
Contents lists available at ScienceDirect

Agricultural Systems

journal homepage: www.elsevier.com/locate/agsy

A system approach towards prediction of food safety hazards: Impact of
climate and agrichemical use on the occurrence of food safety hazards
Hans J.P. Marvin⁎, Yamine Bouzembrak
Wageningen Food Safety Research, Akkermaalsbos 2, 6708WB Wageningen, the Netherlands

A R T I C L E I N F O

Keywords:
Food supply chain
Bayesian Networks
Dairy and milk
Feed
Machine learning

A B S T R A C T

In this study, we aimed to demonstrate the aptness of a system approach to predict the level of contamination in
a given agricultural product. As a showcase, the impact of climate and agrichemical use on the occurrence of
food safety hazards in feed of dairy cows in the Netherlands was used. Data on chemical hazards in dairy cows'
feed in the Netherlands for the years 2000 to 2013 were retrieved from the Dutch monitoring program KAP
(Quality Program for Agricultural Products). Climate data (17 variables) and agrichemical usage figs. (6 vari-
ables) for the Netherlands were obtained from the NOAA's National Centers for Environmental Information, the
European Commission Joint Research Center's Agri4Cast database, and FAO's FAOSTAT. A Bayesian Network
(BN) was constructed with this data and optimized for the prediction of the contamination level. The overall
accuracy of prediction of the level of contamination in feed was 90.3%. Sensitivity analysis demonstrated that
many climate and agrichemical variables contributed to the prediction; however, their individual contribution
was generally small. The applicability of the BN was demonstrated in more detail for grass and maize as feed
components. The observed trends in contamination of these crops were accounted for by climate and agri-
chemical variables, with the impact varying amongst the specific variables and commodities. The variables with
the highest impact were “days of precipitations in a month with ≥ 2.5 mm” and “annual use of herbicides".

The results demonstrate that data-driven BNs can capture complex interactions, thereby enabling high-ac-
curacy predictions. Whilst the applicability of this approach to the safety of dairy cows' feed in the Netherlands
has thus been demonstrated, it can also be applied to other areas of food safety when a systems approach is
needed. Such models can support risk assessors and risk managers in their understanding of the impacts of a
given factor on food and feed safety, and inform the latter's decisions to mitigate potential risks.

1. Introduction

The performance of a food supply chain, including the levels at-
tained for food safety and nutritional impact, is affected directly and/or
indirectly by many factors such as climate, economy, and human be-
havior. It has been argued that a systems approach is needed that takes
all of these interactions into account to optimize the safe operation of
food supply chains and to enable mitigation actions when needed
(Kendall et al., 2018; Marvin et al., 2016, 2009, 2013). In particular,
climate has been indicated as a driver of food safety risks and predictive
models for food safety have been developed that included climate
parameters but these models are generally limited to the prediction of
the occurrence of mycotoxins in various agricultural crops such as
maize, wheat, and tomato (Nešić, 2018).

Recently, using food fraud as an example, Bayesian Network (BN)
has been advocated as a methodology to integrate the various effects of

drivers of change in food safety, hence allowing for a systems approach
towards achieving food safety (Marvin et al., 2016). BNs are cause-ef-
fect prediction models belonging to the family of probabilistic graphical
models, which combine principles from graph theory, probability
theory, computer science and statistics. Their outcomes present prob-
abilistic relationships between the variables selected based on current
knowledge. This allows for bidirectional reasoning (i.e. prediction and
interpretative inference) under uncertainty, and for drawing conclu-
sions based on the information available (Cheng et al., 2002). BNs have
been used in several research domains such as ecological risk assess-
ment (Lee and Lee, 2006; Pollino et al., 2007), medical image analysis
(Arias et al., 2016), herbs and spices sampling (Bouzembrak et al.,
2018), nanomaterials risk assessment (Linkov et al., 2015; Low-Kam
et al., 2015; Money et al., 2014; Winkler et al., 2014), and natural gas
stations safety assessment (Sohn et al., 2017; Zarei et al., 2017).

Food safety hazards in milk primarily enter the dairy production
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chain at the feed production and dairy farm stages, either by digestion
of contaminated feed (e.g. compound feed, silage and grass) and/or by
administration of veterinary medicines (Asselt et al., 2016). Climate
change has been suggested as a driver of change in many factors present
in these two stages, affecting the development of known and emerging
hazards (van der Spiegel et al., 2012). Safefood (Safefood, 2017) stu-
died the influence of climate change on the dairy chain of the island of
Ireland and identified a number of food safety risks that are like to be
impacted, which includes pathogens, chemical contaminants and nat-
ural toxins.

In this study, we aimed to demonstrate the aptness of a system
approach to predict the level of contamination in an agricultural pro-
duct using the BN approach in which the relationships between the
variables are calculated using machine learning algorithms and his-
torical data. As a showcase, the impact of climate and agrichemical use
on the occurrence of food safety hazards in feed of dairy cows in the
Netherlands was used.

2. Materials and methods

2.1. Bayesian network approach

The BN approach consists of three distinctive steps being i) data
collection and processing, ii) BN model construction and, iii) BN model
validation.

2.1.1. Data collection and processing
2.1.1.1. Monitoring data from dairy feed in the Netherlands. Data on
chemical food safety hazards in dairy cows feed in the Netherlands was
retrieved from the Dutch monitoring programme KAP (Quality Program
for Agricultural Products)1 for the years from 2000 to 2013. Data in
KAP was obtained from the Dutch dairy organization and the Dutch
food and consumer product safety authority (NVWA). In total 109,350
analytical results were retrieved for dairy feed products that are on the
market in the Netherlands. The data collected from KAP was processed
before it was used for the BN modelling step. The following preliminary
treatments of the collected monitoring data were conducted:

- Removal of extra text and symbols. For instance, values of the
sample contain text or symbols.

- Removal of all products that are not grown or produced in the
Netherlands (e.g. soy, rice). This step yielded in total 54,806 in-
dividual analytical results, which were used for the model devel-
opment. The following parameters were taken from the raw data:
day, month, year, country of origin, country of control, product
name, hazard category, limit of detection (LOD), hazard name and
hazard concentration. The LOD depends on the analytical method
applied and it is provided in KAP for each analytic report.
Contamination level was calculated for each case, which is the dif-
ference between the hazard concentration and the LOD. It can be
negative or positive, negative means that no contamination was
found in that sample (zero values) or that all concentrations were
below LOD and positive means that a concentration above LOD was
found. The range of the LODs of each hazard category is provide in
Table 1.

2.1.1.2. Climate data. The main climate data such as temperature and
precipitation for the Netherlands was retrieved from the National
Oceanic and Atmospheric Administration's (NOAA) website,2 which is
maintained by National Centers for Environmental Information (NCEI).
The data related to soil evaporation, water evaporation, plant

transpiration, and snow depth in the Netherlands for the period
2000–2013 was collected from the European Commission Joint
Research Center's Agri4Cast3 database. Agri4Cast engenders Agro-
Meteorological Data in Europe, where meteorological data are
available on a daily basis from 1975 to the last calendar year
completed, covering the EU Member States, neighbouring European
and Mediterranean countries.

2.1.1.3. Use of agrichemical. The use of agrichemicals (herbicides,
insecticides, fungicides, rodenticides, and pesticides) in the
Netherlands was collected from the United Nations Food and
Agriculture Organization's (FAO) Corporate Statistical Database
(FAOSTAT). The FAO Pesticides Use database included data on the
use of major pesticide groups (herbicides, insecticides, fungicides,
rodenticides, pesticides and plant growth regulators) and of relevant
chemical families. Data report the quantities (in tonnes of active
ingredients) used in or sold to the agricultural sector for crops and
seeds. Information on quantities applied to single crops was not
available.

The description of the parameters and the data source used to col-
lect data for the parameter are listed in Table 2.

2.1.2. The construction and validation of the BN model
A BN structure is composed of nodes, arcs and probabilities. The

value of the nodes may be discrete or continuous, but the most widely
used are the discrete nodes. In this study, discrete nodes were used in a
similar manner as reported in previous studies for BN models to predict
food fraud (Bouzembrak and Marvin, 2016; Marvin et al., 2016). In
total, 44,115 different cases selected randomly from the total dataset
(i.e. 80% of the total dataset) were used for learning by the model. The
BN model was built using the Tree-Augmented Naive Bayes algorithm
of Hugin 8.4 software (Heckerman, 2008; Marcot et al., 2006; Nyberg
et al., 2006) and optimized for the node “contamination level”. The
validation of the developed BN was conducted with the remaining 20%
(10,691 cases) of the total dataset (Bouzembrak and Marvin, 2016;
Marvin et al., 2016). The validation cases were not used in the devel-
opment of the BN. The validation was performed for each case, where
the contamination level (positive or negative) was predicted using all
input parameters. It was assumed that the prediction made by the BN
based on these input values was correct when the contamination level
with the highest probability given by the BN matched the contamina-
tion level given in the validation case.

2.2. Sensitivity analysis

To determine which of the parameters in the BN contributed most to
the contamination level (hence the parameter for which the BN model
was optimized), a sensitivity analysis was performed. Two different
methods were used, namely the entropy function (method 1) and
parameter sensitivity analysis (method 2).

Table 1
Range of LODs for each hazard category.

Hazard category LOD range Unit

Biotoxins 0–25 mg/ Kg
Composition 0–1 g/Kg
Heavy metals 0–500 mg/Kg
Industrial contaminants 0–70,000 pg TEQ/G
Migration 0–2.5 mg/Kg
Mycotoxins 0–7400 μg/Kg
Pesticides 0–10 mg/Kg
Radiation 0–2520 Bq/Kg
Veterinary residues 0–30 mg/Kg

1 https://chemkap.rivm.nl/
2 https://www.ncdc.noaa.gov/cdo-web/datasets/GSOM/locations/FIPS:NL/

detail#stationlist 3 http://agri4cast.jrc.ec.europa.eu/DataPortal/Index.aspx
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2.2.1. Method 1: entropy function
In the literature, the entropy function has been used to analyse the

sensitivity of BN models. Entropy is a measure of how much the
probability mass is scattered over the states of a variable. Since entropy
can be used as a measure of the uncertainty in the distribution of a
variable in a network, it is used to identify and rank the most important
parameter (Kjærulff and Madsen, 2008). It consists of calculating the
function H(X) of a node X:

=H(X) P(X) log P(X)
X

where P(X) is the probability distribution of X. In this study, we cal-
culated the entropy values for the node “contamination level”.

2.2.2. Method 2: parameter sensitivity analysis
This is another type of sensitivity analysis that is supported by

probabilistic networks such as BN. Parameter sensitivity analysis be-
longs to the class of the one-factor-at-a-time methods, where sensitivity
measures are usually calculated when one factor is changed and all
other factors are constant (Saltelli, 1999). The aim of this method is to
show in more detail the effect of the selection of a specific condition
(state of a parameter) on the direction of change of the probability of
the output parameter. In this way, the impact on the output parameter
of a parameter with a low entropy can be shown. In this study, the
probability of the node “contamination level” was assessed when the
value of one parameter was changed (i.e. select different states of the
node) and all other parameters were fixed. Only the effect of climate
and agricultural parameters were tested in this way, since the aim is to
analyse the impact of climate and agrichemical use on the occurrence of
food safety hazards in dairy cows feed.

2.3. Trend analysis

The chemical food safety hazards monitoring data of dairy cows
feed products produced or grown in the Netherlands in the period
2000–2013 was used to build the BN. This BN linked these analytical
results with climate and agricultural parameters relevant for the
Netherlands. To demonstrate the application of the BN in trend ana-
lysis, we focused on two main feed products, namely grass (e.g. grass
bits, grass hay and fresh grass) and maize (e.g. green maize ensiled or
fodder, maize flour and maize corn). Fresh, dried or ensiled forages
such as grass, maize and alfalfa constitute 50–70% of the diet of dairy
cattle and the forages are generally grown and processed on the dairy
farm itself (Driehuis et al., 2008b). A trend analysis was conducted for
the contamination level of maize and grass by selecting these products
in the “product category” node and consequently recording the prob-
abilities of the “positive” state of the “contamination level” when se-
lecting a year in the “year” node and a month in the “month” node. In
this way, the probabilities of detecting a contamination for the two
product categories for the period 2000–2013 for each month was ob-
tained. To estimate the positive contamination level for years following
2013, a best-fitted logarithmic regression was conducted using Micro-
soft Excel software (supplement Fig. 1). For this exercise, the average
per year was used and only the last 4 years (2010−2013) because for
both product categories the level of positive contamination was much
(> 2 times; see supplement Fig. 2) higher in the previous period
(2000–2009) resulting in a poor fitting and unreliable prediction for
2014, 2015 and 2016.

To test the performance of the BN, data of the variables contributing
to the prediction of the contamination level as determined in the sen-
sitivity method 1 were collected from the identified data sources. These
figures were used as input for the BN and the probabilities of the “Pos”

Table 2
Description of the defined parameters and their data source.

Model variables Description Units Data source

Year Year – KAP⁎

Origin country Country of origin – KAP
Product Product name – KAP
Product category Product category – KAP
Month Month – KAP
Notifying country Notifying country – KAP
Hazard category Hazard Category – KAP
Hazard Hazard – KAP
Days precipitation (0.1) Days of precipitation with precipitation ≥0.1 in. (2.54 mm) Days NOAA⁎⁎

Days precipitation (1) Days of precipitation with precipitation ≥1 in. (25.4 mm) Days NOAA
Days precipitation (0.5) Days of precipitation with precipitation ≥0.5 in. (12.7 mm) Days NOAA
Precipitation (M) Total month precipitation Inch NOAA
Max temperature(M) Mean max monthly temperature °C NOAA
Min temperature(M) Mean min monthly temperature °C NOAA
Mean temperature(M) Mean month temperature °C NOAA
Meanmax temperature(M) Mean max month temperature °C NOAA
Soil evaporation Potential evaporation from a moist bare soil surface - monthly average mm/day Agri4Cast⁎⁎⁎

Water evaporation Potential evaporation from a free water surface - monthly average mm/day Agri4Cast
Plant transpiration Potential evapotranspiration from a crop canopy - monthly average mm/day Agri4Cast
Snow depth Snow depth – monthly average cm Agri4Cast
Days Max temperature (32) Number of days in month with maximum temperature ≥ 32 °C Days NOAA
Days Max temperature (0) Number of days in month with maximum temperature ≤ 0 °C Days NOAA
Days Min temperature (0) Number of days in month with minimum temperature ≤ 0 °C Days NOAA
PG Regulators Yearly Plant Growth Regulators use Tonnes FAOSTAT⁎⁎⁎⁎

Pesticides Yearly pesticides use Tonnes FAOSTAT
Contamination level Contamination level: (Pos (> LOD) or Neg (< LOD)) Pos or Neg –
Herbicides Yearly herbicides use Tonnes FAOSTAT
Insecticides Yearly insecticides use Tonnes FAOSTAT
Fungicides Yearly fungicides use Tonnes FAOSTAT
Rodenticides Yearly rodenticides use Tonnes FAOSTAT

⁎ KAP: Dutch monitoring programme KAP (Quality Program for Agricultural Products).
⁎⁎ NOAA: National Oceanic and Atmospheric Administration's National Centers for Environmental Information.
⁎⁎⁎ Agri4Cast: European Commission Joint Research Center's Agri4Cast database.
⁎⁎⁎⁎ FAOSTAT: United Nations Food and Agriculture Organization's (FAO) Corporate Statistical Database.
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(positive) state in the contamination level node recorded and compared
with the value obtained from the calculation using the best-fitted
logarithmic regression curve.

3. Results

3.1. Data collection and processing

3.1.1. Monitoring data of dairy feed in the Netherlands
The following hazard categories were reported in KAP

(2000−2013) (see Table 3): mycotoxins (34%), industrial con-
taminants (24%), biotoxins (12%), heavy metals (10%), radiation (8%),
pesticides (7%), veterinary drugs (6%). More than 110 feed products
had been tested for KAP, of which the main ones were, in decreasing
order: Grass (11.4%), maize (10%), alfalfa (7%), feed for bovine (7%),
wheat (7%), soy (5%) and feed for ruminants (4%). Note that for the
model development, only products were included that are grown or
produced in the Netherlands, hence soy and rice had been removed
from the data set.

3.1.2. Agricultural data
Fig. 1 shows the variation of use over the years of the agrichemicals

and it is clear that agrichemicals (i.e. use of fungicides, herbicides,
rodenticides, pesticides and plant growth regulators) remained rather
constant, except for insecticides, which dropped after 2010 to a very
low level. An explanation for this decline may be related to shifting EU
policies on pesticides including the adoption of a new regulation [i.e.
Regulation (EC) No 1107/2009] on innovation and development of
alternatives, which was implemented in 2011, and to an increasing use

of seed treatment agents such as neonicotinoïds (Oppewal, 2017). The
most used agrichemical category is pesticides followed by fungicides,
herbicides, insecticides and plant growth regulators. The use of ro-
denticides was low (<1 t) and no data was available after 2010.

3.2. Construction and validation of the BN

The BN model is shown in Figs. 2 and 3. In Fig. 3, the nodes (i.e.
variables) are shown as ellipse and the states (i.e. different data classes
within a variable) are given in the squares. In each square, the prob-
ability of each specific state is shown in percentages and is presented as
a green bar. For clarity, the states are not shown for all nodes. Since, the
BN was optimized for the “contamination node”, this node is cen-
tralized and is connected by an arc to all other nodes. An arc may
connect other nodes but this depends on their quantitative relationship.
The contamination level gave the following probabilities for the states:
“Neg” (78.1%) and “Pos” (21.9%). Hence, only in a small portion (i.e.
21.9%) of the analytical results in KAP were above the LOD (“Pos”).
The BN was validated with the dataset that was randomly extracted
from the total data set and not used for the model development. The
accuracy of the prediction of the contamination level overall was equal
to 90.3%. The model validation results, as based on 10,691 records, are
presented in Table 4. Differences of accuracy were observed for the two
states of the contamination level node. The accuracy for the “Neg” state
was 94.0% and for the “Pos” state 78.0%. This difference is due to the
large difference in the number of records between both groups (see
Table 4).

3.3. Sensitivity analysis

To determine the contribution of the parameters present in the BN
to the level of contamination (below or above the LOD) with a parti-
cular contaminant (hazard), a sensitivity analysis based on entropy
calculation was performed for these two nodes.

The following parameters had the highest contribution to the con-
tamination level node (in decreasing order): hazard (0.27), hazard ca-
tegory (0.1), product (0.1), product category (0.07), year (0.06), in-
secticides (0.03), herbicides (0.02), rodenticides (0.01) and many
climate parameters with values between 0 and 0.01 as shown in
Table 5. The following parameters had the highest contribution to the
hazard node (in decreasing order): hazard category (1.4), year (0.8),
product (0.8), insecticides (0.4), herbicides (0.3), PG regulator (0.3),
contamination level (0.3), pesticides (0.1), rodenticides (0.1), and
fungicides (0.1). Several climate parameters showed entropy values

Table 3
The most common food safety hazard categories and products reported in KAP
(2000–2013) for dairy cow feed in the Netherlands.

The most common food safety hazard categories The most common products

Hazard category % Product %

Mycotoxins 34 Grass 11
Industrial contaminants 24 Maize 10
Biotoxins 12 Alfalfa 7
Heavy metals 10 Feed for bovine 7
Radiation 8 Wheat 7
Pesticides 7 Soy 5
Veterinary drugs 6 Feed for ruminants 4

Fig. 1. The yearly use of fungicides, herbicides, rodenticides, insecticides, pesticides and plant growth regulators in the Netherlands in the period 2000–2013 as
reported through FAOSTAT.
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between 0 and 0.1 (Table 5).
A parameter sensitivity analysis was performed and the results are

shown in Table 5. As can be seen in the table all parameters (climate
and agricultural) had an effect on the contamination level node, albeit
differences in the extent and direction were observed. A clear ex-
planation of the observed trends is not always easy to understand be-
cause of lack of knowledge of a variable on the output parameter (e.g.
the effect of “max snow depth” on the level of contamination). How-
ever, the aim of method 2 was to demonstrate that variables with low
entropy could have an impact on the level of contamination, which was
observed. Furthermore, the probability of a positive contamination was
generally 3–4 times higher for grass compared to maize.

3.4. Trend analysis

To illustrate how the BN could be used to show impacts and re-
lationships between model variables, grass (e.g. grass bits, grass hay,
fresh grass) was selected for further, in-depth analysis. The main con-
taminant categories found in grass were industrial contaminants, heavy
metals and biotoxins. Most climate variables had no or very little im-
pact on the probability of occurrence of hazards in grass except the
variable “days of precipitation (0.1)” [i.e. days of precipitation with
precipitation ≥0.1 in. (2.54 mm)]. There was a particularly high im-
pact of this variable on the occurrence of biotoxins and heavy metals.
The effect of this variable was less pronounced (and in opposite di-
rection), though, for industrial contaminants. The main feed commod-
ities used on the dairy farm and grown in the Netherlands, usually on
the farm itself, are maize, grass and alfalfa (Driehuis et al., 2008b).
These products are subject to contamination induced by climate or due

to the use of agrichemicals. To show the contamination that had been
found in maize and grass using the BN, these commodities were selected
in the product node and the probabilities of the positive findings (e.g.
“Pos” state) were recorded in the contamination level node, under
varying the years and months in the respective nodes. The results are
shown in Fig. 4A, B for the years 2000 to 2013. The inter-monthly
contamination pattern was different between the two forages but con-
sistent for either forage across all years. The probability of a positive
finding of contamination in maize was lower than what was found in
grass and in most years showed a peak in August and December (see
Fig. 4A). For grass, the probability of positive contamination started
high in January and dropped to a minimum in April followed by an
increase until October.

3.4.1. Forecasting the potential of contamination in maize or grass
3.4.1.1. Calculation using the regression equation. Using the regression
equation as described in section 2.3 in M & M, we calculated the
probabilities of positive findings of contamination (with contaminant
levels above LOD) of grass and maize for the years 2014, 2015 and 2016
(see Table 6). The probability of a positive contamination in grass was
almost twice as high compared to that of maize and for both forages,
the probability of contamination increased in years.

3.4.1.2. Calculation using the BN and new input values. The underlying
predictors were, in decreasing order: hazard, hazard category, product,
product category, year, insecticides herbicides and rodenticides. The
variables having an insignificant contribution to the prediction
accuracy (e.g. variable with an entropy<0.01, such as the climate
variables) were not taken into account although they were shown to

Fig. 2. BN optimized for contamination level. The white ellipses are variables derived from the Dutch KAP database containing monitoring data on feed products
used by dairy farms in the Netherlands. The orange ellipses are climate variables containing data derived from the NOAA database and Agri4cast database and the
green ellipses the agrichemical variables containing data derived from FAOSTAT. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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have an impact on the contamination level (see results sensitivity
method 2).

To compare the prediction of the probability of positive findings of
contamination between the BN and the extrapolation approach for the
years 2014 to 2016, similar conditions should be used. Since, the ex-
trapolation was done on the overall contamination for grass or maize
but not for a specific hazard, hazard category or detailed product, no
selection was made in the BN for these nodes either, although these
three nodes contributed most to the prediction of the contamination
level as judged from the sensitivity analysis. As input, maize or grass
was selected in the product category node of the BN and the annual use
of insecticides, herbicides and rodenticides in 2014, 2015 and 2016 as
collected from the data sources FAOSTAT and used. FAOSTAT, how-
ever, did not contain data on the use of agrichemicals in 2016 and no
data was available either for rodenticides. The annual use of insecticide
in 2014 and 2015 was 297 and 326 t, respectively, and that of herbi-
cides 3266 t and 2881 t, respectively. The probability in the “Pos” state
of contamination of grass or maize was recorded using only the input
variables insecticides and herbicides, and the results are shown in
Table 5. The predicted levels showed the same trend as was observed
with extrapolation (grass higher than maize and increasing by the year)
but the levels are 50–40% lower than those obtained with extrapola-
tion. We expect that the outcomes could converge if more input vari-
ables with a high contribution to the prediction accuracy were used.

Furthermore, each of the individual states of the agrichemical nodes
includes a certain range and hence a change may not be visible if it still
falls within the same state. This situation occurred with herbicide use in
2015. In 2014, it equated 3266 t and 2881 t in 2015. Both values fell in
the same state (2nd) but the 2015 value was almost in the 1st state
(lower state). If the lower state was used as input than higher prob-
abilities were obtained which were closer to the values obtained
through extrapolation (e.g. 20–40% lower, see asterisk values in
Table 6).

3.5. Examples of BN model use

3.5.1. Maize
For maize in many years, the highest probability of positive con-

tamination was found in August. The positive contamination in August
can be assessed in the hazard category node when selecting August in
the month node and maize in the product category node. The main
hazards thus observed for maize were mycotoxins (85.5%) followed by
heavy metals (5.9%) and industrial contaminants (4.4%). To determine
the probability of positive contaminations with mycotoxins of maize in
August over the years, “maize” was selected in the product category
node,” mycotoxins” in the hazard category node, and "8" in the month
node and recorded the probability of positive findings in the con-
tamination level node by varying the years. The results are shown in
Fig. 5 and show that the positive contamination level was high in 2000
to 2007 with a peak in 2006 (57.0%) and 2007 (56.8%) followed by a
sharp decrease, with a very low value in 2010 (7.8%) and a subsequent
slow increase to 19.1% in 2013.

The probability of finding mycotoxins in maize in August in a given
year can be retrieved from the hazard node and is shown in Table 6 for
four years with high probabilities (2002, 2004, 2005 and 2007), and for

Fig. 3. BN optimized for contamination level showing the states (squares) and probabilities (green bars) of some variables (nodes). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 4
The validation results of the BN model.

Contamination level Neg Pos Total Accuracy (%)

Neg 7762 504 8266 94%
Pos 504 1893 2425 78%
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Table 5
Parameter sensitivity analysis of climate variables and use of agrichemicals on contamination level for all products, maize and grass.

Parameter (node) States Probability (%) of state “Pos” of contamination level Entropy

All products Maize Grass Contamination level Hazard

Days Max temperature (0) 0–20 14.0 8.3 37.7 6.76 × 10−4 3.66 × 10−3

20–30 24.1 14.1 53.0
30–40 21.9 11.2 38.4

Days Min temperature (0) 0–6 22.2 11.1 38.6 3.48 × 10−4 4.6 × 10−3

6–12 18.5 11.6 38.8
12–24 22.6 14.3 51.4
24–29 21.3 13.2 50.8

Days Max temperature (32) 0–1 22.8 11.6 41.7 2.79 × 10−4 2.58 × 10−3

1–2 18.9 7.6 29.2
2–3 11.2 7.6 21.7

Max temperature (M) 0–13 17.2 11.1 44.5 7.16 × 10−4 6.78 × 10−3

13–19 20.8 12.7 46.1
19–31 21.2 11.0 41.7
31–38 24.0 11.0 35.3

Mean temperature (M) −2-3 24.8 15.7 55.7 1.5 × 10−3 10 × 10−3

3–8 18.0 12.0 34.7
8–17 21.8 10.2 39.1
17–22 24.6 16.3 38.2

Mean max temperature (M) 0–6 24.0 15.0 54.3 1.43 × 10−3 9.47 × 10−3

6–11 17.6 11.7 33.5
11–22 22.3 10.5 39.4
22–28 24.2 16.1 37.8

Min temperature (M) −4-0 13.9 8.5 35.4 1.5 × 10−3 10 × 10−3

0–4 25.0 15.4 58.2
4–12 20.3 10.0 37.0
12–17 26.0 17.2 39.6

Days precipitation (0.1) 0–4 12.3 7.6 24.2 0.00 0.00
4–9 24.2 12.0 40.7
9–19 22.7 12.4 40.7
19–24 21.9 12.2 49.9

Days precipitation (0.5) 0–2 20.5 10.5 37.7 3.05 × 10−3 2.11 × 10−3

2–4 29.7 16.6 49.8

Max precipitation (M) 0–32 18.5 10.2 38.2 3.52 × 10−3 4.48 × 10−3

32–62 25.5 13.8 41.0
62–121 24.0 10.3 40.0
121–151 3.9 3.1 10.3

Mean precipitation (M) 0–2 20.9 10.8 40.3 9.09 × 10−4 8.68 × 10−3

2–5 22.0 11.5 39.2
5–6 38.9 23.5 60.8

Precipitation (M) 0–36 16.3 8.7 33.0 2.42 × 10−3 20 × 10−3

36–100 23.3 12.1 40.6
100–180 23.4 12.9 42.7

Max snow depth (M) 0–5 22.0 11.0 38.4 8.59 × 10−3 8.54 × 10−3

5–20 14.9 9.9 34.6
20–220 46.7 28.1 73.0

Plant transpiration 0–1 22.4 13.2 48.0 1.19 × 10−3 6.29 × 10−3

1–4 20.7 10.1 37.9
4–6 27.5 15.6 35.6

Soil evaporation 0–1 20.4 12.5 44.5 4.45 × 10−4 7.84 × 10−3

1–2 21.1 9.5 50.0
2–4 23.1 11.6 36.2
4–5 20.5 14.1 28.2

Water evaporation (M) 0–1 20.4 12.5 44.5 6.47 × 10−4 10 × 10−3

1–2.5 22.4 10.0 48.1
2.5–4.5 21.5 11.3 34.9
4.5–6 25.9 13.7 33.4

(continued on next page)
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the year with the lowest probability (2010). In this setting, the fol-
lowing input parameters were selected: “maize” in product category
node, “mycotoxin” in the hazard category node, month “8” in the
month node, “Pos” in the contamination level node and “a year” in the
year node. The mycotoxins found can be obtained in the hazard node,
including the linked probabilities (i.e. representing the frequency). For
all years, the main mycotoxins in maize (in August) were zearaleone
and deoxynivalenol. It is apparent that the likelihood of occurrence of
these two mycotoxins in maize was much lower in 2010, whilst in that
particular year, also considerably more mycotoxins were reported than
previously (see Table 7).

3.5.2. Grass
The main hazard categories with positive findings in grass in the

period analysed (2000–2013) were industrial contaminants (84.0%),
heavy metals (10.3%), biotoxins (3.6%) and mycotoxins (1.2%). The
industrial contaminants encompass hazards such as PCBs and PBDE and
heavy metals include arsenic (24.1%), lead (31.2%), cadmium (28.5%)
and mercury (16.2%).

As stated, the BN allowed to analyse the effect of the climate and
agricultural parameters on the presence of hazards in grass (i.e. positive
samples). To this end, “grass” was selected in the product node, “Pos” in
the contamination level node and a state in the climate or agricultural
parameters was selected while recording the probabilities of the hazard
categories. All temperature-related climate parameters, plant tran-
spiration, max snow depth, soil and water evaporation, precipitation
(0.5), and precipitation had no or a minor effect (< 5%) on the prob-
abilities of the hazard category. Interestingly, the climate parameter
“precipitation (M) (i.e. total month precipitation)” had a significant
effect, changing the probabilities with 3% to 7.5% but the strongest
effect of the climate parameters was found for “days of precipitation
(0.1)” [i.e. days of precipitation with precipitation ≥0.1 in.
(2.54 mm)]. These results are shown in Table 8. The climate parameter
“days of precipitation (0.1)” was also the climate parameter scoring the
highest (although low) in the sensitivity analysis, hence contributing
the most to the prediction of positive contamination in grass (data not
shown).

A larger impact was observed for the agricultural parameters, as

illustrated by the results for herbicides and insecticides presented in the
next tables (Tables 9 and 10).

4. Discussion

Food supply chains are vulnerable to many drivers (such as climate,
agricultural practices, economy, human behavior) that directly and/or
indirectly affect their performance and thereby influence the quantity
and quality of the food being produced. A better understanding of these
complex interactions may help to minimize the loss due to con-
tamination with hazards and thereby contribute to an improvement in
food security.

In this study, we showed that BNs could be used to integrate data
covering both climate parameters and usage of agrichemicals, to predict
the occurrence of food safety hazards. For the climate parameters, we
extracted data on temperature, precipitation, evaporation, plant tran-
spiration and snow fall in the Netherlands during the period studied
(2000–2013) from the NOAA and Agri4Cast websites. These parameters
are generally accepted to have an impact on the plant growth, disease
development and use of agrichemicals (Bouzembrak and Marvin,
2019). In addition, also the yearly use of agrichemicals in the Nether-
lands was collected and used as variable in the model. It should be
noted that these figures were for the Netherlands as a whole and hence
were not confined solely to feed production for dairy cows. Each ana-
lytical result (positive or negative) for feed products grown or produced
in the Netherlands in the period 2000–2013 was linked to a climate
report for the month in which the sample for the analytical measure-
ment was taken and to the use of agrichemicals in that particular year.
We aimed to predict the occurrence of chemical food safety hazards and
to show the impact of climate and agrichemicals on this contamination
and therefore a BN was developed optimized for the variable “con-
tamination level”.

4.1.1. Model development and performance
The Tree-Augmented Naive Bayes algorithm (Friedman et al., 1997)

has demonstrated excellent classification performance (Madden, 2009)

Table 5 (continued)

Parameter (node) States Probability (%) of state “Pos” of contamination level Entropy

All products Maize Grass Contamination level Hazard

Fungicides 0–3788 20.8 8.8 41.9 3.57 × 10−3 120 × 10−3

3788–4741 21.2 10.6 37.8
4741–5060 38.9 37.9 51.9

Herbicides 0–2832 14.5 7.0 18.7 20 × 10−3 330 × 10−3

2832–3402 21.6 9.9 47.6
3402–3593 40.0 31.5 54.7

Insecticides 0–594 12.1 7.0 11.0 30 × 10−3 420 × 10−3

594–1578 37.0 20.7 56.1
1578–1910 26.3 17.8 40.9

Pesticides 0–97,779 21.6 9.2 43.5 6.55 × 10−4 140 × 10−3

9779–10,986 22.9 11.7 38.5
10,986–12,075 18.8 12.8 35.9

Rodenticides 0–0.3 14.7 6.7 24.7 10 × 10−3 140 × 10−3

0.3–0.6 27.6 16.6 47.7
0.6–1 25.4 11.6 48.0

PG Regulators 0–237 28.3 15.3 52.1 9.75 × 10−3 290 × 10−3

237–305 16.9 8.5 29.5
305–453 16.3 8.4 11.6
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in terms of classification accuracy while maintaining efficiency and
simplicity (Jiang et al., 2012). It is obvious that the conditional in-
dependence assumption in naive BN is rarely true in reality. However, it
was demonstrated in literature that the naive BN based on the typically
false assumption that the predictor variables are independent, can be

highly effective, and often more effective than sophisticated rules
(Hand and Yu, 2001; Jiang et al., 2012).

In the validation step, difference of accuracy was observed between
the two classes of the contamination level node (i.e. “Pos” vs “Neg”).
The positive class had a lower accuracy compared to the negative one

Fig. 4. A, B Probabilities of positive contamination (“Pos” state in the contamination level node) per month for maize (A) and grass (B) in the Netherlands in the years
2000–2013.
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(78% vs 94%), which is often observed when large difference exists
between the number of cases for each group in the training dataset.

The validity of the BN was further confirmed by the comparison of
the BN output with observations published in the scientific literature.
Driehuis and colleagues (Driehuis et al., 2008a) analysed various
feedstuffs used for dairy cows in the Netherland in 2002 to 2005 for the
presence of mycotoxins and observed that the main mycotoxins were
deoxynivalenol (DON) and zearalenone. The number of positive sam-
ples and the concentrations founds depended on the year and feed
product. For maize silage, the number of positive samples with these
mycotoxins was higher in 2004 compared to 2002 and 2003 (Driehuis
et al., 2008b). The BN confirmed a higher probability of DON con-
tamination in 2004 compared to 2002 and 2003 in maize silage (data
not shown) but a higher prevalence of zearalenone in 2004 was not
shown. This difference may be due to the specificity of the various
sample sets (KAP vs the samples collected by (Driehuis et al., 2008b).

4.1.2. Applications of the BN
Climate has a direct and indirect impact on the occurrence of food

safety hazards on agricultural products (Miraglia et al., 2009). Re-
cently, (Kos et al., 2017) observed in a study in Serbia that raining
conditions were favourable for high contamination of maize with DON.
It is commonly known that temperature, relative humidity, drought,
insect attack, and use of fertilizers have an impact on mycotoxin pro-
duction by fungi (Paterson and Lima, 2010) but each fungus will have
its own optimum for mycotoxin production. It is advocated and shown
in this research that the complex interaction between environmental
conditions (climate), agricultural practices and the presence of food
safety hazards can be captured by BNs. Agrichemicals such as pesti-
cides, insecticides and herbicides are used in grassland management to
combat weeds, insects and fungi that produce harmful compounds to
dairy animals such as pyrrolidizidine alkaloids (Dreger et al., 2009;
Edgar, 2004). Interesting, the simulation with the BN as shown in
Tables 8 and 9, demonstrated that that the probability of contamination
with biotoxins (mainly alkaloids) and mycotoxins strongly drops when
the applied amounts of these agrichemicals increases (compare state 1
and state 2 in Tables 8 and 9). Hence, with low application levels of

Table 6
Predicted probability (%) of positive findings of contamination of grass and
maize using the regression equation and BN.

Years
2014 2015 2016

Grass Extrapolation 18.1 19.4 20.5
BN 10.3 10.3 (11.6⁎) Not available

Maize Extrapolation 9.1 9.6 10.0
BN 6.1 6.1 (8.4⁎) Not available

⁎ Values obtained when the 1st state of herbicide use was used instead of the
2nd state.

Fig. 5. Trend of positive contamination of mycotoxin in maize in August over
the period 2000–2013.

Table 7
Probability (%) of occurrence of mycotoxins in maize in August of selected
years.

Years
Mycotoxins 2002 2004 2005 2007 2010

Zearaleone 62.8 39.9 39.8 45.7 19.8
Deoxynivalenol 37.2 55.1 52.3 48.8 18.5
Aflatoxin B1 0 3.2 0 1.9 0
Nitropropionic acid 0 0 0 0 0.7
Fumonisin B1 0 1.8 0 2.2 13.5
Fumonisin B2 0 0 0 1.0 6.6
Fumonisin B3 0 0 0 0 3.2
Moniliformin 0 0 0 0 6.4
Alterriol-methylether 0 0 0 0 2.8
Beauvericin 0 0 0 0 17.6
3–15-acetyl-DON 0 0 7,6 0 4.9
HT-2 toxin 0 0 0 0.4 3.3
T-2 toxin 0 0 0 0 1.0
Alterriol 0 0 0 0 1.0
Roquefortine C 0 0 0 0 0.7

Table 8
Effect of “days of precipitation (0.1)” on the probabilities (%) of a positive
finding of contamination of grass with various hazard categories.

Days of precipitation (0.1)
Hazard categories 0–4 4–9 9–19 19–24

Biotoxins 19.9 3.0 3.7 1.3
Heavy metals 15.9 8.7 11.3 17.0
Industrial contaminants 69.4 86.2 83.0 81.1
Mycotoxins 2.8 1.1 1.1 0.6
Pesticides 1.0 0.7 0.6 0
Radiation 0 0.2 0.3 0
Veterinary residues 0.08 0.06 0.04 0

Table 9
Effect of “herbicides” on the probabilities (%) of a positive finding of con-
tamination of grass with various hazard categories.

Herbicides
Hazard categories 0–2832 2832–3402 3402–3593
Biotoxins 14.4 2.8 0
Heavy metals 6.7 10.8 11.3
Industrial contaminants 70.2 85.5 88.0
Mycotoxins 4.7 0.6 0.4
Pesticides 3.8 0.05 0.04
Radiation 0 0.3 0.3
Veterinary residues 0.3 0 0

Table 10
Effect of “insecticides” on the probabilities (%) of a positive finding of con-
tamination of the various hazard categories in grass.

Insecticides
Hazard categories 0–594 594–1578 1578-1910

Biotoxins 48.7 0 2.2
Heavy metals 7.0 9.1 11.5
Industrial contaminants 13.8 90.0 85.9
Mycotoxins 18.1 0.2 0.3
Pesticides 11.4 0 0.1
Radiation 0 0.7 0
Veterinary residues 1.0 0 0
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agrichemicals, apparently more toxin-producing fungi and weeds are
present in the grass products.

Trend analysis of positive contaminations in grass and maize using
the BN (as shown in Fig. 4A B) provides an overview of the probability
of occurrence (i.e. finding) of a hazard on these feed products during
the season. It is apparent that yearly trends are similar but the level
between the years significantly differs. Hence, some years have a higher
probability of the occurrence of a hazard than others do. Such year
difference most probably is due to climate difference between years,
which affects the use of agrichemicals, and presence of mycotoxins and
plant toxins (Paterson and Lima, 2010) (Bryden, 2012). Mycotoxins (i.e.
main hazards on maize), may contaminate before and after harvest of
the crop in the autumn. At storage, mycotoxin producing fungi may
grow depending on large number of factors including climate (Bryden,
2012; Miraglia et al., 2009) and this may explain the increase of the
probability of contamination in maize during the year, peaking in Au-
gust (see Fig. 4A). Similar effects may occur for grass as well. The sharp
drop observed after month 10 (October) most probably is due to dif-
ferences in grass products being tested. The majority of the samples
tested in the grass category reported in KAP are grass bits (59%), fol-
lowed by grass hay (32%). However, this ratio was quite different be-
tween month 10 and month 11. In month 10, 87% of the samples tested
were grass bits (87%) and 11% grass hay, while in month 11, 21% were
grass bits and 72% grass hay. For the Netherlands, it was shown that the
main contamination in grass (industrial contaminations such as dioxins)
decreases from April to August due to dilution (grass growth) (Traag
et al., 2006) and therefore may explain the observed drop in Fig. 4B.

In this study, we used food safety in feed of dairy cows in the
Netherlands as a case to demonstrate the applicability of BN to in-
tegrate data from various sources and origins. In a similar manner,
other data can be integrated that have an impact on food safety such as
production volumes, farm practices, soil conditions, trade, and prices.
Furthermore, BN allows the integration of expert judgement as a vari-
able thereby expanding its potential use.

The results demonstrated the applicability of data-driven BNs to
capture complex interactions of parameters. We advocate the use of
BNs, which allow to address food safety problems in a holistic manner,
thereby helping to understand the complex interactions that exists be-
tween the drivers of change acting upon food production systems. This
understanding will support risk managers and risk assessors in their
efforts to mitigate and assess potential risks, respectively.

4.1.3. Model limitations
The BN model was based on records reported in the Dutch KAP

database, and therefore the model is restricted to the information
provided within this database. Because of this limitation, the current
BN was only applicable for the Netherlands and was limited to chemical
hazards and feed products. Fortunately, results of all analytical mea-
surements (above and below LOD) were reported in KAP, which al-
lowed the construction of a BN that could predict the chance of finding
a contamination in a feed product. For this study, records were avail-
able from 2000 until 2013. It is expected that the BN model accuracy
will improve if data from more years are included (Banko and Brill,
2001; Friedman and Yakhini, 1996).

The BN model developed used a range of historical data to calculate
the probabilities, which may affect the detection of the new cases. BN
can easily be adapted to new cases by selecting only the latest year in
the prediction. For instance, the node “year” can be used to select data
from 2013 to be included in the prediction, for example, if the user
would like to use only data from this year. In addition, BNs are easily
adaptable to new data when they become available, and the model can
be updated continuously to reflect any new information and new de-
velopments. Therefore, it is recommended that the new cases should be
added to the model as they are reported in the different data sources.

In the model, several data sources used were only updated annually
making their contribution to the BN limited. For instance, the use of

agrichemicals was given as an average value for an entire country for a
specific year. This means there is a lack of more detailed information
related to the data sources.

5. Conclusions

A BN model was constructed to predict the contamination level in
dairy feed products in the Netherlands. The model was based on official
monitoring data, climate variables and use of agrichemicals for the
Netherlands over a 14-year period. A high accuracy of prediction
(90.3%) was achieved. An impact of climate parameters on the pre-
valence of contamination was demonstrated but their contribution to
the accuracy of prediction was limited. The variables having the highest
impact on the level of contamination were: hazard, hazard category,
product, product category, year, insecticides, herbicides and rodenti-
cides.

This study sends some light over the impact of climate and agri-
chemical use factors on food safety issues, but it also raises the fol-
lowing insights for future research. Our model was based mainly on
feed of dairy cows samples recorded in KAP monitoring database,
which is limited to the monitoring data of one country (i.e. The
Netherlands). More data sources incorporating expert judgements and
global monitoring data such as WHO Global Environmental Monitoring
System (GEMS)/Food contaminants database and the European Food
Safety Authority (EFSA) data warehouse could be included.
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