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Abstract This manuscript provides a brief overview of latest research involving the use of lateral

flow assay for qualitative and quantitative analysis in different areas. The excellent features and

versatility of detection formats make these strips an ideal choice for point of care applications.

We outline and critically discuss detection formats, molecular recognition probes, labels, and detec-

tion systems used in lateral flow assay. Applications in different fields along with selected examples

from the literature have been included to show analytical performance of these devices. At the end,

we summarize accomplishments, weaknesses and future challenges in the area of lateral flow strips.
ª 2014 King Saud University. Production and hosting by Elsevier B.V. All rights reserved.
1. Introduction

Point of care (POC) testing has become the most famous way
of diagnosis in clinical analysis, food safety and environment.

Compared to centralized labs, POC provides prompt results in
shorter times. Lateral flow assay (LFA) based POC devices are
among very rapidly growing strategies for qualitative and

quantitative analysis. LFA is performed over a strip, different
parts of which are assembled on a plastic backing. These parts
are sample application pad, conjugate pad, nitrocellulose

membrane and adsorption pad. Nitrocellulose membrane is
further divided into test and control lines. Pre-immobilized
reagents at different parts of the strip become active upon flow
of liquid sample. LFA combines unique advantages of biorec-

ognition probes and chromatography. LFA based strips have
different detection formats. Drawbacks associated with con-
ventional clinical technique, enzyme linked immunosorbent

assay (ELISA), were flabbergasted by LFA. Rapidity and
one step analysis, low operational cost, simple instrumenta-
tion, user friendly format, less or no interferences due to chro-
matographic separation, high specificity, better sensitivity,

long term stability under different set of environmental condi-
tions and portability of the device are unique advantages
related to LFA strips [1] (See Table 1). Rather than changing

different physical parts, mathematical models are being used
to optimize and improve quantitation ability of LFA [2–5].

Lateral flow assay basically combines a number of variants

such as formats, biorecognition molecules, labels, detection
systems and applications. Several review articles have been
published which highlight different aspects of lateral flow
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Table 1 Advantages and pitfalls of LFA.

Advantages Pitfalls

� Ease of device preparation

� Low cost

� Stability over a wide range of environmental conditions

and very long shelf life.

� Simple and user friendly operation

� Requirement of small sample volume

� Most of the time, allows sample application without

pretreatment

� Versatility of formats, biorecognition molecules, labels

and detection systems.

� Less time of analysis

� Comparable or better sensitivity and specificity than

other well established methods

� High potential of commercialization

� Easy integration with electronics

� Wide range of applications

� No or very little energy consumption

� Mostly qualitative or semi-quantitative

� Reproducibility varies from lot to lot

� Most of the devices can detect more than one or two

analytes simultaneously

� Suffers from low biomolecules affinity toward analytes

and tendency of cross-reactivity

� Sometimes, pretreatment of sample is required which is

time consuming

� Once sample is applied to the strip, capillary action

cannot be decreased or speeded up.

� Analysis time is also dependent on nature of sample

itself i.e. viscosity, surface tension.
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assay. A recently published review emphasizes on principles of
immunochromatography, its advantages and special use of lat-

eral flow immunoassay in determination of toxic contaminants
in agricultural and food products. Different methodologies for
developing immunochromatographic systems have been con-

sidered in detail [6]. Labels used in LFA play an important role
in determining sensitivity of analysis and a variety of labels are
being employed in LFA. Description of labels along with

advantages and pitfalls is given in a review [7]. A brief review
of the LFA based test strips for detection of mycotoxins in
food and feed is given by Rudolf and Alexandra [8]. LFA
based strips can be an alternate and cheapest diagnostic tools

in clinical areas particularly in the developing world and thus
have been discussed in a review article of microfluidic diagnos-
tic devices [9]. Another review article focuses on applications

of lateral flow assay for detection of biological infectious
agents and chemical contaminants. Bacteria, viruses, toxins,
veterinary drugs and pesticides are considered in detail [10].

Paper based biosensors come in different configurations and
formats and they employ nanomaterials for detection of pro-
teins, cells and nucleic acids in diagnostic applications. LFA
represent a special type of paper based biosensors and they

have been discussed as a major component in reviews of nano-
material based paper biosensors [11,12].

In this review, we intend to overview recent advances in

different variants of LFA. We have summarized different for-
mats, biorecognition molecules, labels, detection systems and
applications in some specific areas.

2. Formats

Different formats are adopted in LFA. Strips used for LFA

contain four main components. Brief description of each is
given before describing format types.

Sample application pad: It is made of cellulose and/or glass

fiber and sample is applied on this pad to start assay. Its func-
tion is to transport the sample to other components of lateral
flow test strip (LFTS). Sample pad should be capable of
transportation of the sample in a smooth, continuous and

homogenous manner. Sample application pads are sometimes
designed to pretreat the sample before its transportation. This
pretreatment may include separation of sample components,

removal of interferences, adjustment of pH, etc.
Conjugate pad: It is the place where labeled biorecognition

molecules are dispensed. Material of conjugate pad should

immediately release labeled conjugate upon contact with
moving liquid sample. Labeled conjugate should stay stable
over entire life span of lateral flow strip. Any variations in dis-

pensing, drying or release of conjugate can change results of
assay significantly. Poor preparation of labeled conjugate can
adversely affect sensitivity of assay. Glass fiber, cellulose, poly-
esters and some other materials are used to make conjugate

pad for LFA. Nature of conjugate pad material has an effect
on release of labeled conjugate and sensitivity of assay.

Nitrocellulose membrane: It is highly critical in determining

sensitivity of LFA. Nitrocellulose membranes are available in
different grades. Test and control lines are drawn over this
piece of membrane. So an ideal membrane should provide

support and good binding to capture probes (antibodies,
aptamers etc.). Nonspecific adsorption over test and control
lines may affect results of assay significantly, thus a good
membrane will be characterized by lesser non-specific adsorp-

tion in the regions of test and control lines. Wicking rate of
nitrocellulose membrane can influence assay sensitivity. These
membranes are easy to use, inexpensive, and offer high affinity

for proteins and other biomolecules. Proper dispensing of bior-
eagents, drying and blocking play a role in improving sensitiv-
ity of assay.

Adsorbent pad: It works as sink at the end of the strip. It
also helps in maintaining flow rate of the liquid over the mem-
brane and stops back flow of the sample. Adsorbent capacity

to hold liquid can play an important role in results of assay.
All these components are fixed or mounted over a backing

card. Materials for backing card are highly flexible because
they have nothing to do with LFA except providing a platform

for proper assembling of all the components. Thus backing
card serves as a support and it makes easy to handle the strip.

Major steps in LFA are (i) preparation of antibody against

target analyte (ii) preparation of label (iii) labeling of biorecog-
nition molecules (iv) assembling of all components onto a
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backing card after dispensing of reagents at their proper pads
(v) application of sample and obtaining results.

2.1. Sandwich format

In a typical format, label (Enzymes or nanoparticles or fluores-
cence dyes) coated antibody or aptamer is immobilized at con-

jugate pad. This is a temporary adsorption which can be
flushed away by flow of any buffer solution. A primary anti-
body or aptamer against target analyte is immobilized over test

line. A secondary antibody or probe against labeled conjugate
antibody/aptamer is immobilized at control zone.

Sample containing the analyte is applied to the sample

application pad and it subsequently migrates to the other parts
of strip. At conjugate pad, target analyte is captured by the
immobilized labeled antibody or aptamer conjugate and
results in the formation of labeled antibody conjugate/analyte

complex. This complex now reaches at nitrocellulose mem-
brane and moves under capillary action. At test line, label anti-
body conjugate/analyte complex is captured by another

antibody which is primary to the analyte. Analyte becomes
sandwiched between labeled and primary antibodies forming
labeled antibody conjugate/analyte/primary antibody com-

plex. Excess labeled antibody conjugate will be captured at
control zone by secondary antibody. Buffer or excess solution
goes to absorption pad. Intensity of color at test line corre-
sponds to the amount of target analyte and is measured with

an optical strip reader or visually inspected. Appearance of
color at control line ensures that a strip is functioning prop-
erly. Fig.1 shows schematic of general sandwich format of

LFA. In some of sandwich assays, control line was not
included (See Fig. 3a).

2.2. Competitive format

Such format suits best for low molecular weight compounds
which cannot bind two antibodies simultaneously. Absence of

color at test line is an indication for the presence of analyte
while appearance of color both at test and control lines indicates
a negative result. Competitive format has two layouts. In the
first layout, solution containing target analyte is applied onto

the sample application pad and prefixed labeled biomolecule
(antibody/aptamer) conjugate gets hydrated and starts flowing
with moving liquid. Test line contains pre-immobilized antigen

(same analyte to be detected) which binds specifically to label
conjugate. Control line contains pre-immobilized secondary
antibody which has the ability to bind with labeled antibody

conjugate. When liquid sample reaches at the test line, pre-
immobilized antigen will bind to the labeled conjugate in case
target analyte in sample solution is absent or present in such a

low quantity that some sites of labeled antibody conjugate were
vacant. Antigen in the sample solution and the one which is
immobilized at test line of strip compete to bind with labeled
conjugate [13]. In another layout, labeled analyte conjugate is

dispensed at conjugate pad while a primary antibody to analyte
is dispensed at test line. After application of analyte solution a
competition takes place between analyte and labeled analyte to

bind with primary antibody at test line (See Figs. 2 and 3b).
Recently, a unique change was introduced in conventional

design of LFA by introducing a new line (antigen line) in

between test and control lines for detection of C-reactive
protein (CRP) in serum samples. This format involves some-
how a competition between analyte in solution and analyte
pre-dispensed on a new line. New line was formed by dispens-

ing CRP antibody solution followed by CRP solution. In case
of very low concentration of CRP in sample, most of the
labeled conjugate molecules will remain unreacted and migrate

to antigen line and CRP present at antigen line will capture
these labeled conjugates and it will result in an intense color
at antigen line and rest of labeled conjugate will move to con-

trol line and will produce relatively a light color. In case of
very high concentrations, most of CRP molecules will be cap-
tured at test line and will be sandwiched in between labeled
conjugate and prefixed antibody at test zone, this complex will

move and be captured by control line antibody. In this case
very few labeled conjugate molecules will be retained at
antigen line. The lesser the color at antigen line, the higher

the concentration of analyte. This format can be tried for other
clinical and non-clinical analytes [14].

2.3. Multiplex detection format

Multiplex detection format is used for detection of more than
one target species and assay is performed over the strip

containing test lines equal to number of target species to be
analyzed. It is highly desirable to analyze multiple analytes
simultaneously under same set of conditions [15]. Multiplex
detection format is very useful in clinical diagnosis where mul-

tiple analytes which are inter-dependent in deciding about the
stage of a disease are to be detected [16]. Lateral flow strips for
this purpose can be built in various ways i.e. by increasing

length and test lines on conventional strip, making other struc-
tures like stars or T-shapes. Shape of strip for LFA will be dic-
tated by number of target analytes [17]. Miniaturized versions

of LFA based on microarrays for multiplex detection of DNA
sequences have been reported to have several advantages such
as less consumption of test reagents, requirement of lesser sam-

ple volume and better sensitivity [18]. A very recent example of
multiplex detection format of LFA was demonstrated by Ye
Xu et al. where they used a series of test lines immobilized with
capture probes to detect four common human papillomavirus

(HPV) types simultaneously [19] (See Fig. 3c). Multiplex detec-
tion format resulted in LODs in the range of 0.05–3.0 ppb for a
series of mycotoxins in cereal samples and results were in good

agreement with LC-MS/MS [20].

3. Biorecognition molecules

3.1. Antibodies

Antibodies are employed as biorecognition molecules on the
test and control lines of lateral flow strip and they bind to tar-
get analyte through immunochemical interactions. Resulting

assay is known as lateral flow immunochromatographic assay
(LFIA). Antibodies are available against common contami-
nants but they can also be synthesized against specific target
analytes. Mice or other animals are immunized with target

and secreted antibodies are subcloned and purified according
to application. Antibodies are being utilized in clinical analysis
since five decades for diagnostic needs. An antibody which spe-

cifically binds to a certain target analyte is known as primary
antibody but the one which is used to bind a target containing



Fig. 1 Schematic of sandwich format of LFA (a) Labeled lateral flow strip (b) When sample with target analyte is applied on sample

application pad, it flows over the strip under capillary action and color appears at test and control lines. (c) When sample without target

analyte is applied on sample application pad, it flows and a color appears only on test line.
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antibody or another antibody is known as secondary antibody.
Process of synthesizing an antibody against toxic analytes is

challenging because of toxicity of injected analyte into animal
body which may not be bearable by animal. Antibodies are
generally produced from rat or mice and then applied to detect

analytes from human samples. Production and application in
different matrix raise serious questions on reliability of
analysis. Process of their generation is strenuous and also tem-
perature sensitive [21]. Affinity of any antibody toward corre-
sponding antigen is a concentration dependent factor because
of immune response between them and a reasonable response

is observed in the range of 107 to 1010 M�1. Concentration of
the target analyte is critical in deciding applicability of anti-
bodies as biorecognition molecules. Limit of detections as

low as nanomolar to picomolar range are achievable by using
current theoretical methods and changing physical parameters
(amount of reagents on various zones of strip, signal enhance-
ment through modifications on label, pre-incubation of sample



Fig. 2 Schematic of competitive format of LFA (a) Labeled lateral flow strip (b) When a sample with target analyte is applied on sample

application pad, it flows through the strip and a color appears on at test line. (c) when a sample without target analyte is applied on sample

application pad, it flows on the strip and color appears on both test and control lines.
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with labeled antibodies) of analysis for a variety of target ana-

lytes [22,23].

3.2. Aptamers

Aptamers are the artificial nucleic acids and their discovery was

reported by two groups in 1990. Aptamers are generated by an
in vitro process known as SELEX (systematic evolution of
ligands by exponential enrichment) [24,25]. Aptamers have very
high association constants and can bind selectively with a vari-

ety of target analytes Organic molecules having molecular
weights in the range of 100–10,000 Da are outstanding targets
for aptamers. Because of their unique affinity toward targetmol-
ecules, very closely related interferences can be differentiated

[26]. They are preferred over antibodies due to many features
which include easy production process, simple labeling process,
amplification after selection, straightforward structure modifi-

cations, unmatched stability, reproducibility and versatility of



Fig. 3 (a) Step wise description of sandwich format of LFA for detection of nitrated ceruloplasmin using quantum dots as a label and

fluorescence strip reader as detector. Reproduced from [1] with permission from ACS. (b) A competitive format of LFA for detection of

paraoxon methyl using Fe3O4 aggregates as a label. Reproduced from [13] with permission from ACS. (c) Multiplex detection format of

LFA for simultaneous detection of human papillomavirus types. Reproduced from [19] with permission from ACS.
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applications [21]. Their current applications focused on areas of
selective chromatography, cell imaging, target capturing, in vivo
therapy, molecular sensing, protein based imaging, cancer cell

biology, as enzymes in many biological applications, cellular
physiology, and drug delivery [27–30]. Specifically in the areas
of biosensing, aptamers are used in electrochemical, florescence,
colorimetric, and mass based detection systems [28].
3.3. Molecular beacons

Molecular beacons were first time reported in 1996 [31]. Molec-

ular beacons are a special DNA hairpin structure with fluoro-
phore at one end and quencher at the other end. Fluorophore
cannot produce fluorescence in the absence of analyte because
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of closely located quencher. But when complimentary DNA
sequence is present as a target analyte, stem and loop are
opened as a result of a force and fluorescence signal is observed.

Molecular beacons can bind with high specificity and selectivity
to nucleic acid sequences, toxins, proteins and other target mol-
ecules. Molecular beacons are composed of 15–30 base pairs in

loop which are complimentary to target analyte and 4–6 base
pairs at double stranded stem [32,33]. Molecular beacons are
being used in messenger RNA detection, intercellular imaging,

protein and small molecule analysis, biosensors, biochip
development, single nucleotide polymorphism and gene expres-
sion studies [32].

Simple DNA probes are also employed in LFA for detec-

tion of DNA sequences related to different diseases, and
genetic problems [34]. Formation of DNA hybridized
complexes is kinetically different from the formation of

antibody-antigen complexes which are most commonly
employed in LFTS [35].
4. Labels

List of materials used as a label in LFA is very vast which
includes gold nanoparticles, colored latex beads, magnetic par-

ticles, carbon nanoparticles, selenium nanoparticles, silver
nanoparticles, quantum dots, up converting phosphors,
organic fluorophores, textile dyes, enzymes, liposomes and

others. Any material that is used as a label should be
detectable at very low concentrations and it should retain its
properties upon conjugation with biorecognition molecules.
This conjugation is also expected not to change features of bio-

recognition probes. Ease in conjugation with biomolecules and
stability over longer period of time are desirable features for a
good label. Concentrations of labels down to 10–9 M are opti-

cally detectable [36]. After the completion of assay, some labels
generate direct signal (as color from gold colloidal) while oth-
ers require additional steps to produce analytical signal (as

enzymes produce detectable product upon reaction with suit-
able substrate). Hence the labels which give direct signal are
preferable in LFA because of less time consumption and

reduced procedure. Here we discuss some of the above men-
tioned labels in brief.

4.1. Gold nanoparticles

Colloidal gold nanoparticles are the most commonly used
labels in LFA. Colloidal gold is inert and gives very perfect
spherical particles. These particles have very high affinity

toward biomolecules and can be easily functionalized. Optical
properties of gold nanoparticles are dependent on size and
shape. Size of particles can be tuned by use of suitable chemi-

cal additives. Their unique features include environment
friendly preparation, high affinity toward proteins and biomol-
ecules, enhanced stability, exceptionally higher values for

charge transfer and good optical signaling [37]. Optical prop-
erties of gold nanoparticle enhance sensitivity of analysis in
LFA [38]. Sensitivity is a function of molar absorption
coefficient and accumulation of gold nanoparticles on target

molecule [13]. Optical signal of gold nanoparticles in colori-
metric LFA can be amplified by deposition of silver, gold
nanoparticles and enzymes [39–41].
4.2. Magnetic particles and aggregates

Use of magnetic particles as colored labels in LFA has been
reported by number of researchers [42–45]. Colored magnetic
particles produce color at the test line which is measured by

an optical strip reader but magnetic signals coming from mag-
netic particles can also be used as detection signals and recorded
by a magnetic assay reader. It has been reported that magnetic
signals are stable for longer time compared to optical signals

and they enhance sensitivity of LFA by 10 to 1000 folds [46].
Fe3O4 particles with small size and spherical geometry resulted
in high sensitivity for detection of Vibrio parahaemolyticus [47].

Major shortcoming of iron oxide nanoparticles is their drab
absorption spectrum which covers whole visible region. Poly
ethylene glycol modified magnetic iron oxide particles were

changed into different sized aggregates by cross-linking with
poly-L-lysine. These aggregates showed better sensitivity for
detection of pesticide paraoxon methyl than individual iron

oxide nanoparticles [13].

4.3. Fluorescent and luminescent materials

Fluorescent molecules are widely used in LFA as labels and

the amount of fluorescence is used to quantitate the
concentration of analyte in the sample. Detection of proteins
was accomplished by using organic fluorophores such as rho-

damine as labels in LFA [48,49]. Problem of photobleaching
is linked with organic fluorophores which results in reduced
sensitivity [1]. They also suffer from chemical and metabolic

degradation. High photostability and brightness are required
in case of LFAs. Fluorescent microsphere showed better sensi-
tivity than gold colloidal for detection of Escherichia coli
O157:H7 [50].

Current developments in nanomaterial have headed to man-
ufacture of quantum dots which display very unique electrical
and optical properties. These semiconducting particles are not

only water soluble but can also be easily combined with biomol-
ecules because of closeness in dimensions. Owing to their unique
optical properties, quantum dots have come up as a substitute

to organic fluorescent dyes. Like gold nanoparticles QDs show
size dependent optical properties and a broad spectrum of
wavelengths can be monitored. Single light source is sufficient

to excite quantum dots of all different sizes. QDs have high
photo stability and absorption coefficients [51]. They can retain
their fluorescent properties within the cells and bodies of organ-
isms and less suspected to metabolic degradation because of

inorganic nature [52]. Formation of QD-biomolecule
complexes is difficult which resulted in limitation of their appli-
cations compared to gold nanoparticles [53]. Moreover, their

toxicity is another issue [54]. In a very recent work, multicolor
quantum dots were used to demonstrate the concept of ‘‘Traffic
Light’’ immunochromatographic strip by usingmultiplex detec-

tion format for simultaneous detection of three antibiotics in
complex matrix. Antibodies against three different antibiotics
were labeled with quantum dots having emission peaks in red,

yellow and green spectral regions respectively [55].
Upconverting phosphors (UCP) are among the labels

which got very much attention in LFA. UPA labels are char-
acterized by their excitation in infra-red region and emission

in high energy visible region. Compared to other fluorescent
materials, they have a unique advantage of not showing any
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auto fluorescence. Because of their excitation in IR regions,
they do not photo degrade biomolecules. A major advantage
lies in their production from easily available bulk materials.

UCP particles were found to show size dependent sensitivity
and specificity for detection of antibodies using LFA in sera
of neurocysticercosis patients and healthy controls [56].

Although difference in batch to batch preparation of UCP
reporters can affect sensitivity of analysis in LFA, it was
observed that they can enhance sensitivity of analytical signal

by 10 to 100 folds compared to gold nanoparticles or colored
latex beads, when analysis is carried out under same set of bio-
logical conditions [57]. Preparation and labeling of UCP
reporters is not a simple task and multiple steps are needed

to perform assay [19]. UCP phosphors are used as a label in
sandwich format of LFA for detection of nucleic acids [58],
respiratory syncytial virus [59] and many other pathogens

[60]. UCP-LFA showed a very good correlation with ELISA
for detection of biomarkers related to mycobacterial diseases.

Use of fluorescent europium (III) nanoparticles in LFA

showed several folds better sensitivity for detection of free
prostate specific-antigen than gold nanoparticles [61]. Lantha-
nide chelate-loaded silica nanoparticles were used as a label for

detection of Pantoea stewartii subsp. stewartii in maize and
detection limit was 100 folds better than gold colloidal [62].
Other fluorescent labels used in LFA include silica nanoparti-
cles [63], and microspheres [64].

4.4. Enzymes

Enzymes are also employed as labels in LFA [65]. But they

increase one step in LFA which is application of suitable sub-
strate after complete assay. This substrate will produce color at
test and control lines as a result of enzymatic reaction. Horse-

radish peroxidase labeled antibody conjugates were used for
detection of Rabit IgG (R-IgG) [66]. Enzymes were also used
as labels in LFA to produce chemiluminescence as a result of

reaction with suitable substrate for on field detection of
explosives [67]. In case of enzymes, selection of suitable
enzyme substrate combination is one necessary requirement
in order to get a colored product for strip reader or electroac-

tive product for electrochemical detection. In other words, sen-
sitivity of detection is dependent on enzyme substrate
combination. Enhanced LFA sensitivity was observed when

enzyme loaded gold nanoparticles were used as a label [68].

4.5. Colloidal carbon

Colloidal carbon is comparatively inexpensive label and its
production can be easily scaled up. Because of their black
color, carbon NPs can be easily detected with high sensitiv-

ity. Colloidal carbon can be functionalized with a large vari-
ety of biomolecules for detection of low and high molecular
weight analytes. Colloidal carbon was used as a label in
LFA for visual detection of pesticide methiocarb in surface

water [69]. A work was designed to make a comparison
between gold nanoparticles, latex bead, silver enhanced gold,
and carbon black nanoparticles as a label for biomolecules

for detection of biotin-streptavidin interactions. Carbon
black nanoparticles showed very low detection limits com-
pared to other labels [70]. The sensitivity of LFA employing

colloidal carbon is reported to be comparable with ELISA
[60]. Presence of irregular shaped large particles and non-
specific adsorption of proteins and biomolecules are major
problems with colloidal carbon. Detail of strengths and

weaknesses of amorphous carbon nanoparticle based labels
can be found in a recent review [71].
5. Detection systems

In case of gold nanoparticles or other color producing
labels, qualitative or semi-quantitative analysis can be done

by visual inspection of colors at test and control lines.
The major advantage of visual inspection is rapid qualitative
answer in ‘‘Yes’’ or ‘‘NO’’. Such quick replies about pres-

ence of an analyte in clinical analysis have very high impor-
tance. Such tests help doctors to make an immediate
decision near the patients in hospitals in situations where

test results from central labs cannot be waited for because
of huge time consumption. But for quantification, optical
strip readers are employed for measurement of the intensity
of colors produced at test and control lines of strip. This is

achieved by inserting the strips into a strip reader and inten-
sities are recorded simultaneously by imaging softwares
[72,73]. Optical images of the strips can also be recorded

with a camera and then processed by using a suitable soft-
ware [13]. Procedure includes proper placement of strip
under the camera and a controlled amount of light is

thrown on the areas to be observed. Such systems use
monochromatic light and wavelength of light can be
adjusted to get a good contrast among test and control lines
and background. In order to provide good quantitative and

reproducible results, detection system should be sensitive to
different intensities of colors. Optical standards can be used
to calibrate an optical reader device. Automated systems

have advantages over manual imaging and processing in
terms of time consumption, interpretation of results and
adjustment of variables.

In case of fluorescent labels, a fluorescence strip reader is
used to record fluorescence intensity of test and control lines.
Fluorescence brightness of test line increased with an increase

in nitrated ceruloplasmin concentration in human cerum when
it was detected with a fluorescence strip reader [1]. A photo-
electric sensor was also used for detection in LFA where colloi-
dal gold is exposed to light emitting diode and resulting

photoelectrons are recorded [74]. Chemiluminescence which
results from reaction of enzyme and substrate is measured as
a response to amount of target analyte [75]. Magnetic strip

readers [46] and electrochemical detectors [76] are also
reported as detection systems in LFTS but they are not very
common. Selection of detector is mainly determined by the

label employed in analysis.

6. Applications

6.1. Clinical analysis

A major part of LFA applications lies in clinical analysis. It
includes detection of a variety of clinical analytes in plasma,
serum, urine, cells, tissues and other biological samples. Table 2
shows applications of LFA for detection of clinical and non-

clinical analytes.



Table 2 Overview of LFA applications in different areas.

Application area Analyte Label Sample type Detection Limit Time of detection Ref.

Clinical Analysis Thrombin Gold Nanoparticles Plasma 2.5 nM – [73]

Ramos cells Gold Nanoparticles Blood 800 Ramos cells 15 min [82]

Cardiac Troponin I Superparamagnetic nanobeads 0.01 ng/mL <15 min [79]

Alpha fetoproteins Quantum dots Serum 1 ng/mL 10 min [123]

Troponin I Dual gold nanoparticle Serum 0.01 ng/mL 10 min [124]

C-jun Gold nanoparticles Standard 0.2 footprint unit 10 min [125]

Influenza antigen Fluorescently doped silica particles Allantoic fluid 250 ng/mL 30 min [63]

miRNA Gold nanoparticles Cell lysate 60 pM 20 min [77]

HBs antigens SiO2 modified magnetic nanoparticles Serum 0.1 pg/mL [126]

Toxins and Pathogens Clenbuterol Fluorescent Nanosilica Urine 0.037 ng/L – [104]

Clenbuterol Gold Nanoparticles Urine 0.1 ng/mL 10 min [127]

1-Aminohydantoin Gold Nanoparticles Meat 1.4 ng/mL 1 min [128]

Aflatoxin B(1) Gold nanoparticles Pig feed 5 lg/kg 10 min [129]

T-2 toxins Gold nanoparticles Wheat and oat 100 lg/kg 4 min [130]

Escherichia coli mRNA Liposome Drinking water 5fmol 15–20 min [131]

Salmonella enteritidis Gold nanoparticles 10 CFU [97]

Pesticides Carbofuran Gold nanoparticles Water 32 lg/L 8–10 min [108]

Triazophos Gold nanoparticles Water 4 lg/L 8–10 min [108]

Atrazine Gold nanoparticles Water 1.0 ppb 5 min [132]

Paraxon methyl Magnetic Fe3o4 aggregate 1.7 ng/mL [13]

Carbaryl Gold nanoparticles Agricultural products 100 lg/L [41]

Endosulfan Gold nanoparticles Agricultural products 10 lg/L [41]

Carbaryl HRP Agricultural products 10 lg/L [41]

Endosulfan HRP Agricultural products 1 lg/L [41]

Trichloropyridinol HRP Plasma 0.1 ng/mL [133]

Triazophos residues Gold nanoparticles Standard 4 ng/mL 10 min [134]

Chlorpyrifos-methyl Gold nanoparticles Water 50 ng/mL 10 min [135]

Dichlorodiphenyltrichloroethane Gold nanoparticles Food 27 ng/mL [136]

Thiabendazole Standard 0.08 ng/mL 10 min [137]

Methiocarb Carbon nanoparticles Surface water 0.5 ng/mL 10 min [69]

Metal Ions Hg2+ Gold nanoparticles Water 0.1 nM – [114]

Cr3+ Gold nanoparticles Water and serum 5 ng/mL 5 min [138]

Hg2+ Gold nanoparticles Water 6 nM 5 min [139]

Cd2+ Gold nanoparticles Drinking and tap water 0.4 ppb [116]

Cu2+ Gold nanoparticles Water 10 nM [140]

Pharmaceuticals and drugs Enrofloxacin Gold nanoparticles Chicken muscles 0.138 lg/kg 5–10 min [141]

Sulfonamides Gold nanoparticles Eggs and Chicken Muscles 10 ng/mL 15 min [142]

Morphine Gold nanoparticles Urine 2.5 ng/mL [143]

Chloramphenicol Gold nanoparticles Milk 10 ng/mL 10 min [144]

Ofloxacin Gold nanoparticles Swine urine 10 ng/mL <10 min [145]

Ofloxacin Gold nanoparticles Milk, chicken and pork meat 30 ng/mL 10 min [146]
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6.1.1. RNA/DNA detection

MicroRNA was detected in cell lysate using a DNA-AuNP

based LFA within a time of 20 min [77]. DNA was quantified
in plasma by using dry reagent nucleic acid biosensor employ-
ing blue dye doped latex beads as a label. Detection was based

on hybridization between DNA conjugate and specific target
DNA sequence in plasma [35].

LFA was developed to identify nucleic acids by using recog-

nition properties of molecular beacons and optical properties
of gold nanoparticles and very low detection limits were
achieved [78]. Modified hairpin oligonucleotide with double
target binding DNA sequence and gold nanoparticles was

employed in LFA for detection of single base mismatches in
DNA by visual observation. Incorporation of double target
DNA binding sequences into loop of hairpin oligonucleotide

has led an increase in the tendency of this probe to discrimi-
nate between perfect and single base mismatches in DNA [72].

6.1.2. Proteins and cells

Proteins serve as biomarkers for the uncovering of some
diseases and their analysis has key prominence in clinical diag-
nosis. Radioimmunoassay, protein chips, fluorescence, and

other methods are used to detect low levels of proteins in
biological matrices. Disadvantages of these methods include
disposal of radioactive substances, tiresome sample prepara-

tion steps, lavish instrumentation, necessity of skilled analyz-
ers, washing and incubation procedures.

Concentration of thrombin protein in plasma samples was

determined with high specificity using unique properties of
aptamers and gold nanoparticles in LFA [73]. Cardiac marker
cardiac troponin I is a protein, its concentration in blood-
stream is very important in determining and diagnosing acute

myocardial infarction (AMI). In healthy people, concentration
of cardiac troponin I is 20.4 pg/mL but as the AMI starts, the
level of this protein marker rises with time and after few hours

it reaches to its peak value 195.9 ng/mL. As central clinical lab-
oratories consume much time in detection, rapid and sensitive
methods are desired. Xu et al. developed a sensitive method for

detection of cardiac troponin I using superparamagnetic nan-
obeads as a label for LFA. Limit of detection was 0.01 ng/
mL and analysis time was less than 15 min [79]. 173 specimens
were obtained from the patients appeared with symptoms of

AMI and screened for cardiac troponin I and myoglobin by
using electrochemiluminescence immunoassay, commercially
available lateral flow strips and lateral flow strips modified

with nanoparticles. All methods showed same quantitative
results but nanoparticle modified strips were found more
sensitive [80].

Recently, LFA was used for detection of human pluripo-
tent stem cells employing gold nanoparticles as a label and it
was capable of detecting down to 10,000 cells by visual inspec-

tion and 7000 cells by a strip reader [81]. LFA based strip was
prepared by combining molecular recognition properties of
aptamers and optical properties of gold for detection of cancer
cells. Ramos cells were chosen as model analyte for this study.

Visual limit of detection was down to 4000 Ramos cells while a
strip reader was able to detect minimum 800 Ramos cells [82].

6.1.3. Other clinical analytes

Diagnosis which involves tests on blood serum is termed as
serodiagnosis. It involves diagnosis of disease by detection of
antibody or antigen. LFA was used to detect Leptospira-spe-
cific immunoglobulin M (IgM) antibodies in human blood
serum and reported results were in good agreement with rou-

tinely used ELISA [83]. Human Brucellosis was diagnosed by
LFA detection of brucella specific IgM antibodies in sera
[84]. Antibodies to phenolic glycolipid-I (PGL-I) of Mycobac-

terium leprae were detected using LFA for classification of lep-
rosy patients and results showed good agreement with ELISA
[85]. Prostate specific antigen which is thought to be a reliable

marker for early diagnosis of prostate cancer was determined
in human serum using gold nanoparticles as reporter and
electrochemical detection system [76].

A commercial lateral flow strip was used to detect fixed

concentrations of laboratory grown vaccinia and monkeypox
viruses. It showed good reproducibility and 9 out of 11 clinical
samples were correctly identified [86]. Low or high level con-

centrations of thyroid stimulating hormone (TSH) are linked
with hypothyroidism and hyperthyroidism in human. Cell
phone based detection system was used with LFA to measure

the levels of TSH in serum [87]. Rotavirus was detected in
bovine fecal samples using LFA, commercial latex agglutina-
tion test (LAT) and electron microscopy. Compared to elec-

tron microscopy, sensitivities of LFA and LAT were 70%
and 80% respectively but both tests showed 100% specificity
[88].
6.2. Foodborne pathogens and toxins

Quality of food is affected during each stage from its transpor-
tation to processing [89,90]. Scientific community is focusing

on the nutritional qualities of food and their possible associa-
tions on the human health [91,92]. Rapid and convenient POC
methods are desired for detection of foodborne pathogens and

toxins. Food products require extensive labeling of major and
minor constituents. Currently conventional culture based
methods are being used in food industry. Although they have

reasonable sensitivity and selectivity, tedious assay procedure
and extended analysis time are their major disadvantages
[93]. LFA technology has come up with many advantages like
reliability and short assay times. 72% of pathogen detection

studies mainly focus on Food industry and Water & Environ-
ment. Moreover 60% of the detection methods deal with
Salmonella and E. coli [94].

Botulinum neurotoxins (BoNT) are the most dangerous
neurotoxins. They are produced by the Clostridium botu-
linum, which is spore forming obligate anaerobe naturally,

occurs in the soil. BoNts are divided into seven types. These
toxins act to inhibit acetylcholine release and result in paral-
ysis and death. Highly sensitive LFA was designed to detect
and differentiate between BoNT/A and B which are known

to be toxic and responsible for 80% of illnesses caused by
milk and apple juice [95]. Corn, feedstuff and wheat were
screened for simultaneous detection of mycotoxins zearale-

none and fumonisin B1 by using a colloidal gold lateral flow
strip. The results were in good agreement with ELISA and
LC-MS [96].

Recently gold nanoparticle and aptamer based LFA was
used for detection of Salmonella enteritidis and it was capable
of detecting as low as 101 colony forming units (CFU) [97].

Newly developed antibodies coupled with AuNPs were
employed in LFA for detection of Vibrio cholera [98]. A
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nucleic acid lateral flow assay was developed for quantification
of Salmonella. A DNA probe which was highly specific to 16s
ribosomal RNA and DNA of salmonella was conjugated with

gold nanoparticles to detect target. Signal was enhanced by
silver deposition [99]. Staphylococcus aureus was detected in
the respiratory samples obtained from very severe asthmatic

patients using LFA and detection limit of 106 cfu/mL was
achieved. Test showed high specificity toward target pathogen
[100]. Staphylococci are gram positive bacteria and recently

they are showing much resistance against existing antibiotics.
Staphylococci are known to cause many diseases either directly
or through their products. These products are food poisoning
toxins like SEB. Many diseases arise from digestion of these

toxins through contaminated foods. Some countries consider
SEB as a biological aerosol weapon for contamination of food
and water resources. LFA showed ability to detect 1 ng/mL of

SEB and with highly reproducible results. The practical use of
this strip was checked by spiking SEB in real serum, urine, cow
milk powder [101]. LFA has very high specificity for influenza

virus and thus can be used as a useful tool for detecting this
virus [102].

Clenbuterol is a compound which is fed to animals as a

bronchial and it increases growth rate, protein accretion and
decreases fat deposition. As this compound has very enhanced
half-life, upon entrance into human body, it distributes within
meat and induces cardiovascular and central nervous system

diseases [103]. LFA was used to detect this analyte in the urine
using fluorescent nanosilica and visual detection limit for qual-
itative analysis was found 0.1 ng/mL and limit of detection for

quantitative analysis was down to 0.037 ng/mL [104]. Presence
of ultra-small amounts of crustacean protein in processed
foods can lead to allergic reaction. A strip with very low visual

detection limit was devised to detect crustacean protein in pro-
cessed food [105].
6.3. Pesticides

Pesticides represent a wide class of chemicals including organic
compounds which are volatile, semi-volatile or non-volatile in
their nature. Some inorganic compounds and organometallics

are also used as pesticides but such instances are infrequent
[106]. Pesticides have extensive applications in the agriculture
division to grow crops and different food material [107].

Through food chain, these pesticides find their way to human
body and wild animals.

Two LFA strips for simultaneous detection of carbofuran

and triazophos in water samples were developed based on an
immunogold conjugate. Unlike other strips, they contained
two test lines and one control line. Total analysis time was
10 min [108].

Organophosphorus pesticides can be detected by using an
indirect method. Their exposure results in an increase of the
total amount of phosphorylated cholinesterase which can be

a biomarker to detect and quantify these pesticides. Immu-
nochromatographic strip coupled with disposable screen
printed electrode was used to quantify this enzyme in

in vitro red blood cells and it can detect low to 0.02 nM
within a small period of time [109]. A typical format of
LFA was used for detection of paraoxon methyl using

Fe3O4 aggregates as a label and fluorescence strip reader
as a detector [13].
6.4. Toxic pollutants

Bisphenol A (BPA) has wide applications in industry for prep-
aration of epoxy resin, polycarbonate bottles, and also as a
flame retardant. It has been stated that Bisphenol A belongs

to endocrine disrupting compounds and placed in watch list
for further review. Several reports have indicated involvement
of Bisphenol A in reducing fertility and sperm quality in fishes
[110]. A simple and rapid method based on LFA was designed

for the detection of BPA in water and results showed better
sensitivity compared to GCMS and LCMS. Moreover, this
method has advantages of short analysis time, one step and

on spot detection [111]. A lateral flow strip method based on
colloidal gold tag as a label was used to analyze TNT in real
samples and it was able to detect down to 1 mg/mL [112]. Rac-

topamine which was used as feed additive in livestock can be
toxic to humans, LFA was successfully developed for its quan-
tification in swine urine [113].

6.5. Heavy metals

Heavy metal pollution is the biggest concern to safety of
human environment. Various environmental and health agen-

cies have regulated maximum allowable limits of metals in
water, air and food stuff. Analytical techniques used for
detection of heavy metals are atomic absorption spectroscopy

(AAS), inductively couple plasma mass spectrometry (ICP-
MS), and inductively coupled plasma optical emission
spectroscopy (ICP-OEC). These techniques cannot be utilized

as POC because of large sized instruments, need for expert per-
sonnel, and complex sample preparation.

A simple, sensitive and rapid visual detection of Hg2+ ions
in aqueous solution was achieved by using gold nanoparticles

as reporter in LFA for coordination events of Hg2+between
thymine rich hairpin oligonucleotide and digoxin labeled
DNA probes which was complementary to a part of hairpin

oligonucleotide [114]. An immunochromatographic assay
(ICA) was used to detect and quantify chromium ions in water
and serum samples using gold nanoparticles as tracers in a

competitive format. Very low limit of detections was got by
visual and quantitative inspection and the strip was stable
for 12 weeks at 37 C without substantial loss of performance

[115]. Cd-EDTA-BSA-AuNP based LFA was used to detect
Cd2+ ions in tap and drinking waters and it resulted in
0.1 ppb detection limit which was so far better than any paper
based metal sensors [116].

7. Microfluidic devices for POC diagnosis

Concept of POC testing has led to development of a variety of

microfluidic devices. They can be divided based on their
working principles i.e. capillary driven (include LFA strips),
pressure driven, centrifugal, electrokinetic and acoustic. These

devices have been reviewed in detail with an emphasis on
working principle, market requirement, strengths and limita-
tions [117,118]. A recent article extensively reviews applica-

tions of microfluidic devices for biomarker analysis [119].
After polydimethylsiloxane, paper based microfluidics has
got attention in recent years. Paper is a very cheap, abundant,

lightweight, thin and flexible material and its main component
is cellulose fiber which has already shown potential for
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diagnostics in LFA. Paper based POC devices have unique
advantages of easy patterning, movement of fluid by capillary
action, requirement of less volume of sample and ease in dis-

posing paper after testing. But they have disadvantage of vary-
ing sensitivity and selectivity. Several review articles covering
both development and use of paper based devices can be found

in the literature [120–122]. LFA strips are creating remarkable
market share and despite their limitations, they are most suc-
cessfully commercially developed POC devices. Although some

of other microfluidic devices have been commercialized, main
focus remained up to demonstrations. Huge initial investment
and providing solution to all problems that might occur are
main hurdles in bringing these devices to consumers [118].

8. Major challenges, expectations and commercialization

potential of LFA devices

Ideal POC based devices are characterized by low cost, opera-
tional robustness, no need for long storage or transportation
of samples and readily available results. Although LFA is

the most suitable technology for POC applications, its use is
limited when highly quantitative and reproducible results are
demanded. Such challenges can be dealt by developing existing

LFA systems and overcoming their weaknesses. There is a con-
tinuous stress on all existing analytical technologies because of
growing demands for sensitivity and on field applications.

LFA technology has major advantage on other POC applica-
tions that it costs very less and presents a very wide range of
applications. Improvement in materials and detection methods
can be helpful in improving sensitivity and reproducibility of

existing LFA methods. Materials that were employed in
LFA in beginning were not prepared specifically for this assay,
hence each one has some inhomogeneity in combination.

Searching materials which can serve multipurpose job can be
useful in achieving goals of good sensitivity and high reproduc-
ibility i.e. same material for sample application pad, conjugate

pad and membrane. New materials having well distributed
pore size can increase affinity for biomolecules and help in con-
trolling flow of samples.

One major goal in clinical analysis is to use biological
samples for analysis without any sample preparation or pre-
treatment. Many liquid samples such as blood can be directly
employed to LFA or other microfluidic devices but a labor

extensive sample preparation may be required in case of highly
viscous, solid and complex biological samples. Selection of
method for sample pretreatment is decided according to nature

of matrix. Microfluidic devices are being designed in a way
that they can perform a process necessary before analysis such
as mixing, separation, pumping, phase extraction, physical

adsorption, cell selection, covalent linking and nucleic acid
separation [36].

Despite its widespread applications in LFA, nitrocellulose
does not represent an ideal membrane and it presents draw-

backs such as difference in reproducibility within same set of
experiments, environment dependent variations, less shelf life
and breakable structure. Labels show a different behavior in

releasing from conjugate pad and sensitivity of signal is lost
when labeled conjugate materials are partially released. A
good combination of label, biorecognition molecule and detec-

tion system is critical in enhancing sensitivity of LFA.
Before commercialization of any POC device, several
aspects of the product are carefully examined. Every lab tested
prototype cannot be brought to market without a detailed

optimization of assay steps, device material and results read
out. Suitability of assay, development of device design, study
of consumables and application areas serve as drivers in com-

mercialization of any device. Growing rate of commercial
applications of lateral flow assay based devices is very high.
It can be safely said that LFA devices are among first commer-

cialized microfluidic based POC products. These devices are
being used for qualitative and quantitative analysis for a vari-
ety of analytes. All the products including labels, biorecogni-
tion molecules, strip readers and a kit of whole set up are

being provided by many companies. DCN (Diagnostic con-
sulting networks) is providing lateral flow assay strips for
applications in medical, veterinary, and consumer diagnostics,

food and beverage testing, environmental and agriculture test-
ing. Market size and opportunities in future have been
described in terms of generated revenues and growing demand.

Clinical and veterinary applications of LFA were reported in
2010 to comprise 89% and 8% of market size respectively
and generating largest revenues and same trend is expected

in 2015 (http://www.dcndx.com/company). List of the compa-
nies providing tools or whole kits for LFA is very long and a
few of them can be found in a recent review [6].
9. Conclusion

In last few years, more research focused on the use of LFA for
detection of clinical and non-clinical analytes. LFA has advan-

tages of simple test procedure; requirement of low sample
volume, fast analysis, no need for expert personnel and low
cost of operation. Integration of the nanotechnology into

LFTS biosensors has resulted in enhanced signal to noise ratio,
reduced analysis time and simultaneous analysis of multiple
analytes. Colloidal gold conjugation with biomolecules has

provided an excellent platform for detection of a variety of tar-
get analytes.

No doubt, the LFA strips have a broad range of applications

in clinical and non-clinical analysis but several flaws have been
indicated by researchers which include poor reproducibility and
less sensitivity toward high analyte concentrations. Most of
LFAs give qualitative or semi-quantitative results which can

be observed by naked eyes. Conventional LFA are normally
qualitative and give answers in yes or no.

A good LFA biosensor can be recognized by such figures of

merit: biocompatibility, high specificity, high sensitivity,
rapidity of analysis, reproducibility/precision of results, wide
working range of analysis, accuracy of analysis, high through-

put, compactness, low cost, simplicity of operation, portabil-
ity, flexibility in configuration, possibility of miniaturization,
potential of mass production and on-site detection.
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