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Abstract

This study investigated the occurrence of shiga toxin-producing Escherichia coli

(STEC), thermotolerant Campylobacter spp. and Salmonella spp. in Swedish dairy milk.

A total of 302 inline milk filters were analyzed. Salmonella was not isolated from any

filters. Polymerase chain reaction screening detected thermotolerant Campylobacter

in 30.5% of the milk filters analyzed and it was isolated from 12.6% of filters. The stx

genes (stx1, stx2, or both) were screened from 71% of the filters and STEC was iso-

lated from 14% of these. Of the STEC isolates, 21 contained the stx1 gene, 19 the

stx2 gene, and five a combination of both stx1 and stx2 genes. Whole genome

sequence typing on 34 of the 45 STEC showed that they belonged to 21 different

serotypes, of which STEC O145:H28 was the most common (2%). STEC O157:H7

was only found from one (0.3%) of the filters. A combination of stx2 and eae genes

was found from 0.7% of the total number of inline milk filters analyzed, while stx2a

was found in 24% of the whole genome-sequenced isolates. There was a significant

positive correlations between number of animals per farm and presence of pathogens

on milk filters.

1 | INTRODUCTION

Fresh dairy milk is a commonly consumed food in Sweden, with per

capita consumption of almost 90 L per year (SCB, 2018a). Milk is a

nutrient-rich product containing high-quality protein and the majority

of the vitamins and minerals needed for a complete diet (Pereira,

2014). However, milk is a complex food that can contain a wide vari-

ety of microorganisms, including lactic acid bacteria, spoilage organ-

isms, and potential pathogens (EFSA, 2015; Quigley et al., 2013).

Pathogens can contaminate milk either directly from the udder of

infected animals or indirectly from the dairy farm environment during

and after milking (Oliver, Jayarao, & Almeida, 2005; van Kessel, Karns,

Gorski, McCluskey, & Perdue, 2004). Due to the near neutral pH, high

water activity, and high nutrient composition, pathogens can easily

multiply in milk stored at inappropriate temperatures (EFSA, 2015).

There have been many studies on the occurrence of pathogens in

unpasteurized dairy milk, in which Campylobacter spp., shiga toxin-

producing Escherichia coli (STEC), and Salmonella spp. are commonly

reported (FSAI, 2015; Claeys et al., 2013; D'Amico, Groves, & Donnelly,

2008; Giacometti et al., 2013; Hill, Smythe, Lindsay, & Shepherd, 2012;

Jackson et al., 2012; Mohammadi, Abiri, Rezaei, & Salmanzadeh-Ahrabi,

2013; Ruusunen et al., 2013; Schoder, Maichin, Lema, & Laffa, 2013;

Zastempowska, Grajewski, & Twaru_zek, 2016).

Campylobacter spp. is the most common bacterial cause of gastroen-

teritis in Sweden, with approximately 100 cases per 100,000 inhabitants

and year between 2015 and 2017 (EFSA & ECDC, 2017; SVA, 2016).

Human campylobacteriosis is mainly attributed to consumption of under-

cooked meat, especially poultry, but consumption of unpasteurized milk

is a known mode of transmission (Batz, Hoffmann, & Morris, 2012; Cos-

tard, Espejo, Groenendaal, & Zagmutt, 2017; Pires, Vigre, Makela, & Hald,

2010). In the United States, it is estimated that consumption of

unpasteurized milk and cheese increases the risk of campylobacteriosis
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by 7,600-fold (Costard et al., 2017). In Sweden, an outbreak with eight

confirmed cases of Campylobacter jejuni occurred in 2014. It was

attributed to consumption of unpasteurized milk by a preschool class

(2–7 years old) during a farm visit (Lahti et al., 2017). The incidence

of human illness due to STEC in Sweden is lower than that due to

Campylobacter spp., with only approximately 4–6 cases per 100,000

inhabitants and year between 2015 and 2017 (EFSA & ECDC, 2017;

SVA, 2016). However, STEC infection can cause serious disease in

humans and is associated with major costs to both the individual and

society. Children are at particular risk of developing severe symptoms,

such as hemolytic uremic syndrome (HUS) and other sequelae

(Germinario et al., 2016). Because of the potential severity of the disease,

it is essential to reduce the number of cases of STEC infection. STEC

infection is mainly attributed to consumption of raw/undercooked meat,

cured meat/cold cuts, or minced meat from cattle or small ruminants

(Mughini-Gras et al., 2018). However, consumption of unpasteurized

cow's milk has also been reported as a transmission route for STEC infec-

tion (Costard et al., 2017; Germinario et al., 2016; Jaakkonen

et al., 2017).

Swedish legislation states that fresh milk sold at retail must be pas-

teurized. However, there is growing consumer interest in purchasing

unpasteurized milk and it is legally permissible for producers in Sweden

to sell up to 70 L of unpasteurized milk directly to consumers on farm.

However, both STEC and Campylobacter spp. have been shown to cause

illness after ingestion of only a low number of cells, and therefore even

small amounts of contaminated milk can lead to consumer infection

(Paton & Paton, 1998; Robinson, 1981). Consumption of unpasteurized

milk has been correlated with both sporadic cases and outbreaks of

foodborne illness. Between 2007 and 2012, a total of 24 and 81 out-

breaks caused by unpasteurized milk were reported in the EU and US,

respectively (EFSA, 2015; Mungai, Behravesh, & Gould, 2015). Campylo-

bacter spp. was reported to be the causative agent in the majority of

these outbreaks, followed by STEC and Salmonella Typhimurium.

The aim of the present study was to investigate the occurrence of

STEC, thermotolerant Campylobacter spp., and Salmonella spp. in

Swedish dairy milk. This information is needed in order to provide rel-

evant support to risk managers and as input to the ongoing debate on

whether a more relaxed approach to selling unpasteurized milk should

be adopted in Sweden.

2 | MATERIAL AND METHODS

2.1 | Selection of farms and sampling

The study was performed in three regions southern Sweden: Skåne,

Västra Götaland, and Öland. These regions were selected due to their

high percentage of dairy farms and previously reported occurrence of

STEC O157:H7 clade 8 and Salmonella (Ågren, Lewerin, Wahlström,

Emanuelson, & Frössling, 2016; Boqvist, Aspan, & Eriksson, 2009;

Eriksson, Aspan, Gunnarsson, & Vågsholm, 2005). Herds were ran-

domly selected from among dairy producers in each region, in order

to obtain samples of milk filters from herds of different sizes and from

farms using different management practices. Participation in the study

was voluntary for the selected dairy farmers and farms that were

under investigation for Salmonella were excluded from the study.

Information on the milking system (automatic, manual, untethered,

tethered) and the number of dairy cows was obtained from each farm.

Inline milk filters were collected by the farmers directly after the

morning milking, and placed in zipper bags containing 50 ml of Cary-

Blair transport medium (National Veterinary Institute [SVA], Uppsala,

Sweden). The bags were then stored in a refrigerator until later in the

same day, when they were sent by post to the Swedish Food Agency in

freezer boxes containing cooling brackets. Criteria for inclusion in the

study were that the transport time did not exceed 24 hr and that the

temperature of the samples was below 8�C on arrival at the laboratory.

2.2 | Preparation of the inline milk filters before
examination

On arrival at the laboratory, the inline milk filters were cut into three

approximately equal sections, using sterilized scissors. These sections

were to be used for detection of Salmonella, thermotolerant Campylo-

bacter, and STEC, respectively, as described below. If more than one

filter was delivered from a specific farm, only one was analyzed.

2.3 | Detection of Salmonella

One filter section was mixed with 150 ml buffered peptone water

(Oxoid, Waltham, MA), homogenized, and pre-enriched at 37 ± 1�C

for 16–20 hr. Genomic DNA was extracted from the pre-enrichment

broth and detection of Salmonella spp. was performed with real-time

polymerase chain reaction (PCR; Bio-Rad CFX96™ Real-Time System;

Bio-Rad Laboratories, Hercules, CA) using the iQ-check Salmonella II

kit and Standard I protocol (Bio-Rad Laboratories) according to the

manufacturer's instructions. In cases of positive PCR detection of

Salmonella spp., an attempt was made to isolate the strains involved.

In brief, 0.1 ml of the pre-enrichment was transferred to tubes

containing Rappapport-Vassiliadis soy peptone broth (Oxoid) and

incubated at 42 ± 0.2�C for 21–27 hr. Enriched broth was then

streaked out on selective xylose lysine deoxycholate (Oxoid) agar and

Brilliance™ Salmonella (Oxoid) agar plates, which were incubated at

37 ± 1�C for 21–27 hr according to NMKL 71 (1999).

2.4 | Detection of thermotolerant Campylobacter

For Campylobacter detection, one filter section was mixed into 150 ml

Bolton broth (Oxoid) and the broth was incubated for 44–52 hr at

41.5 ± 1�C in a jar with microaerobic atmosphere (5% O2, 10% CO2,

and 85% N2). Genomic DNA was purified with Chelex-based resin

from 1 ml of the enriched broth, according to the manufacturer's

instructions for Instagene™ Matrix (Bio-Rad Laboratories, Hercules,

CA). Detection of thermotolerant Campylobacter was performed by

real-time PCR (Bio-Rad and Roche, Basel, Switzerland), based on

amplification of a 287-bp sequence of the 16S rRNA gene of C. jejuni,

C. coli, and C. lari. The PCR was performed as described by Josefsen,

Jacobsen, and Hoorfar (2004), with the modification that TaqMan
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Universal Mastermix (Applied Biosystems, Foster City, CA), primer

concentration of 0.5 μM and probe concentration of 0.1 μMwas used.

In cases of positive PCR detection of Campylobacter, an attempt was

made to isolate the strains according to NMKL 119 (2007). In brief,

10 μl of enriched broth were streaked on modified charcoal

cephoperazone desoxycolate agar plates (Oxoid), which were incu-

bated at 41.5 ± 1�C in a jar with modified atmosphere (5% O2, 10%

CO2, and 85% N2) at 44–52 hr. Presence of Campylobacter spp. was

assessed based on motility, cell morphology, and the Bactident® oxi-

dase test (Merck, Kenilworth, NJ). Identification of C. jejuni and C. coli

was performed by real-time PCR with designed primers and probes

according to Toplak, Kovač, Piskernik, Smole Možina, and Jeršek

(2012), with the modifications that PerfeCTa MultiPlex qPCR Super-

Mix (Quantabio, Beverly, MA) was used and the primer and probe

concentration was set to 0.8 and 0.2 μM, respectively, for detection

of C. jejuni and to 0.3 and 0.2 μM, respectively, for detection of C. coli.

Identification was also performed by mass spectrometry-time of flight

(Maldi-Tof; Bruker Corporation, Billerica, MA) at SVA according to

their instructions (Holmberg, Rosendal, Engvall, Ohlson, & Lindberg,

2015). The characteristic patterns of Campylobacter spp. proteins

were matched using the FDA-cleared Reference Library from Bruker

and the SVA library.

2.5 | Detection of shiga toxin-producing
Escherichia coli

The filter section for STEC analysis was mixed with 150 ml modified

Tryptone Soy Broth (Oxoid) containing 0.225 g bile salt no. 3 (Oxoid)

and 12 mg/L acriflavin (Sigma-Aldrich, Saint Louis, MO). After incuba-

tion at 37 ± 1�C for 18–24 hr, genomic DNA was extracted from

200 μl enriched broth using a BioRobot EZ1 (Qiagen, Hilden,

Germany) and EZ1 DNA Tissue kit (Qiagen) according the manufac-

turer's instructions. The extracted genomic DNA was eluted in

100 μl elution buffer. Detection of the genes stx1 and stx2 was

performed using the real-time PCR (Bio-Rad and Roche) method

described in ISO/TS 13136:2012 and Kagkli et al. (2011). Upon

detection of one or both genes, real-time PCR for the genes of

the five serogroups O157, O26, O103, O111, and O145 was

performed (ISO/TS 13136, 2012; Perelle, Dilasser, Grout, & Fach,

2004, 2005), with the modification that the annealing temperature

was set to 60�C for all targets.

In the event of detection of shiga toxin genes, the enrichment

broth was frozen with 20% glycerol at −70�C. When enough positive

samples were collected, an attempt was made to isolate through

immunoblotting according to Atalla and Johnson (2000). In brief, the

capture membrane (82 mm nitrocellulose membranes, pore size

0.2 μm; VWR International) was precoated with rabbit anti-Stx anti-

bodies (2 μg/ml) and blocked with wash buffer containing 1% gelatin.

The enrichment broth was thawed at 50�C and left at room tempera-

ture for 1 hr (Ternent et al., 2003), and then diluted 10-fold in pep-

tone water (Oxoid) containing 1% NaCl (Merck). The capture

membrane was positioned on Tryptic Soy Agar plates (Oxoid) con-

taining 25 ng/ml Mitomycin C (Sigma-Aldrich). Above the capture

membrane, a second uncoated membrane (82 mm cellulose acetate,

pre size 0.45 μm; Satorius Group, Göttingen, Germany) was posi-

tioned. A volume of 100 μl from selected dilutions was spread onto

the membranes and incubated at 37�C for 18–24 hr. The membranes

were marked for later reorientation. The capture membrane was then

removed and the upper membrane was replaced on the tryptic soy

agar plates and stored at 4�C for later use. A mixture of monoclonal

antibodies against Stx1, Stx2a/c, Stx2e, and Stx2d-variants (2 μg/ml) was

used for the capture membrane as the secondary antibody, followed

by alkaline phosphatase-labeled rabbit anti-mouse IgG (0.1 μg/ml;

Jackson Immunoresearch, Mississauga, Ontario, Canada), and BCIP/

NBT (5-bromo-4-chloro-3-indoyl-phosphate/nitroblue tetrazolium;

Seracare, Milford, MA) was used for detection. Suspected colonies

from the immunoblotting were streaked on tryptone bile x-

glucoronide agar (Oxoid) and also confirmed as E. coli by testing for

production of indole, confirmed with real-time PCR for the stx genes

as described above.

Confirmed isolates were sent to the Public Health Agency of Swe-

den for characterization with whole genome sequencing. For this, Ion

Torrent 400 base-pair chemistry was used, together with Library

Builder™ and Ion Torrent platform (Thermo Fischer). In a first step,

the information from sequencing was used to determine species and

then characterized with respect to serotype, stx-subtype, and the viru-

lence genes eae and aggR.

2.6 | Statistical analyses

Chi2 tests were used in all comparisons to determine significant differ-

ences in relation to occurrence of specific bacteria and time of sam-

pling (spring and autumn), region, and herd size. Results were

considered significant at p < 0.05.

3 | RESULTS

3.1 | Farms and samples included in the survey

In total, inline filters from 302 randomly selected dairy farms were

analyzed, of which 139 were sampled from April–June 2015 and

163 sampled from August–October 2015. The information obtained

for these samples is summarized in Table 1.

3.2 | Salmonella

With PCR screening, Salmonella spp. was detected in 0.7% (2/232) of

the filters. However, it was not possible to isolate Salmonella from the

PCR-positive samples.

3.3 | Thermotolerant Campylobacter

Through PCR screening, thermotolerant Campylobacter was detected

in 30.5% (92/302) of the milk filters and successfully isolated from

12.6% (38 /302) of the milk filters (Table 2). The majority of the iso-

lates (90%) were C. jejuni and the rest were C. lari.
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A significantly higher proportion of thermotolerant Campylobacter

was obtained, by PCR-screening and in isolates, in the spring sampling

period (Table 2). With PCR screening, thermotolerant Campylobacter

was found in 36.7% (51/139) of the samples taken in spring compared

with 25.2% (41/163) of the samples taken in autumn. The proportion

of thermotolerant Campylobacter isolated was 17.3% (24/139) in the

spring sampling period, compared with 8.6% (14/163) in the autumn.

A significantly higher proportion of thermotolerant Campylobacter

was also isolated from herds with more than 100 animals (Table 2). In

addition, a significantly higher proportion of thermotolerant Campylo-

bacter was isolated from inline milk filters obtained from farms using

untethered milking systems (24/123) compared with tethered milking

systems (13/177; Table 3). No significant differences in isolated ther-

motolerant Campylobacter were found when comparing automatic

and manual milking systems (Table 3), or when comparing the three

sampling regions (data not shown).

3.4 | Shiga toxin-producing Escherichia coli

The PCR screening detected stx genes (stx1, stx2, or both) in 71%

(213/302) of the inline milk filters included in the study and STEC was

successfully isolated from 14% (43/302) of these (Table 2). The rate of

TABLE 1 Dairy farms selected for inline milk filter sampling

Number of collected inline milk filters

Small farms (1–49 cows) Medium farms (50–99 cows) Large farms (>100 cows) Unknown sizea All farms

Spring sampling period 53 59 26 1 139

Skåne 19 18 10 1 48

Västra Götaland 20 22 5 0 47

Öland 14 19 11 0 44

Autumn sampling period 70 47 43 3 163

Skåne 23 13 13 2 51

Västra Götaland 30 20 9 0 59

Öland 17 14 21 1 53

Total number of samples 123 106 69 4 302

aNumber of animals not reported by farmers.

TABLE 2 Thermotolerant Campylobacter and STEC from inline milk filters by PCR screening and by isolation

Sampling period Herd size Campylobacter, PCR-screening Campylobacter, isolation STEC, PCR-screening STEC, isolation

Spring 1–49 22.6 (12/53) 5.7 (3/53) 37.7 (20/53) 9.5 (6/53)

50–99 42.4 (25/59) 22.0 (13/59) 74.6 (44/59) 22.0 (13/59)

>100 53.8 (14/26) 30.8 (8/26) 92.3 (24/26) 26.9 (7/26)

Unknown 0 (0/1) 0 (0/1) 0 (0/1) 0 (0/1)

Total 36.7 (51/139) a 17.3 (24/139) a 63.3 (88/139) a 18.7 (26/139) a

Autumn 1–49 11.4 (8/70) 1.4 (1/70) 61.4 (43/70) 5.7 (4/70)

50–99 29.8 (14/47) 11.9 (5/42) 80.9 (38/47) 10.6 (5/47)

>100 39.5 (17/43) 16.3 (7/43) 95.3 (41/43) 16.3 (7/43)

Unknown 66.7 (2/3) 33.3 (1/3) 100 (3/3) 33.3 (1/3)

Total 25.2 (41/163) a 8.6 (14/163) a 76.7 (125/163) a 10.4 (17/163) a

Total 1–49 16.3 (20/123) b, c 3.3 (4/123) b 51.2 (63/123) b, c 8.1 (10/123) b, c

50–99 36.8 (39/106) b 17.0 (18/106) c 77.4 (82/106) b, d 17.0 (18/106) b

>100 44.9 (31/69) c 21.7 (15/69) b, c 94.2 (65/69) c, d 20.3 (14/69) c

Unknown 50.0 (2/4) 25.0 (1/4) 75.0 (3/4) 25.0 (1/4)

Total 30.5 (92/302) 12.6 (38/302) 70.5 (213/302) 14.2 (43/302)

Notes: Results are shown as percent, with total number of positives and number of samples in parenthesis. Within columns same letter (a–d) indicate
significant difference (p < 0.05). Results for different herd size for spring and autumn sampling period were not statistically analyzed.

Abbreviations: PCR, polymerase chain reaction; STEC, shiga toxin-producing Escherichia coli.
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isolation of the PCR-positive samples was 20% (43/213). In total,

45 STEC strains were isolated, as some of the inline milk filters con-

tained more than one STEC strain. Of the isolated STEC, 21 contained

the stx1 gene, 19 the stx2 gene, and five a combination of both stx1

and stx2 genes (Table 4). In total, 0.7% (2/302) of the inline milk filters

contained STEC that were positive for both the stx2 gene and eae

gene and 5% (14/302) contained STEC that were positive for both

stx1 gene and eae gene.

Characterization with whole genome sequencing was performed

for 34 of the 45 STEC isolates. The results showed that the isolates

belonged to 21 different serotypes, of which STEC O145:H28 was

the most common (Table 4). Four of the five isolated STEC O145:

H28 (stx1a- and eae-positive) were found in milk filters from the

Öland region and one was from the Skåne region. STEC O157:H7

was isolated from one of the samples, from a farm in the Skåne

region. The STEC O157:H7 isolate contained the stx2a and stx2c

genes, but did not belong to the lineage clade 8. In total, 24%

(8/34) of the sequenced isolates contained the stx2a gene, 5.9%

(2/34) had stx2a in combination with the eae gene, 15% (5/34) con-

tained the stx2d gene, and 38% (13/34) had stx1a in combination

with the eae gene.

A significantly higher proportion of samples tested positive for stx

genes in PCR screening of inline milk filters sampled in autumn com-

pared with filters sampled in spring (Table 2). However, no such correla-

tion was found for isolated STEC (Table 2). A significantly higher

proportion of samples testing positive for stx genes was obtained from

herds with 50 animals or more (Table 2). The proportion of inline milk

filters with successfully isolated STEC was significantly higher on farms

with more than 100 milk animals than on farms with less than 100 and

less than 50 animals (Table 2). In addition, there was a higher propor-

tion of isolated STEC in samples from farms using untethered milking

systems (Table 3).

4 | DISCUSSION

The use of inline milk filters has been confirmed to be a sensitive

method for screening of pathogens in milk (Artursson, Schelin, Thisted

Lambertz, Hansson, & Olsson Engvall, 2018; Giacometti et al., 2012;

van Kessel, Karns, Lombard, & Kopral, 2011). Inline milk filters are

designed to catch debris and feces particles, with pore dimensions

that do not retain bacteria. Thus, a positive inline milk filter can be

interpreted as an indication of contaminated tank milk. However,

there are some factors that need to be taken into account when inter-

preting the results of the present study. First, participation was volun-

tary for the farms and farms with confirmed Salmonella were excluded

from the sample set. Second, samples were only collected from three

selected regions previously shown to have a high prevalence of STEC

O157:H7 and/or Salmonella in cattle. Thus, the results should not be

taken as representative for the whole country, but rather as reflecting

the contamination situation in areas where pathogens are known to

be present in the dairy environment.

The prevalence of Salmonella is low in Swedish dairy herds and the

seroprevalence in bulk tank milk has previously been shown to be 3%

(Ågren et al., 2016). However, Ågren et al. (2016) observed regional

variations in Salmonella occurrence in Sweden and reported >8% herd

seroprevalence of Salmonella for one of the regions included in the pre-

sent study, the island of Öland off south-east Sweden. However, no

Salmonella was isolated from the inline milk filters analyzed in the pre-

sent study. This could be because of the exclusion of farms with con-

firmed Salmonella or because of reluctance to participate in the study

among farmers with a previous history of Salmonella in their herds

(Artursson et al., 2018). Thermotolerant Campylobacter was isolated

from 12.6%, of the inline milk filters tested in the present study. This

incidence is in agreement with findings reported previously for Swedish

dairy milk (Artursson et al., 2018). In Ireland, a survey of raw milk

reported detection of Campylobacter in 22% of the inline milk filters

TABLE 3 Thermotolerant Campylobacter and STEC in relation to the milking system used, by PCR screening and by isolation

Milking system Campylobacter, PCR-screening Campylobacter, isolation STEC, PCR-screening STEC, isolation

Manual systemsa 30.2 (73/242) 11.6 (28/242) 66.5 (161/242) a 13.2 (32/242)

Automatic systemsb 30.5 (18/59) 15.3 (9/59) 86.4 (51/59) a 16.9 (10/59)

Untethered systemsc 43.5 (54/124) ad 19.4 (24/124)6 87.1 (108/124) b 17.7 (22/124)

Tethered systemse 20.3 (36/177) a 7.3 (13/177)6 58.8 (104/177) b 11.3 (20/177)

Milking system unknown 100.0 (1/1) 100.0 (1/1) 100.0 (1/1) 100.0 (1/1)

Total amount of positives 30.5 (92/302) 12.6 (38/302) 70.5 (213/302) 14.6 (44/302)

Note: Results are shown as percent, with total numbers of positives and number of samples in parenthesis.
aManual systems; tube, tethered, pit, untethered, and carousel.
bAutomatic systems; robot.
cUntethered systems; pit, carousel, untethered, robot.
dWithin columns, and for manual/automatic and untethered systems respectively, the same letter (a–c) indicate a significant difference (p < 0.05).
eTethered systems; tube and tethered.

Abbreviations: PCR, polymerase chain reaction; STEC, shiga toxin-producing Escherichia coli.
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tested (FSAI, 2015), while a similar study in Italy isolated Campylobacter

from 6.4% of inline milk filters (Giacometti et al., 2012).

Stx genes were detected by PCR screening in 71% of the inline

milk filters analyzed in the present study. A similarly high proportion

has been reported in the United States, with 65% of inline milk filters

included in a nationwide survey testing positive for stx genes with

PCR (van Kessel et al., 2011). In contrast, a survey of milk filters in

Italy reported 8.4% prevalence of positive samples for stx genes

(Giacometti et al., 2012), which is much lower than the level detected

in the present study. PCR screening is a very sensitive method for

detecting stx genes, but has limitations such as lack of distinction

between viable or nonviable bacteria, whether the detection is made

on free-living phages from the environment, and whether the detec-

tion refers to other bacteria containing the stx genes (Krüger &

Lucchesi, 2015; Martínez-Castillo & Muniesa, 2014).

In this study, STEC was isolated from 14% of the inline milk filters

tested. Isolation of STEC from food is generally considered difficult, but

isolating STEC from unpasteurized milk is even more challenging due to

the high level of background flora (Jackson et al., 2012; Malorny,

Löfström, Wagner, Krämer, & Hoorfar, 2008). The isolation frequency

of STEC from the positive enrichment broths in the present study was

relatively high (20%) compared with that in other studies, in which iso-

lation rates of 9–12.5% have been reported (Giacometti et al., 2012;

Jackson et al., 2012; Malorny et al., 2008; Marozzi et al., 2016;

Vernozy-Rozand, Montet, Berardin, Bavai, & Beutin, 2005). The use of

immunoblotting as an isolation method is a contributing factor to the

high-isolation frequency of STEC from stx-positive enrichment broths.

However, immunoblotting is a laborious technique that cannot be per-

formed easily in routine analyses and is more suitable for surveys

where several samples can be analyzed together. When isolation was

performed, it was commonly found that only one stx gene was detected

in each inline milk filter, whereas the PCR analyses often resulted in

detection of combinations of more than one stx gene. This could indi-

cate that different STEC strains were present in the inline milk filter,

but only some of them could be isolated, or that PCR screening

detected nonviable bacteria or non-STEC bacteria that possess the stx

gene/s. Isolation of STEC is thus important to eliminate false positive

results from PCR screening and to allow characterization of the STEC

isolates, which can be an important factor in risk assessment and risk

management (FAO & WHO, 2018). This underlines the importance of

improving the methodology for isolation of STEC in food.

Data on the prevalence of STEC in unpasteurized milk in EU are

limited, due to the low number of reporting countries (EFSA, 2015).

Previous studies have reported absence or low prevalence of STEC

O157:H7 in unpasteurized milk or inline milk filters (FSAI, 2015;

Artursson et al., 2018; D'Amico et al., 2008; Hill et al., 2012; Oliver,

Boor, Murphy, & Murinda, 2009). Similarly, in the present study only one

STEC O157:H7 isolate was found, while STEC O145:H28 was the most

commonly detected serotype. However, the most common serotypes

found in Swedish human cases during 2016 were O26:H11, O103:H2,

O157:H7, O145:H28, and O121:H19 (Folkhälsomyndigheten, 2019). Of

these, the serotypes O157:H7, O26:H11, and O103:H2 were also

found in the present study. Three of the serotypes found in the

present study (i.e., O26:H11, O182:H25, and O157:H7) have also

been found in Swedish cases that have developed HUS

(Folkhälsomyndigheten, 2019).

The toxin Stx2 is more frequently associated with development of

HUS than the toxin Stx1 (EFSA, 2013; Nataro & Kaper, 1998). With

the classification of risk becoming more specific, Stx2a has recently

been shown to be associated with severe human illness more often

than other subtypes of Stx2 (FAO & WHO, 2018; Fuller, Pellino,

Flagler, Strasser, & Weiss, 2011; Russo, Melton-Celsa, & O'Brien,

2016). In the risk classification model for STEC developed by FAO

and WHO (2018), the risk is categorized based on virulence gene con-

tent. The highest level of risk (Level 1 of 5), which poses a risk of caus-

ing severe disease, is based on detection of the stx2a gene in

combination with the eae or aggR genes. In this study, 5.9% of the

sequenced isolates had stx2a in combination with eae (level 1) and

TABLE 4 Description of STEC serotypes found in inline milk
filters using whole genome sequencing

Serotype
Number
of samples Subtype stxa

Presence
of eae

O145:H28 5 stx1a +

O91:H21 2 stx1a, stx2a, stx2d −

O91:H21 1 stx2d −

O26:H11 2 stx1a +

O154:H31 2 stx1d −

O182:H25 2 stx1a +

O182:H25 1 stx2a +

O136:H12 1 stx2a −

O136:H12 1 stx1a −

O81:H21 1 stx2c, stx2d −

O84:H2 1 stx1a +

O8:H9 1 stx2c −

O185:H7 1 stx2c −

O185:H28 1 stx1a, stx2a −

O168:H8 1 stx2d −

O157:H7 1 stx2a, stx2c +

O113:H4 1 stx2d −

O109:H48 1 stx1a −

O109:H16 1 stx2a −

O103:H2 1 stx1a +

O103:H2/H45 1 stx1a +

O5/O8:H9 1 stx2c −

O5/O2:H27 1 stx2a −

O8/O22:H8/H19 1 stx2e −

O.N.T:H28b 1 stx1a +

O.N.T:H19b 1 stx2a −

Total number

of isolated STEC

34

Abbreviation: STEC, shiga toxin-producing Escherichia coli.
astx2f cannot be detected with the method used (ISO/TS 13136:2012).
bO.N.T serogroup not typable.
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15% had stx2d (level 2), which implies a significant risk of causing

severe illness.

Seasonal variations have been reported previously for both Cam-

pylobacter and STEC in cattle. For STEC, studies in Sweden and Scot-

land have reported higher prevalence in the cooler months of the year,

with a possible peak in autumn (Boqvist et al., 2009; Ogden, MacRae, &

Strachan, 2004). It has been suggested that the infection is less easily

transferred between animals or that the animals rid themselves more

easily of the pathogen during the summer grazing period (Boqvist et al.,

2009; Jonsson, Aspán, Eriksson, & Vågsholm, 2001). However, others

have reported a peak in STEC shedding in the warmer period of the

year (Edrington et al., 2004; Ekong, Sanderson, & Cernicchiaro, 2015;

Fernández, Rodríguez, Arroyo, Padola, & Parma, 2009). In the present

study, no correlation with sampling season was seen for isolated STEC,

but a significantly higher proportion of the autumn samples tested posi-

tive for stx genes. For Campylobacter, a peak in bovine shedding has

previously been reported to occur during the warmer time of year

(Grove-White, Leatherbarrow, Cripps, Diggle, & French, 2010; Nylen

et al., 2002). However, in the present study, a significantly higher pro-

portion of thermotolerant Campylobacter was detected in the spring

samples.

A previous study on STEC O157:H7 in the environment on Swed-

ish farms reported significantly higher prevalence of STEC O157:H7

on farms with a higher number of dairy cows (Widgren et al., 2015). In

the United States, a study of bulk tank milk and milk filters reported

higher prevalence of Campylobacter in dairy units with 100–499 cows

and >500 cows, compared with dairy units with 30–99 cows (Del

Collo et al., 2017). Similarly, in the present study, a positive correlation

was seen between higher number of animals per farm and proportion

of isolated Campylobacter and STEC in inline milk filters. Data from

Statistics Sweden show that there were 320,000 milk-producing cows

in Sweden in 2018 and that while the dairy cow population has

decreased by approximately 50% over the past 40 years, the propor-

tion of farms with more than 100 animals has increased (SCB, 2018b).

As the occurrence of both Campylobacter and STEC was found to be

higher in inline milk filters from farms with more than 100 animals,

this needs to be considered. In addition, the results showing a higher

proportion of STEC and Campylobacter in filters from farms with

untethered milking systems require monitoring, as many farms in Swe-

den are converting to untethered systems.

5 | CONCLUSIONS

This study showed that both Campylobacter and STEC can be present in

unpasteurized milk from Swedish farms. Thus, consumption of unpa-

steurized milk can increase the risk of exposure to foodborne pathogens.

This underlines the importance of applying control measures and providing

information in order to minimize the risk of infection among rawmilk con-

sumers. The most efficient measure to control foodborne pathogens in

milk is heat treatment prior to consumption.
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