, Poretsky, Rodriguez, Luo, &
Konstantinidis, 2014). Biases can also occur during PCR amplification
(30–50%) (Brooks et al., 2015), due to differences in GC content of micro-
organisms (Duhaime, Deng, Poulos, & Sullivan, 2012), rRNA gene copy
number (Klappenbach, Saxman, Cole, & Schmidt, 2001), and primer
annealing efficiency (Wu, Hong, & Liu, 2009). All these factors can lead up
to 10% variation in estimating the relative abundance of specific microbial
groups (Angly et al., 2014). During DNA sequencing, various degrees of
error, ranging from <1% up to 14%, can occur depending on the sequenc-
ing platform used (Feng, Zhang, Ying, Wang, & Du, 2015; Jain, Olsen,
Paten, & Akeson, 2016; Roberts, Carneiro, & Schatz, 2013; Ross et al.,
2013). Last but not the least, when using the short 16S rRNA sequences to
identify microbial populations, caution should be taken in relation to its
limitations in differentiating closely-related populations at lower phylogen-
etic levels (e.g., genus or species) (Schloss, 2010). Also, 16S rRNA gene
sequence cannot accurately provide the physiological function unlike whole
genome-based methods (Jain, Rodriguez-R, Phillippy, Konstantinidis, &
Aluru, 2017). This can be a significant problem in distinguishing patho-
genic strains from commensals (Edberg, 2009; Steele & Streit, 2005).

3. Current understanding on the drinking water microbiome

3.1. Longitudinal shifts from source to tap in conventional drinking
water systems

A typical drinking water system spans from source water, the treatment
train in the production process, the distribution network, to indoor premise
plumbing. The continuous water flow carries upstream microbial assemb-
lages downstream in the distribution system and premise plumbing due to
seeding from source water, breakthrough during treatment, seeding from
filters, and growth in the distribution network (Table 3).

3.1.1. Seeding from source water
Surface water and groundwater are the two types of source water most
commonly used to produce drinking water and can contain distinct
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Table 3. Treatment effects on drinking water microbiomes derived from surface water and
groundwater.

Treatment stages Purpose
Impacts on drinking
water microbiome References

Source water Water supply � Serve as inoculum to down-
stream microbiota.

� Seeding effect is more signifi-
cant in surface water systems
than groundwater systems.

� Seasonal variations in surface
water cause changes in down-
stream microbiota.

� Biofilm community in surface
water systems have slightly
higher diversity than ground
water systems.

(Douterelo et al., 2017;
Gomez-Alvarez et al.,
2015; Pinto et al.,
2014; Pinto et al.,
2012; Revetta,
Gomez-Alvarez, Gerke,
Domingo, & Ashbolt,
2016; Roeselers et al.,
2015; Sun et al., 2014;
Zhang, Oh,
et al., 2017)

Softening Hardness removal � The softening effluent is domi-
nated by a single micro-
bial population.

(Zhang, Oh, et al., 2017)

Coagulation and
sedimentation

Removal of turbidity,
infectious agents, and
DBP precursors

� They have minimal influence on
the microbial community.

(Eichler et al., 2006; Lin
et al., 2014; Poitelon
et al., 2010; Zeng
et al., 2013)

Ozonation Disinfection and removal
of NOM

� It has significant impacts on
total cell counts and commu-
nity diversity.

� The resulting AOC supports a
community in downstream bio-
filters different from the inflow.

(Lautenschlager et al.,
2014; Vaz-Moreira
et al., 2013; Zeng
et al., 2013)

Disinfection Pathogen inactivation � Disinfection treatments can lead
to decreases in microbial diver-
sity, especially, on the active
members.

� Chlorination and chloramination
might select for different bac-
terial populations.
The molecular mechanism of
chlorine resistance is attributed
to glutathione synthesis.

(Bautista-de los Santos,
Schroeder, Sevillano-
Rivera, et al., 2016;
Chao et al., 2013;
Chiao, Clancy, Pinto,
Xi, & Raskin, 2014;
Eichler et al., 2006;
Gomez-Alvarez et al.,
2012; Hwang et al.,
2012a; Sun et al.,
2014; Wang, Proctor,
et al., 2014)

Filtration Removal of turbidity, patho-
gens, and various other
contaminants

� Filtration is the key step shap-
ing downstream microbiota
through removing incoming
particles and seeding outflow
with microorganisms sloughed
from filter media.

� Various biological processes can
occur in filters.

� Some groups have greater
potential to seed downstream
communities.

� Eukaryotes play an important
role in bacterial dynamics
in filters.

(Albers et al., 2015;
Cerrato et al., 2010;
de Vet et al., 2009;
Feng et al., 2013;
Gulay et al., 2016;
Holinger et al., 2014;
Kasuga et al., 2010a;
Kasuga et al., 2010b;
Lautenschlager et al.,
2014; Liao et al.,
2013; Magic-Knezev &
van der Kooij, 2004;
Marcus et al., 2017;
van der Wielen et al.,
2009; Velten et al.,
2007; White et al.,
2012; Zearley &
Summers, 2012)

Distribution Water transportation � Drinking water microbiota are
involved in many important
processes in DSs, i.e., the for-
mation of biofilms and loose-

(Bautista-de los Santos,
Schroeder, Sevillano-
Rivera, et al., 2016;
Beech & Sunner,

(continued)
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microbial populations owing to differences in physical and chemical gra-
dients. These microbial populations can ‘seed’ downstream microbiota in
the treatment train, the DS, and premise plumbing. Groundwater systems
are mostly known to be anoxic or anaerobic with relatively high concentra-
tions of compounds (i.e., iron, manganese, ammonia, sulfur compounds,
methane, and dissolved organic carbon) supporting the growth of anaerobic
communities (Albers et al., 2015; Bruno et al., 2017; Holinger et al., 2014;
Ling et al., 2016; van der Wielen, Voost, & van der Kooij, 2009; Zhang,
Oh, & Liu, 2017). Due to aeration on abstraction, most of these anaerobes
cannot survive under the oxidative stress and are generally not detected
downstream (Roeselers et al., 2015; Zhang, Oh, et al., 2017). In comparison,
the seeding effect, or treatment breakthrough, is more significant in systems
using surface waters as source water (Gomez-Alvarez, Humrighouse,
Revetta, & Domingo, 2015; Pinto, Xi, & Raskin, 2012).

3.1.2. Breakthrough during treatment
Softening is used to remove calcium and magnesium cations that contrib-
ute to hardness, with concurrent benefit to the removal of heavy metals,
natural organic matter, turbidity, and pathogens (Peters, 2011). During the
softening process, lime and soda ash are added to raise pH rapidly to 10.3
for calcium precipitation or 11.0 for magnesium precipitation. A recent
study (Zhang, Oh, et al., 2017) showed a drastic change in the composition

Table 3. Continued.

Treatment stages Purpose
Impacts on drinking
water microbiome References

deposits on pipe walls, harbor-
ing pathogens in biofilm, nitri-
fication, manganese oxidation,
methane oxidation, and induc-
ing pipe corrosion.

� Many factors have been deter-
mined to play a role in micro-
bial growth in DSs, such as
temperature; the amount of
usable carbon; flow regime
(hydrodynamics); water resi-
dence time; pipe materials; and
the presence of corro-
sion products.

2004; Berry et al.,
2006; Camper et al.,
1998; Chen et al.,
2013; Dai et al., 2017;
Ji et al., 2015; Jin
et al., 2015; Kelly
et al., 2014;
Lautenschlager et al.,
2010; LeChevallier
et al., 1996; Li et al.,
2010; Li, Wang, et al.,
2015; Ling et al.,
2016; Liu et al., 2014;
Liu, Verberk, et al.,
2013; Marcus et al.,
2017; Proctor et al.,
2015; Regan et al.,
2003; van der Wielen
et al., 2009; Wang
et al., 2013; Wang,
Masters, et al., 2014;
Wang, Proctor, et al.,
2014; Zhang
et al., 2008)

Source: Zhang and Liu, forthcoming. Reprinted with permission. # Water Research Foundation.
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and reduction in diversity of microbial communities before and after the
softening process, with syntrophs and methanogens abundant in raw water
and Exiguobacterium-related populations predominant in the softening
effluent. In contrast, a wide variety of different microorganisms were
observed to colonize the calcite pellets in a full-scale pellet softening reactor
preceded by ozonation. They proliferated as soon as the pH in the water
was neutralized due to calcite crystallization in the presence of highly bio-
degradable nutrients (Hammes et al., 2011).
The processes of coagulation, flocculation, and sedimentation are used to

remove suspended solids including small particulars and colloids
(0.001–1.0 mm), improve water turbidity color, and reduce the level of
microbial pathogens and DBP precursors (Peters, 2011). Coagulation and
flocculation turn small particles present in source water into larger particles
called ‘flocs’, which are then removed during sedimentation and filtration.
Mostly, these processes are reported to have no observable effect on micro-
bial community structure (Eichler et al., 2006; Lin, Yu, Zhang, &
Thompson, 2014; Poitelon et al., 2010), except that one study observed sig-
nificant community shift during sedimentation (Zeng et al., 2013).
Ozonation is used as a disinfection and oxidation process to enhance

microbial removal, control taste and odor, and eliminate micropollutants
from water (von Gunten, 2003). The strong oxidative stress imposed by
ozonation causes a significant reduction of the total cell counts and com-
munity diversity (Lautenschlager et al., 2014; Vaz-Moreira, Egas, Nunes, &
Manaia, 2013; Zeng et al., 2013). It also oxidizes natural organic matter
into low-molecular-weight and possibly biodegradable AOC, which is then
removed by biological filters. Ozonation can cause a drastic change in the
drinking water microbiome as shown by comparing the microbial commu-
nity before ozonation and in the effluent of the biofilters following ozona-
tion (Lautenschlager et al., 2014). Biomass recovery and community
analysis during ozonation is difficult due to strong oxidative stress.
Free chlorination and chloramination are two major types of disinfection

treatments used to inactivate pathogens during drinking water production
and transportation processes. Disinfection treatments can lead to decreases
in microbial diversity for systems maintaining a disinfectant residual
(Bautista-de los Santos, Schroeder, Sevillano-Rivera, et al., 2016; Chao
et al., 2013; Gomez-Alvarez, Revetta, & Domingo, 2012; Sun, Shi, Bai, &
Wang, 2014). Due to the difference in the inactivation mechanisms, chlor-
ination and chloramination were reported to select for different bacterial
populations in a drinking water system with alternating disinfection treat-
ment between chlorination and chloramination (Hwang, Ling, Andersen,
LeChevallier, & Liu, 2012a; Wang, Proctor, et al., 2014). However, this
trend was not observed when more systems were incorporated and com-
pared (Bautista-de los Santos, Schroeder, Sevillano-Rivera, et al., 2016).
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3.1.3. Seeding from filters
Filtration separates suspended or colloidal impurities from water by passing
it through a porous medium (e.g., a bed of sand, coal, activated carbon, or
garnet) to reduce turbidity, and remove pathogens and many organic and
inorganic contaminants. Depending on the source water quality, one or a
series of filters are used at a drinking water system, including rapid sand
filters (RSFs), granular activated carbon (GAC) filters, and slow sand filters
(SSFs). Filtration is a key step in shaping DS microbiota by removing
incoming microbes as a form of particles through mechanical screening
and by seeding outflow with microbes as planktonic cells or aggregates
detached from filter media (Peters, 2011; Pinto et al., 2012). Microbial bio-
mass can be enriched on the filters and reach up to a density of 109 copies
of 16S rRNA gene per g-filter material or 1015–1016 cells per m3 filter
material. Depending on water quality, these microbes have various meta-
bolic functions, including oxidation of ammonia, iron, and manganese,
metabolism of sulfur compounds, and degradation of dissolved organic car-
bon and trace organic micropollutants (Albers et al., 2015; Cerrato et al.,
2010; de Vet, Dinkla, Muyzer, Rietveld, & van Loosdrecht, 2009; Feng
et al., 2013; Gulay et al., 2016; Holinger et al., 2014; Kasuga, Nakagaki,
Kurisu, & Furumai, 2010a; Kasuga, Nakagaki, Kurisu, & Furumai, 2010b;
Lautenschlager et al., 2014; Liao et al., 2013; Magic-Knezev & van der
Kooij, 2004; Marcus et al., 2017; van der Wielen et al., 2009; Velten,
Hammes, Boller, & Egli, 2007; White, DeBry, & Lytle, 2012; Zearley &
Summers, 2012). Dense bacterial cells and protozoa are frequently observed
at the top layer of SSFs (known as Schmutzdecke), and eukaryotic predation
has been shown to play a critical role in the dynamics of the bacterial com-
munity in filters (Haig et al., 2015; Lautenschlager et al., 2014).

3.1.4. Growth in the distribution network
DS pipes carry drinking water from a centralized treatment plant or well
supplies to consumers’ taps, providing the required water quantity and qual-
ity at a suitable pressure. Managing the network is a primary challenge from
both an operational and public health standpoint due to the expansive phys-
ical infrastructure (Snoeyink et al., 2006). Microbial regrowth with spatiotem-
poral variation is the major concern in distribution as the physicochemical
and nutritional conditions provided by pipe walls are very different from
those found during treatment. Recent studies were able to identify the micro-
bial community and dominant species associated with many important proc-
esses in DSs. These processes included the formation of biofilms and loose-
deposits on pipe walls (Kelly, Minalt, Culotti, Pryor, & Packman, 2014; Liu
et al., 2014; Wang, Masters, Edwards, Falkinham, & Pruden, 2014), harboring
pathogens in biofilm (Ling et al., 2016; Wang et al., 2013), nitrification
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(Regan, Harrington, Baribeau, De Leon, & Noguera, 2003; van der Wielen
et al., 2009; Wang, Proctor, et al., 2014; Zhang, Griffin, & Edwards, 2008),
oxidation of manganese (Marcus et al., 2017) and methane (Kelly et al.,
2014; Ling et al., 2016), and inducing pipe corrosion (Beech & Sunner, 2004;
Chen, Jia, & Li, 2013; Jin, Wu, & Guan, 2015; Li et al., 2010; Li, Wang,
et al., 2015; Zhang et al., 2008). Many factors have been determined to play
a role in the microbial regrowth in DSs, including temperature, especially
warm water conditions, the amount of usable carbon, flow regime (hydro-
dynamics), water residence time, pipe materials, and the presence of corro-
sion products (Bautista-de los Santos, Schroeder, Sevillano-Rivera, et al.,
2016; Berry, Xi, & Raskin, 2006; Camper, Burr, Ellis, Butterfield, &
Abernathy, 1998; Dai et al., 2017; LeChevallier, Welch, & Smith, 1996; Liu,
Verberk, & Van Dijk, 2013; Proctor, Edwards, & Pruden, 2015). For premise
plumbing, pipe diameter was reported as a key critical factor (Ji, Parks,
Edwards, & Pruden, 2015; Lautenschlager et al., 2010).

3.2. Temporal dynamics

Temporal dynamics are at the core of understanding the assembly mechan-
ism and succession trajectory of the drinking water microbiome and crucial
for developing models to predict changes in water quality and potential
microbial contamination events. The drinking water microbiome within a
single water distribution system undergoes temporal changes from season
to season due to the changing environments provided by pipe walls and
from different time points of the day due to hydraulic changes with water
demand in the DS. Seasonal variation was found to be the main factor
leading to changes in microbial community structure, especially during the
summer with elevated temperature (Ling et al., 2016; Prest, Weissbrodt,
Hammes, van Loosdrecht, & Vrouwenvelder, 2016). It has been observed
not only in the bulk water phase, but in the biofilm phase and the cold
and hot waterlines in DSs (Henne, Kahlisch, Hofle, & Brettar, 2013; Ling
et al., 2016; Pinto, Schroeder, Lunn, Sloan, & Raskin, 2014; Prest et al.,
2016). As a rule of thumb, every 10 �C increase in water temperature leads
to a two-fold increase in microbial activity (Baribeau, 2006). These seasonal
variations have substantial influence on plant operation, including the type
and dose of disinfectants and the frequency of positive detection of bacter-
ial indicators. Capturing these changes are critical for establishing mathem-
atical models to predict changes in microbiological water quality. In
comparison, short-term fluctuations, such as the diurnal pattern within a
day, are difficult to capture due to low frequency in sampling. This diurnal
pattern corresponds with shifts in the bulk water community owing to the
presence/absence of low-abundance populations and the abundance change
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of dominant populations and thus has less impact on the drinking water
microbiome (Bautista-de los Santos, Schroeder, Blakemore, et al., 2016;
Besmer et al., 2016).

3.3. Biogeography

Biogeography refers to the geographical distributions of organisms over the
Earth in both space and time (Beijerinck, 1913; Horner-Devine, Carney, &
Bohannan, 2004). Geographical differences in microbiomes have been
observed for waste-treating ecosystems like anaerobic digester sludge (Mei
et al., 2017). However, few studies have attempted to verify the existence of
geographic difference with the drinking water microbiome (Roeselers et al.,
2015) or understand which environmental factors exert the strongest influ-
ences (Bautista-de los Santos, Schroeder, Sevillano-Rivera, et al., 2016;
Horner-Devine et al., 2004). A survey of drinking water microbiomes along
the Mississippi River found that the drinking water microbiota of New
Orleans, LA differed from other communities with high relative abundan-
ces of phylotypes indicative of fresh and saltwater infiltration (e.g.,
Planctomycetes and Bacteroidetes) and potential opportunistic pathogens
(e.g., Legionella and Mycobacterium spp.) (Holinger et al., 2014; Hull et al.,
2017). This survey further observed that the abundant taxa were generally
shared among all systems and system-specific taxa were not particularly
abundant (Holinger et al., 2014). Similar findings were reported among sys-
tems across a restricted area. Roeselers et al., (Roeselers et al., 2015) sur-
veyed 32 drinking water distribution networks in the Netherlands, all using
groundwater from (un)confined sandy aquifers as the source water and no
disinfectant residual in the networks, and observed network-specific taxa,
which were of low abundances. However, these studies investigated diver-
sity only through 16S rRNA gene amplicon analyses. Future studies reveal-
ing diversity at different scales of resolution are needed for accurate
description of the biogeography of the drinking water microbiome.

3.4. The core microbiome

Identifying a core microbiome (i.e., shared microbial taxa) is an important
step for gaining insights into the microbial function associated with an eco-
system, and is often used to provide guidance on how to manipulate the
drinking water microbiome at the user end. A core microbiome is typically
defined as the suite of members shared among microbial consortia from
similar habitats (Shade & Handelsman, 2012). As the water-phase micro-
flora within a given system are relatively stable irrespective of the sampling
locations over short-time scales (Lautenschlager et al., 2013; Pinto et al.,
2014; Roeselers et al., 2015), studies have attempted to define a core
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microbiome in the bulk water phase after the production process across
different drinking water systems. At high taxonomical levels, such as phyla
and classes, the core microbiome is made up primarily of Alpha- and Beta-
proteobacteria, and to a lesser extent of Gamma-proteobacteria, Nitrospirae,
Planctomycetes, Acidobacteria, Bacteroidetes and Chloroflexi (Bautista-de los
Santos, Schroeder, Sevillano-Rivera, et al., 2016; Eichler et al., 2006;
Lautenschlager et al., 2014; Lin et al., 2014; Pinto et al., 2012; Vaz-Moreira
et al., 2013; Zeng et al., 2013). Families of Burkholderiaceae,
Methylophilaceae, Comamonadaceae, and Rhodocyclaceae were abundant
among Beta-proteobacteria, whereas Sphingomonadaceae, Caulobacteraceae,
and Methylobacteriaceae were dominant in Alpha-proteobacteria (Douterelo
et al., 2014; Eichler et al., 2006; Pinto et al., 2012; Vaz-Moreira et al., 2013;
Zeng et al., 2013). It is however difficult to define a core microbiome down
to genus or species levels across systems using different disinfectants
(chlorine, chloramine, and without disinfectants), likely due to the substan-
tial differences in selection pressures from these disinfectants (Bautista-de
los Santos, Schroeder, Sevillano-Rivera, et al., 2016). Few studies have
attempted to define the active core microbiome. Furthermore, it might be
impossible to define a core microbiome in the biofilm phase of DSs owing
to the numerous but spatially heterogeneous ecological niches and contin-
ual ecological succession (Ling et al., 2016).

3.5. Microbial exchange between multi-phases

Microbes in a drinking water system are present in bulk water, suspended
solids (i.e., particulate matter transported throughout the network), pipe
wall biofilm, and loose deposits (i.e., particulate matter accumulated on the
pipe bottom) and the exchange of microorganisms between these four
phases is one crucial mechanism influencing the water quality received by
the end users (Liu et al., 2014). Loose deposits and biofilm were observed
to host the majority of microorganisms (98%) compared with bulk water
and suspended solids combined (2%) (Liu et al., 2014). The number of cells
attached to each particle in suspended solids and loose deposits almost
doubled after passing through the distribution network (Liu, Ling, et al.,
2013; Liu et al., 2016). Unlike water-phase and particle-associated popula-
tions, which have a relatively short transit time within a drinking water sys-
tem, biofilm-phase microbes can be viewed as indigenous populations in a
drinking water system. They are organized in highly-structured habitats
and exhibit considerable structural, chemical and biological heterogeneity
(Allen, Taylor, & Geldreich, 1980; Ridgway & Olson, 1981; Stewart &
Franklin, 2008; Wimpenny, Manz, & Szewzyk, 2000). In previous studies,
biofilm was taken as a composite sample along the pipe wall for microbial
community analysis. However, biofilm likely exhibited heterogeneity along

CRITICAL REVIEWS IN ENVIRONMENTAL SCIENCE AND TECHNOLOGY 1203



the radial direction in the pipe wall. Contrary to intuition, the findings by
Ridgway and Olson (Liu, Ren, et al., 2017) revealed that biofilm located in
the middle part of pipe walls possessed the highest diversity and harbored
the highest abundance of possible pathogens. Studies have shown that bio-
film assemblages could influence the bulk water communities in the DS,
and the effect was dependent on the level of biofilm sloughing from the
pipe surface (Douterelo, Jackson, Solomon, & Boxall, 2017; Douterelo,
Sharpe, & Boxall, 2013; Henne et al., 2012; Ling et al., 2016; Roeselers
et al., 2015). A recent study estimated that the sloughing of 20% biofilm
from PVC pipes or 10% biofilm from HDPE pipes would significantly alter
the bulk water community (Liu, Tao, et al., 2017).

3.6. Prokaryote-eukaryote interactions

Why do opportunistic pathogens never stop reoccurring in the distribution
network even after chlorine treatment? The underlying reason is probably
due to pathogens living within eukaryotes embedded in surface-attached
biofilms (Brown & Barker, 1999). Eukaryotes are an important component
of the drinking water microbiome, many of which are resistant to disinfec-
tion processes and can be reservoirs for pathogens, such as Mycobacterium,
Legionella, and Chlamydia (Buse et al., 2017; Cervero-Arago, Rodriguez-
Martinez, Puertas-Bennasar, & Araujo, 2015; Delafont, Bouchon, Hechard,
& Moulin, 2016; Delafont et al., 2014; Fonseca & Swanson, 2014;
Kilvington & Price, 1990; Sauer, Bachman, & Swanson, 2005). Furthermore,
eukaryotes can be the ‘hub’ facilitating the genetic exchange between
viruses, opportunistic pathogens and their closely-related species, and the
eukaryotic hosts themselves (Zhang, Oh, et al., 2017). In fact, the co-evolu-
tion between amebae and L. pneumophila has ‘trained’ bacteria both for
environmental survival and virulence towards human (Gomez-Valero et al.,
2011; Smith, 2005). Reported eukaryotic groups in drinking water systems
included amebae, nematodes, fungi, flagellates, segmented worms, arthro-
pods, and flat worms (Delafont et al., 2016; Oh, Hammes, & Liu, 2018;
Zhang, Oh, et al., 2017).

3.7. Water recycling and its impact on the microbiome

Water reuse either intended or de facto is gaining momentum in dealing
with water scarcity. Indirect or direct potable reuse has become an inevit-
able choice for certain regions in addition to the traditional non-potable
reuse for irrigation and rain water harvest. Depending on the purpose of
reuse, a multi-barrier treatment framework is required to achieve a targeted
level of water quality, in particular, concerning microbiological safety and
public health as people are under direct exposure to reused water through
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consumption or aerosol. Consequently, several critical questions on the
microbiome in recycled water need to be addressed to provide scientific
support for technological and regulatory guidance: how effective is the cur-
rent treatment train in reducing the loading of microorganisms, including
antibiotic-resistant bacteria (ARB), ARGs, and viruses? How does each
reuse step alter the microbiome? Can we find biomarkers that can be used
for day-day or online monitoring of water treatment efficiency and water
quality of reused water?
Table 4 summarizes the current research status on the impact of treat-

ment technologies on the microbiome in recycled water. For centralized
potable water reuse (either directly or indirectly) and water desalination,
treatment processes commonly involve ultrafiltration (UF)/microfiltration
(MF)/cartridge filters (CFs) followed by reverse osmosis (RO). These two
membrane processes can significantly alter the downstream microbial com-
munity by retaining microorganisms adapted to biofilm mode of growth
on membrane surfaces that are continuously in contact with a disinfectant
residual (Al Ashhab, Herzberg, & Gillor, 2014; Leddy et al., 2017; Levi,
Bar-Zeev, Elifantz, Berman, & Berman-Frank, 2016; Miller, Nelson, &
Rodriguez, 2017). Processes upstream of RO serve as inocula for the RO
biofouling layer and those downstream, such as GAC, play a primary role
in seeding the DS (Levi et al., 2016; Miller et al., 2017). In most cases,
recycled water needs to be combined with treated water from conventional
drinking water treatment plant before entering the DS. The transition to
combined water potentially causes a change of water chemistry in the DS,
which in turn can profoundly impact the nature and composition of bio-
films and trigger the release of pathogens into drinking water (Liu, Zhang,
et al., 2017). For decentralized rainwater harvest, opportunistic pathogens is
the primary research interest in the recycled water after certain period of
sedimentation in the tank and their presence is shown to be correlated
with water chemistry (Ahmed, Brandes, Gyawali, Sidhu, & Toze, 2014;
Campisano et al., 2017; Dobrowsky, Khan, Cloete, & Khan, 2017). For
reclaimed water used for irrigation after tertiary wastewater treatment, ARB
and ARGs are major concerns as wastewater treatment plants are hotspots
for the dissemination of ARGs and ARB in the downstream DS and soil
environments (Garner, Chen, et al., 2018; Garner, McLain, et al., 2018;
Hong et al., 2018).

4. Ecological patterns of the drinking water microbiome exemplified by
four full-scale systems in Western countries

Numerous physical, hydraulic, chemical, and biological processes occur in
such a complex system, all of which might impact the drinking water
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microbiome either locally or system-wise. Meanwhile, utility managers, sci-
entists, and regulators view this complex ecosystem from different perspec-
tives. For managers in water utilities, they are interested in forecasting
changes in drinking water microbiome under different conditions and
improving the efficiency of existing monitoring practices. Researchers are
attracted by mechanistic understanding of phenomena occurring in drink-
ing water ecosystems and establishing predictive models for these phenom-
ena. Regulators consider microbiological water safety as a priority, in
particular, how to minimize microbial contamination events through engin-
eering practices. Therefore, we summarize four in-depth studied systems
with different levels of residual chlorine to illustrate the current under-
standing developed on drinking water microbiomes from different perspec-
tives to enlighten future studies (the Braunschweig and Zurich systems
without residual disinfectants; the Ann Arbor system with chloramine; and
the Champaign system mainly with chlorine).
The city of Braunschweig, Germany represents systems using surface

water as source water with low chlorine dose during treatment and no
residual chlorine in the distribution network. Highlights of the study series
include comparing the impact of treatment processes on both the total
community (by DNA analysis) and the active community (by RNA ana-
lysis), relating the microbial community in the biofilm phage with those
from the water phase, and tracking Legionella diversity and dynamics from
source water to cold and hot waterlines (Eichler et al., 2006; Henne et al.,
2012; Henne et al., 2013; Lesnik, Brettar, & Hofle, 2016). The city uses two
surface water reservoirs to produce drinking water through two separate
systems with coagulation-flocculation, sand barriers, and chlorination
(0.2–0.7mg/L), and final mixing at a constant ratio (Lesnik et al., 2016).
The findings suggested that microflora in the DS were influenced by both
water sources and chlorination with the latter having a more profound
impact on the active community than the overall microbial community
(Eichler et al., 2006). The bulk water community was observed to have a
large number of the low-abundance bacterial populations and the biofilm
community had a reduced diversity and did not share any core microbial
population with bulk water. It was hypothesized that low-abundance bac-
terial populations in the bulk water could function as an inoculum to seed
the biofilm community (Henne et al., 2012). Seasonal dynamics observed in
the drinking water microbiome were highly influenced by source water
(Henne et al., 2013). Regarding Legionella species, a high diversity with
over 40 phylotypes was observed in source waters, which was remarkably
reduced during the treatment process but completely recovered in the mix-
ing and the followed distribution network. It was further observed that dif-
ferent phylotypes of Legionella species dominated in cold waterlines and
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hot waterlines with substantially more L. pneumophila, the pathogenic spe-
cies, in hot waterlines (accounting for as high as 40% of Legionella spp.)
(Lesnik et al., 2016). The abundance of phylotypes belonging to L. long-
beachae and L. pneumophila increased significantly with temperature, indi-
cating the thermophilic nature of these pathogenic species and their
enrichment by water heaters.
The city of Zurich, Switzerland, is a typical European system using

sequential ozonation and filtration steps (RSFs, GAC filters, and SSFs)
without residual disinfectants in the distribution network. Studies on this
system underscore a multi-parametric approach to capture as complete a
picture as possible of the drinking water microbiome by integrating con-
ventional microbial detection methods with modern molecular techniques,
including microbial growth potential (TOC and AOC), community abun-
dance and composition (HPC, FCM, and 16S rRNA gene-based community
analysis), and activity and function (ATP and extracellular enzyme activ-
ities) (Lautenschlager et al., 2010; Lautenschlager et al., 2014;
Lautenschlager et al., 2013). The system uses surface water (Lake Z€urich) to
produce 50% of daily drinking water demand through the treatment pro-
cess, mixed with untreated groundwater (49%) and spring water (1%).
Microbial community shifts were observed at each stage of the treatment
step based on phylogenetic, enzymatic, and metabolic analyses. Filter
microbial communities in RSFs, GAC filters, and SSFs differed among each
other, and from those observed in the effluent of individual filters. The
microbial community in SSF effluent, the subsequent reservoir, and most
locations in the DS remained remarkably stable during a two-year consecu-
tive sampling (Lautenschlager et al., 2014). Exceptions were locations with
the longest water retention times, as shown by a significantly higher total
cell concentration by FCM and a shift in the community profile, which
could not be observed with traditional detection methods (Lautenschlager
et al., 2013). In premise plumbing, cell concentration increased in the first
liter of tap water after overnight stagnation, followed by step-wise decrease
with the water volume flushed (the first 2 liters). This increase in cell con-
centration could only be partially explained by the growth due to available
AOC (Lautenschlager et al., 2010). Future studies can further explore the
contribution of biofilm growth and detachment to the total regrowth dur-
ing stagnation.
The city of Ann Arbor, Michigan, USA represents surface water systems

with residual disinfectants in the DS, exhibiting strong seasonal cycling.
The study series identified the primary role of sand filters in shaping the
microbial community in the downstream DS, which provided a possibility
to control the drinking water microbiome in the DS and at tap through
manipulating the filter microbial community by proper plant operation
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(Pinto et al., 2012). A highlight of the studies was the use of modeling tools
to describe and generalize the trend observed with the drinking water
microbiome, translating research results to information that could poten-
tially be used by water utilities (Pinto et al., 2014). Furthermore, cultivation
was carried out to investigate a dominant group of bacteria in the system
indicated by 454 pyrosequencing (i.e., Mn(II)-oxidizing bacteria). The inte-
gration of cultivation dependent and independent approaches to decipher
the ecology and function of dominant bacterial groups greatly promoted
mechanistic understanding of drinking water microbiomes. This drinking
water system uses surface water (Huron River) and local wells (ground-
water) as raw water at approximately 2:1 in the winter and 8:1 in the sum-
mer. The water is treated through a process including lime softening,
coagulation, flocculation, sedimentation, ozonation, dual media filtration,
and chloramination. The finished water contains approximately 3mg Cl2/L
chloramine as the residual disinfectant with a pH between 9.1 and 9.3. The
findings revealed that bacterial taxa that colonized the filter and sloughed
off in the filter effluent persisted in the DS, indicating the importance of
the filter. The microbiome in the distribution network exhibited a strong
temporal trend of seasonal cycling correlating with temperature and source
water usage patterns, and weaker spatial dynamics. The relative abundance
of a taxon in the studied DS was positively correlated with the frequency of
its detection.
The cities of Champaign and Urbana, Illinois, USA is a typical ground-

water system with dissolved methane in the reservoir to produce drinking
water subjected to chlorine conversion (i.e., shifts between chloramine and
chlorine as residual disinfectants) due to the implementation of Stage 2
Disinfectants and Disinfection Byproducts Rules or dealing with the prob-
lems of nitrification and microbial regrowth in the DS. A unique feature of
this system is the presence of dissolved methane throughout the entire sys-
tem, leading to the prevalence and a high abundance of methane-oxidizing
bacteria and the accompanying species feeding on the intermediate metabo-
lites of methane oxidation in finished water and the DS (in both the water
phase and the biofilm phase) (Ling et al., 2016). Furthermore, eukaryotes
could be a critical factor driving the diversification of the bacterial commu-
nity as a variety of eukaryotic groups were detected throughout the system
(Zhang, Oh et al., 2017). Because it is difficult to sample biofilms from
pipe surface in the DS, this study series introduces biofilms obtained from
water meters as a good alternative to those from pipe surface, enabling
extensive investigation of both the water phase and the biofilm phase
(Hong et al., 2010; Ling et al., 2016). In building water supply system,
long-term stagnation led to the regrowth of microorganisms, in which sto-
chastic process explained the community composition at the proximal end
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but deterministic process played a more important role at the distal end
(Ling, Whitaker, LeChevallier, & Liu, 2018). The source water containing
methane went through two-stage lime softening, recarbonation, chlorin-
ation and filtration (Flynn et al., 2013; Gunsalus, Zeikus, & Wolfe, 1972;
Hwang et al., 2012a). Chloramine was used as residual disinfectant for
many years but was switched to free chlorine in 2012. Major microbial
community shifts occurred during abstraction and softening processes,
whereas the shifts in the DS were shown to be correlated with disinfectant
types and sampling time for the water-phase samples but not for the bio-
film-phase samples from water meters.

5. Current accomplishments of safe drinking water in third-
world countries

Safe and consistent water supply is a significant concern in third-world
countries, especially in many rural and peri-urban areas. The problems
associated with low-quality drinking water are not only technological, such
as poor operation and management of drinking water infrastructure and
insufficient monitoring, but also financial (Mackintosh & Colvin, 2003;
Momba, Tyafa, Makala, Brouckaert, & Obi, 2006). For instance, a survey of
55 plants in the rural communities of the Eastern Cape identified that inef-
ficient chemical (coagulant and chlorine) dosing, which led to high turbid-
ity and low chlorine residuals, was the major cause of unacceptable
microbiological quality (Momba et al., 2006). These facts suggest strong
needs for continual funds for operation and maintenance, and technical
support and professional training for local operators.
Alternatively, self-sustaining water supply systems, which require min-

imum human and financial input, is a potential solution for people in rural
and peri-urban communities in third-world countries. Existing and
recently-developed technologies can be incorporated into these self-sustain-
ing systems, such as biological sand filtration (Wang, Li, Brockman, &
Nguyen, 2016), gravity-driven membrane technology (Peter-Varbanets,
Gujer, & Pronk, 2012), handpumps (Marks, 2012), and solar water pumps
(Ramos & Ramos, 2009).

6. Potential of using meta-omics techniques to study the drinking
water microbiome

Current studies in the drinking water microbiome primarily investigate
‘who are there and under what conditions?’ by integrating 16S rRNA gene
amplicon analysis and environmental metadata. However, it is hard to use
the knowledge to guide operational practice as i) classification using 16S
rRNA gene amplicon analysis is accurate only to the genus or family level,
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and ii) 16S rRNA gene-based phylogeny and metabolic functioning in situ
do not always agree with each other (Janda & Abbott, 2007; Zhang, Oh,
et al., 2017). This lack of direct linkage between microbes and their func-
tions in drinking water systems can be systematically addressed by next-
generation sequencing (NGS) and meta-omics technologies (Figure 3). We
can ask and provide answers to fundamental ecological questions that
include but are not limited to ‘what are they doing?’, ‘why are they there?’
and more critically ‘who is doing what?’, and ‘what are the interrelation-
ships among them, and between them and their environment?’ (Rittmann
et al., 2006).

6.1. NGS and Meta-omics technologies

The advance in NGS technology in the last decade serves as the pivotal
force to the development of omics tools. The Sanger method is considered
as a ‘first-generation’ technology, and newer methods using new sequencing

Figure 3. Types of meta-omics and the key questions that can be addressed by the meta-omics
tools in the study of drinking water microbiome. Source: Zhang and Liu, forthcoming. Reprinted
with permission. # Water Research Foundation.
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chemistry are referred to as NGS, which includes ‘454’, ‘Illumina’, PacBio
SMRT and the Oxford Nanopore MinION. ‘454’ and Illumina platforms
can produce a large number of sequences that are low in cost, high in
throughput and accuracy, and short in run times (Metzker, 2010). They
produce short reads (Ross et al., 2013), which makes downstream bioinfor-
matics analyses difficult. For this reason, technologies such as PacBio
SMRT and the Oxford Nanopore MinION were developed to produce long
reads (>5 kb) but at a relatively higher error rate (12–14% for PacBio and
8% for Nanopore) than Illumina platforms (Feng et al., 2015; Jain et al.,
2016; Roberts et al., 2013). To take advantage of the strength of both short-
and long-read technologies, hybrid de novo assembly at the chromosome-
level is performed using long-read technologies with sequencing errors cor-
rected by Illumina data (Goodwin et al., 2015; Risse et al., 2015). These
NGS technologies has enabled the development of metagenomics and meta-
transcriptomics to study microbial functions and activities in various
microbial ecosystems (B�ej�a et al., 2000; Giannoukos et al., 2012; Tyson
et al., 2004; Urich et al., 2008; Venter et al., 2004; Xiong et al., 2012). NGS
platforms generate millions or billions of reads in parallel, which require
multiple bioinformatic steps, such as assembly, binning, mapping and
quantification to convert into useful information for researchers. While
dealing with bioinformatic software is challenging, especially with inte-
grated data from metagenomics, metatranscriptomics, and proteomics, sev-
eral web-based pipelines are accessible to scientists, including MG-RAST
(Meyer et al., 2008), KBase (Arkin et al., 2016), CyVerse/iPlant Discovery
Environment (Goff et al., 2011), IMG-ER (Markowitz et al., 2012), and
PATRIC (Wattam et al., 2017).
Metagenomics or environmental genomics is the genomic analysis of

microorganisms in a microbial community that can provide insights into
community physiology (Handelsman, 2004; Sharpton, 2014), and enables
the discovery of new microbial taxa and genes without cultivation. The
procedure involves extracting DNA from all cells in a community, shearing
DNA into fragments, sequencing fragmented DNA (Handelsman, 2004;
Tyson et al., 2004; Venter et al., 2004), assembling all sequences into an
ecosystem genome comprised of many genomes of the innate microbial
populations (‘metagenome’) (Handelsman, 2004), and phylogenetically clas-
sifying the genomic fragments to specific microorganisms (‘binning’)
(McHardy, Martin, Tsirigos, Hugenholtz, & Rigoutsos, 2007). This
approach has been greatly improved by using novel assemblers (e.g.,
metaSPAdes and MEGAHIT) (Li, Liu, Luo, Sadakane, & Lam, 2015;
Namiki, Hachiya, Tanaka, & Sakakibara, 2012; Nurk, Meleshko,
Korobeynikov, & Pevzner, 2017; Peng, Leung, Yiu, & Chin, 2012) and bin-
ning methods (McHardy et al., 2007; Pati, Heath, Kyrpides, & Ivanova,
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2011; Patil, Roune, & McHardy, 2012; Wu, Tang, Tringe, Simmons, &
Singer, 2014) together with software that integrate information from essen-
tial single-copy genes (e.g., MaxBin) and multiple metagenomes of related
samples (e.g., MetaBAT and GroopM) (Albertsen et al., 2013; Imelfort
et al., 2014; Kang, Froula, Egan, & Wang, 2015; Wu, Simmons, & Singer,
2016). Researchers can now determine individual bins’ phylogeny
(‘phylogenomics’) using software such as PhyloPhlAn (Segata, Bornigen,
Morgan, & Huttenhower, 2013) and genome completeness/contamination
with marker genes using software such as CheckM (Parks, Imelfort,
Skennerton, Hugenholtz, & Tyson, 2015). These advancements enable
accurate metagenomic assembly, binning, and recovery of genomes for
phylogenetically novel organisms without cultivating them (Kang et al.,
2015; Wrighton et al., 2012; Wu et al., 2014).
Metatranscriptomics is based on sequencing the total message RNA

(mRNA) in a microbial community to identify genes or pathways that are
actively expressed. This process involves extracting total RNA from micro-
bial communities, removing ribosome RNA (rRNA) to obtain high levels of
mRNA transcripts, reverse transcribing mRNA into cDNAs, ligating to
adapters, and then sequencing using NGS (He, Wurtzel, et al., 2010; Sorek
& Cossart, 2010). Metagenomics is often used together with metatranscrip-
tomics to provide assembled genomes as templates on which transcripts are
mapped. Fast and sensitive alignment software such as TopHat (Kim et al.,
2013) and HISAT (Kim, Langmead, & Salzberg, 2015) are developed for
this purpose, which are followed by transcript assemble and abundance
estimate by Cufflinks (Trapnell et al., 2010) and HTSeq (Anders, Pyl, &
Huber, 2015). Metatranscriptomics has been widely used in a variety of
environments, including soil (Urich et al., 2008), sediment (Dumont,
Pommerenke, & Casper, 2013), gut microbiomes (Giannoukos et al., 2012;
Xiong et al., 2012), and activated sludge (He, Kunin, et al., 2010; Yu &
Zhang, 2012). It is a powerful tool to provide insights into community
function and activity and identify novel pathways in uncultured microor-
ganisms (Haroon et al., 2013).
Metaproteomics is developed to evaluate microbial activity within an

ecosystem at a specific time based on protein expression (Wilmes & Bond,
2004; Zampieri, Chiapello, Daghino, Bonfante, & Mello, 2016). Unlike
metagenomics and metatranscriptomics that use NGS technologies, meta-
proteomics uses liquid chromatography tandem mass spectrometry (LC-
MS/MS). The process starts with extracting protein, followed by LC-MS/
MS to generate MS spectra, and then comparing spectra with peptides
from thousands of proteins of diverse taxonomic groups. These compari-
sons can be achieved in two ways: through searching against existing pro-
tein/peptide databases or by matching to theoretical peptide spectra
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generated in silico from metagenomes of the same sample or of similar
environments (Timmins-Schiffman et al., 2017; Zampieri et al., 2016).
Metaproteomics is a powerful tool to unravel the active metabolic processes
in different environments in a more direct way than metagenomics or
metatranscriptomics. This approach has been applied to complicated envi-
ronments, including soils (Benndorf, Balcke, Harms, & von Bergen, 2007;
Wang et al., 2011; Williams, Taylor, & Mula, 2010), sediments (Benndorf
et al., 2009; Bruneel et al., 2011), marine habitats (Morris et al., 2010;
Sowell et al., 2011), freshwater systems (Habicht et al., 2011; Lauro et al.,
2011; Ng et al., 2010), and activated sludge (Wilmes, Wexler, &
Bond, 2008).

6.2. Applications of Meta-omics in drinking water microbiome studies

While omics tools have been applied to various microbial ecosystems by
many studies, application to the drinking water microbiome is limited to a
few studies. Some of these studies are based on the use of cosmid library
construction that is low in sequence throughput [212] or early NGS tech-
nologies that cannot derive long assembled contigs to provide correct link-
age between microbes and functionalities (Chistoserdova, 2014; Schmeisser
et al., 2003). Using early NGS techniques, two studies (Chao et al., 2013;
Gomez-Alvarez et al., 2012) investigated the impact of water treatment on
the drinking water microbiome. Their results revealed that chlorine and
chloramine treatments caused differences in community structures, disin-
fectant mechanisms, and virulence genes (Gomez-Alvarez et al., 2012).
Changes in protective functions (i.e., glutathione synthesis) were observed
in treated water compared with raw water (Chao et al., 2013). In contrast,
the use of the latest NGS technology has provided in-depth information
into the metabolic and geochemical potential of groundwater-fed RSFs
(Palomo et al., 2016). Dominance of Nitrospira was observed to co-occur
with high abundance of genes in nitrification and carbon fixation pathways.
Genomic analysis revealed that the Nitrospira genome harbored complete
ammonia monooxygenase (amoCAB), particularly, the atypical amoA gene
similar to the complete ammonia oxidation bacteria Nitrospira (i.e.,
comammox). This novel finding suggested that Nitrospira in RSF had the
potential for complete ammonium oxidation. Moreover, other recovered
draft genomes had the capability to oxidize ammonium, nitrite, hydrogen
sulfide, methane, and potentially iron and manganese, as well as to assimi-
late organic compounds. Similarly, Pinto et al. (2016) reported metage-
nomic evidence for the presence of a comammox Nitrospira genome in
biologically active filters. The recovered bin from metagenomes contained
the full suite of ammonia oxidation genes on a single scaffold. Genome-
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resolved metagenomics could also be used to differentiate pathogens and
closely related species and identify new biomarkers, such as spacers located
in the clustered regularly interspaced short palindromic repeats (CRISPR)
regions for the monitoring of ‘true’ pathogenic strains across different
drinking water systems (Zhang, Kitajima, Whittle, & Liu, 2017).

6.3. Limitations of Meta-omics technologies

Applying meta-omics in drinking water microbiome studies can face sev-
eral challenges. The first one can be related to sample preparation, as a
large quantity of genomic DNA, RNA and protein is required for down-
stream sequencing and LC-MS/MS analyses. For the water-phase drinking
water microbiome, sampling a large volume of water (i.e., over 1000 L) is
often required for systems containing residual disinfectants. As conven-
tional concentration devices are not suitable for this purpose (Chao et al.,
2013; Zhang, Oh, et al., 2017), studies have used point-of-use water puri-
fiers (Chao et al., 2013; Zhang, Oh, et al., 2017), which involve more than
one mechanism to concentrate cells and the biases remain unknown. Thus,
there is a need to standardize a device for concentrating large volumes of
drinking water. Likewise, studying biofilm-phase drinking water micro-
biome in full-scale drinking water systems can be challenging (Gomez-
Smith et al., 2015; Ling et al., 2016). Currently, two approaches are used:
one is to cut pipes and the other is to insert coupons into pipes and
retrieve them after biofilms develop (Douterelo et al., 2014). The former is
labor-intensive, expensive, and prone to contamination from surrounding
environments, and the latter can distort hydraulic conditions in pipes and
cause deviations from real pipes. An alternative solution is to sample bio-
films from the inner surface of water meters (Hong et al., 2010). For meta-
transcriptomics and metaproteomics studies, sampling preparation needs to
be carefully evaluated because mRNA is liable to degradation by RNases
that are ubiquitously present in the environment (Hansen, Stensballe,
Nielsen, & Herbst, 2014). Proper stabilization and storage procedures are
critical to obtain sufficient quantities of high-quality mRNA. Finally, meta-
omics studies can generate huge datasets that require vigorous bioinformat-
ics analyses and computing capacity (Thomas, Gilbert, & Meyer, 2012).
However, errors associated with bioinformatics can be problematic and
substantially influence the final interpretation (Kunin, Copeland, Lapidus,
Mavromatis, & Hugenholtz, 2008; Timmins-Schiffman et al., 2017). Most
studies have to establish curated databases of their interests, partially
because of the scattered data submitted and stored in various databases.
Future studies will require advanced tools to simultaneously interact with
multiple databases for microbial genomes, metagenomes, protein, antibiotic
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resistance genes, and viral genomes. A systematic data management and
cross-platform reference framework for the drinking water microbiome is
lacking, which requires leveraging current and future plans to expand our
understanding of microbiomes on earth.

7. Future research needs

We are at a critical stage in advancing our understanding of the drinking
water microbiome that requires critical actions and fundamental questions
to be investigated. To address these needs, the following three topics have
been identified as research priorities.

7.1. Topic 1: Current drinking water microbiome monitoring techniques

Challenge: Current practices in drinking water treatment, distribution, and
monitoring in the USA are regulated by standards and guidelines set by the
United States Environmental Protection Agency. However, such regulations
are generally based on fecal coliform and HPC, which may have limited
direct relevance to the public health. While the understanding of the
microbiome composition of drinking water systems is still not complete,
recent surveys utilizing 16S rRNA gene amplicon analysis have revealed an
astounding level of microbial diversity. In particular, fine differences in
water chemistry associated with different geographic regions and water
treatments, as well as seasonal variation, appear to result in vast differences
in the water microbiome composition. At the same time, studies have
strongly suggested that variation in microbiomes from different samples
could be caused by biases associated with procedures in sampling, DNA
extraction, sequencing, and data analysis. Action: This highlights an urgent
need to call for collaborative actions to standardize analytical procedures
for future data comparison among studies on drinking water microbiomes.
Questions: How can the standardization of analytical procedures be
achieved? What are the limitations and gaps that should be overcome?

7.2. Topic 2: A multi-perspective understanding of the drinking water
microbiome using the state-of-art meta-omics techniques

Challenge: Most of the current efforts focus on known functions of individ-
ual populations detected within the drinking water microbiome using 16S
rRNA gene amplicon analysis. However, we have limited knowledge on sys-
tem-level properties of the microbial assemblage, the function of microor-
ganisms belonging to novel phyla as well as the undiscovered function of
existing microorganisms. Examples of system-level characteristics mecha-
nisms of community assembly (e.g., stochastic and deterministic processes),
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microorganisms or functions stabilizing the community (e.g., keystone spe-
cies), and interactions occurring among different microorganisms and dif-
ferent groups, which are different from the properties of individual
populations. Meta-omics techniques become vital as they can provide infor-
mation at the community level using different information-carrying biopol-
ymers (i.e., DNA, mRNA, protein and metabolites). Action: Increasing
efforts are needed to elucidate many crucial processes that the drinking
water microbiome mediate by investigating both the individual components
of microbial assemblages and the emergent properties of systems using the
state-of-art meta-omics tools. Questions: How do drinking water microbiota
assemble spatiotemporally? Are the assemblages primarily influenced by the
environmental conditions in water systems, i.e., deterministic processes?
Among the suite of meta-omics techniques, which methods are effective
and suitable for establishing the linkage between community composition
and function for drinking water microbiomes? In addition to 16S rRNA
gene as the most commonly used biomarker, are there other biomarkers
that can be used for the monitoring of water quality at the user end?

7.3. Topic 3: Novel concepts guiding the control of opportunistic pathogens

Challenge: The persistence of opportunistic pathogens in DSs and building
plumbing systems despite various cleaning practices indicates the limitation
of bacterial indicators and the ineffectiveness of current practices in con-
trolling pathogen proliferation. The growth of opportunistic pathogens in
drinking water environments is attributed to two mechanisms: i) activating
certain pathways when growing in the attached form (e.g., biofilms and
sediments); and ii) interacting with the rest microbiota through predatory,
antagonistic, competitive, symbiotic, and mutualistic relationships.
However, few engineering practices based on these mechanisms have been
developed and experimentally validated. Action: It is urgent to introduce
novel concepts that are effective in engineering a desirable drinking water
microbiome. Questions: Is it possible that a ‘healthy’ or common drinking
water microbiome is determined or defined, and used to differentiate the
‘unhealthy’ ones? Can these findings be used to develop a signature that
indicates the potential for disease outbreaks in the distribution system and
premise plumbing, particularly concerning opportunistic pathogens
(Legionella, mycobacteria, Pseudomonas)? As the assemblage of the drinking
water microbiome can be substantially influenced by the environmental
conditions in water systems, what additional metadata should be obtained
to link meta-omics data to the drinking water microbiome? Eventually, can
engineering intervention and treatment process changes be used to inten-
tionally shift those ‘unhealthy’ microbiomes to ‘healthy’ ones?
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Abbreviations

AOC Assimilable organic carbon
ARB Antibiotic resistant bacteria
ARGs Antibiotic resistance genes
CFs Cartridge filters
CRISPR Clustered regularly interspaced short palindromic repeats
DBPs Disinfection by-products
DGGE Denaturing gradient gel electrophoresis
DSs Distribution systems
FCM Flow cytometry
FISH Fluorescence in-situ hybridization
GAC Granular activated carbon
HPC Heterotrophic plate count
LC-MS/MS Liquid chromatography tandem mass spectrometry
MF Microfiltration
NGS Next-generation sequencing
PCR-ALH PCR-amplicon length heterogeneity
RO Reverse osmosis
RSFs Rapid sand filters
SEM Scanning electron microscopy
SSCP Single strand conformation polymorphism
SSFs Slow sand filters
T-RFLP Terminal restriction fragment length polymorphism
UF Ultrafiltration
USA The United States of America
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