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ABSTRACT
The effectiveness of antibiotics has been challenged by the increasing frequency of antimicrobial
resistance (AR), which has emerged as a major threat to global health. Despite the negative
impact of AR on health, there are few effective strategies for reducing AR in food-producing ani-
mals. Of the antimicrobial resistant microorganisms (ARMs), extended-spectrum b-lactamases
(ESBLs)-producing Enterobacteriaceae are an emerging global threat due to their increasing
prevalence in livestock, even in animals raised without antibiotics. Many reviews are available for
the positive selection of AR associated with antibiotic use in livestock, but less attention has
been given to how other factors including soil, water, manure, wildlife, and farm workers, are
associated with the emergence of ESBL-producing bacteria. Understanding of antibiotic resist-
ance genes and bacteria transfer at the interfaces of livestock and other potential reservoirs will
provide insights for the development of mitigation strategies for AR.
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Introduction

Antimicrobial resistance (AR) is defined as “the resist-
ance of a microorganism to an antimicrobial drug to
which it was previously sensitive so that the standard
treatments become ineffective and infections persist
and may spread to others” (Demerec 1948; Alanis
2005). AR is one of the fundamental challenges affect-
ing public health, claiming 23,000 estimated deaths
annually and an approximate $55 billion/year in overall
societal costs in the United States (US) alone (CDC
2013; Demirjian et al. 2015). The World Health
Organisation (WHO) published a list of the most critical
antimicrobial resistant microorganisms (ARMs) against
which new antibiotics need to be developed urgently
(WHO 2017). Among the ‘Highest Priority’ pathogens,
extended-spectrum b-lactamases (ESBLs)-producing
Enterobacteriaceae were identified as an emerging glo-
bal threat due to their increasing prevalence in

livestock in recent years after being mainly identified in
human medicine in the past (Enoch et al. 2012; Reuland
et al. 2013).

ESBLs can hydrolyse expanded-spectrum cephalo-
sporins, including cefotaxime, ceftriaxone, ceftazidime,
or cefepime and monobactams. More than 1,000 ESBL
variants are known, including SHV, TEM, OXA, and CTX-
M types, with more expected to be identified in the
future (Allen et al. 2010; Jia et al. 2017). During the
1990s, the TEM- and SHV-b-lactamase families carried
by Klebsiella pneumoniae and Escherichia coli were the
main members of ESBLs (Coque et al. 2008). In recent
years, the geographical distribution of ESBL-producing
bacteria has increased dramatically, and ESBLs have
been identified in other bacteria including K. pneumo-
nia, E. coli, Acinetobacter calcoaceticus, Agrobacterium
tumefaciens, Ochrobactrum spp., and Pseudomonas ple-
coglossicida, encoding blaSHV, blaCMY, blaVEB, blaOXA-2,
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blaTEM, and blaCTX-M genes (Zhou et al. 2015; Mir et al.
2016). In particular, the incidence of CTX-M type ESBLs
has increased significantly during the past decade.
A prototype of CTX-M type ESBLs has been found to
originate from environmental bacteria Kluyvera species
(Bevan et al. 2017). Most ESBL-producing bacteria
encode the ESBL genes on plasmids facilitating the
rapid spread through horizontal gene transfer (HGT)
between bacteria, but recent findings indicate that the
blaCTX-M genes are also encoded in chromosomal DNA
(Teng et al. 2019).

The emergence of ESBL-producing bacteria
in animals

The prevalence of ESBL-producing bacteria in swine
farms has been reported to range from approximately
10% to 45%, and E. coli was the major ESBL producer
(Geser et al. 2011; Randall et al. 2014; Li et al. 2015;
Sabia et al. 2017; Liu et al. 2018). The most prevalent
ESBL gene type at swine farms was blaCTX-M, while other
b-lactamase genes such as blaCMY-2 blaTEM, blaSHV,
blaOXA, blaKPC, and blaDHA were also identified (Dahms
et al. 2015; Shin et al. 2017; Chah et al. 2018; Liu et al.
2018). Recently, the mcr-1 gene, which was first identi-
fied in China (Liu et al. 2016), was identified along with
ESBL genes in the plasmid DNA in swine farms (Shafiq
et al. 2019). E. coli isolates from cloacal and nasal swabs
of swine in China were investigated, and 39.59% (78/
197) of the E. coli isolates carried both mcr-1 and ESBL
genes (blaCTX-M, blaSHV, and blaTEM) (Shafiq et al. 2019).
Similarly, nine isolates out of 24 ESBL-producing E. coli
from the rectal swabs of swine on farms and slaughter-
house were positive with mcr-1 gene (Malhotra-Kumar
et al. 2016). Ji et al. reported 14% (4/28) prevalence of
ESBL-producing E. coli encoding mcr-1 gene as well (Ji
et al. 2019).

In the case of poultry, there are many studies investi-
gating the occurrence of ESBL-producing bacteria, par-
ticularly in the entire broiler production pyramid
(Nilsson et al. 2014; Zurfluh et al. 2014; Apostolakos
et al. 2019; Dame-Korevaar et al. 2019; Oikarainen et al.
2019). The prevalence of ESBL-producing bacteria is dif-
ferent depending on the levels of broiler production
pyramid. For instance, a high prevalence of ESBL and
plasmid mediated AmpC-type cephalosporinase-pro-
ducing E. coli was found in broiler parent flocks (92.5%,
95%CI 72.1–98.3%), which decreased to 20% (95%CI
12.9–29.6%) during the laying period (Apostolakos et al.
2019). The prevalence increased again to 69.2% (95%CI
53.6–81.3%) at the start of the production cycle in the
fattening broilers, then dropped to 54.2% (95%CI

38.9–68.6%) in the last sampling right before slaughter
(Apostolakos et al. 2019). Similarly, in Denmark,
broiler parent flocks showed higher prevalence of
ESBL-producing E. coli than broiler flocks (93.0 and
27.0%, respectively) (Agerso et al. 2014). In addition,
broiler production practices (i.e., conventional or
organic farms) can affect the prevalence of multi-drug
resistant E. coli on eggshells (95% in conventional barns
and 30% in organic farms, p< 0.05) (Dame-Korevaar
et al. 2019) and chicken meats (100% on conventional
and 84% on organic samples, p< 0.001) (Cohen Stuart
et al. 2012). The majority of ESBL-producing bacteria in
poultry farms was E. coli and Salmonella spp., and CTX-
M was the most predominant ESBLs, while SHV and
TEM were also reported (Saliu et al. 2017).

Cattle also appear to be an important reservoir of
ESBL-producing bacteria among food-producing ani-
mals, with the increasing detection of these bacteria in
cattle (Mir et al. 2018; Tymensen et al. 2018). ESBL-pro-
ducing bacteria have been isolated from cattle in the
US, Germany, France, and Asian countries including
China, Japan, and Korea (Duan et al. 2006; Moon et al.
2007; Hiroi et al. 2012; Zheng et al. 2012; Schmid et al.
2013; Haenni et al. 2014; Mir et al. 2018). For example,
in Switzerland, two independent studies showed 17.1%
and 8.4% prevalence of ESBL-producing bacteria in the
gastrointestinal tract of healthy cattle at abattoirs, pri-
marily E. coli (Geser et al. 2011). In Taiwan, 42.2% of
E. coli isolates from beef carcases produced ESBLs, with
blaCTX-M-1 and blaCTX-M-9 as the most commonly identi-
fied ESBL genotypes (Chen et al. 2017).

Recent findings propose another pillar of ESBL emer-
gence. Beef cattle raised without antibiotics on pasture
had a 15.8% prevalence of cefotaxime resistant bacteria
(CRB) (Mir et al. 2016). Cefotaxime is frequently used to
select ESBL-producing bacteria due to its strong anti-
microbial activity against non-ESBL-producing bacteria
(Eliopoulos and Bush 2001). All CRB isolates contained
blaCTX-M genes as the predominant ESBL gene, and over
70% of the isolates carried more than two ESBL genes
and 35% harboured more than three ESBL genes such
as blaSHV (13%), blaOXA-2 (39%), and blaVEB (30%) (Mir
et al. 2016). Mir et al. (2018) also showed that the
majority of the cattle (92%) during the first year of life
had become colonised by CRB at least once (Mir et al.
2018). Cattle raised in cow/calf operation systems on
pasture with limited use of antibiotics to occasional
treatment carried CRB, although the prevalence was
relatively low, 47.4%, compared to the prevalence of
CRB in feedlot (83%) (Noyes et al. 2016; Markland et al.
2019). Furthermore, genetically similar ESBL-producing
E. coli have been isolated in various hosts around the
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world (Teng et al. 2019). These observations suggest
that AR in livestock can arise through various environ-
mental pathways, even in the absence of anthropo-
genic antibiotic use (Li et al. 2015; Mir et al. 2016).
There have been a number of reviews that have looked
at the positive correlation between antibiotic use in
livestock and the emergence of ARMs (Oliver et al.
2011; Landers et al. 2012; Andersson and Hughes 2014;
Tang et al. 2017), while reviews on environmental fac-
tors adjacent to pastures and grazing area (e.g., the
interface of wildlife and livestock, soil, and surface
water) are limited. In this review, we focus on

occurrence and transmission of ESBL-producing bac-
teria at the interface of food-producing animals, espe-
cially cattle, and the surrounding environment
(Table 1).

Potential sources of ESBL-producing bacteria
in the environment

Soil

The soil has various natural antimicrobials, and the anti-
biotic residues in soil contaminated from animal
manure, wastewater, and other sources, may serve as

Table 1. Reported occurrences of ESBL-producing bacteria in livestock-related environmental niches.
Source Effects Reference

Soil
Soil near farm 18.3% of ESBLs (22/120) in soil located cattle farms (Hartmann et al. 2012)
Intensive, extensive and organic soils A positive correlation between AR and intensive soil (Jones-Dias et al. 2016)
Undisturbed area Isolation of the bacteria resistant to extended-spectrum b-lactams

without selective pressure
(Upadhyay et al. 2016)

Manure
Cattle manure A higher frequency of resistant bacteria in manure-amended soil (Udikovic-Kolic et al. 2014)
Dairy cow manure Identification of the multiple resistance genes including a novel clade

of resistant gene
(Wichmann et al. 2014)

Cattle, swine, and chicken manure Higher concentration of the veterinary antibiotic residues in swine and
chicken than cattle manure

(Hou et al. 2015)

Water
Water supply in farm Isolation of the ESBL-producing E. coli carrying TEM and CMY-2 genes

(6/116, 5%)
(Hinthong et al. 2017)

Drinking water in a cattle pen ESBLs, carbapenemase, and unique ARGs in the water trough (Noyes et al. 2016)
Surface/wastewater A higher prevalence of ESBLs in wastewater than surface water (27%

(9/33) and 6.2% (7/113))
(Blaak et al. 2015)

Surface/wastewater Higher ESBLs in wastewater than surface water (42.1% (24/57) and
1.7% (1/57))

(Said et al. 2016)

Surface water High prevalence of ESBLs in surface water (Zurfluh et al. 2013; Haque
et al. 2014)

Air
Cattle farms Isolation of a multidrug-resistant strain in both inside and outside air (Navajas-Benito et al. 2017)
Swine farms Occurrence of ESBL-producing E. coli from inside and outside air of the

swine farms
(Gao et al. 2015)

Broiler farms Fecal and airborne transfer of ESBL-producing bacteria (Laube et al. 2014)
Wild animals

Songbirds on dairies 5.1% prevalence of CTX-M gene in wild songbirds on Ohio dairies (Mathys et al. 2017)
Coastline birds 14% of prevalence of ESBLs in wild birds from Miami Beach, Florida (Poirel et al. 2012)
Wild birds A higher prevalence of ESBLs in cattle egret than other wild birds (Hasan et al. 2016)
Flies ESBL-producers from 9.1% of flies (123/1346) in urban and rural areas (Schaumburg et al. 2016)
Flies Isolation of ESBL-producing E. coli in flies at poultry farms (10.5%, 2/

19) and cattle farms (12%, 20/159)
(Blaak et al. 2014; Usui

et al. 2013)
Others Investigation of diverse wild animals as important carriers of ESBLs (Nhung et al. 2015; Crist�ov~ao

et al. 2017; Garcês et al. 2019;
Schaufler et al. 2018; Wasyl
et al. 2018)

Human
Human in a livestock-dense area Identification of risk factors for ESBL/AmpC transmission (Wielders et al. 2017)
Farmers Identical MLST and CTX-M gene between human and cattle isolates

from the same farm
(Dahms et al. 2015)

Farm workers Isolation of ESBL-producing E. coli from cattle and farm workers (Tamang et al. 2013)
Farm workers Similar ESBL gene types and identical MLST and plasmid types

between human and pig isolates within the same farm
(Dohmen et al. 2015)

Slaughterhouse workers Association between the job title in the slaughterhouse and the
prevalence of ESBL-E. coli in human

(Dohmen W et al. 2017b)

Others
Dust from a cattle farm ESBL-producing E. coli from 15.4% (18/117) of dust from mixed and

beef cattle farms
(Schmid et al. 2013)

Feed mixer, animal feed, bedding ESBL-producing E. coli from water trough, feed mixer, feed, and
bedding in dairy farms contained

(Braun et al. 2016)
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antimicrobial selective pressure to bacteria and develop
antibiotic resistome (Riesenfeld et al. 2004; Torres-
Cort�es et al. 2011; Udikovic-Kolic et al. 2014; Jones-Dias
et al. 2016; Tripathi and Cytryn 2017), such as CTX-M
type ESBLs from Kluyvera spp. (Bevan et al. 2017). The
prevalence of ESBL-producing bacteria as measured by
screening for blaCTX-M genes using a real-time PCR
method, was 18.3% (22/120) in soil samples obtained
from Burgundy region in France, where beef cattle
farms are densely located (Hartmann et al. 2012). In
another study, soils in intensive agricultural practices
(large inputs of pesticides) had the highest prevalence
of ESBL-producing E. coli compared to soils in extensive
(small inputs of pesticides) and organic (no inputs of
pesticides) practices, showing that soil types can affect
the prevalence of ESBL-producing bacteria (Jones-Dias
et al. 2016). Although the anthropogenic impacts are
critical to accelerate the occurrence of ARMs in soil, soil
samples collected from undisturbed areas with no
human activity and no antimicrobial selective pressure
still contained ARMs, including AmpC b-lactamases
(encoded on chromosome)- and ESBL-producing iso-
lates (Upadhyay et al. 2016). In a similar study, novel
and ancient b-lactam resistance determinants were
found in the absence of selective pressure in areas of
no anthropogenic activity in Alaska, suggesting that soil
microbiota can contribute to the development of AR
naturally (Allen et al. 2009). However, the occurrence of
AR in remote areas and animal farm soils might be dif-
ferent, because AR in pristine areas is caused by natur-
ally existed microorganisms without anthropogenic
impacts, while most of the soil in farm environment is
easily influenced by human activities. Furthermore, CRB
prevalence in the gastrointestinal tract of cattle which
were pasture-grazed was positively associated with the
relative abundance of gamma-proteobacteria, a major
antibiotic producer, in soil samples (Markland et al.
2019), suggesting that CRB may transmit at the inter-
face of cattle and soil, and further studies will be neces-
sary to understand the directionality of AR transmission
between soil and cattle.

Water

ESBL-producing bacteria has been also found in water
resources proximal to farm environment. A total of six
E. coli isolates carrying blaTEM and blaCMY-2 genes (6/
116, 5%) were obtained from 35 water samples used for
drinking and washing dairy cattle in Thailand (Hinthong
et al. 2017). In a similar study, water in beef cattle pens
contained the ESBL and carbapenemase genes, and
unique antimicrobial resistance genes (ARGs),

suggesting that water in cattle farms could be another
source of ESBL-producing bacteria (Noyes et al. 2016).
Wastewater from sewage treatment plants and from
hospitals have a higher predominance of ESBL-produc-
ing bacteria compared to surface water (rivers, canals,
rivulets, lakes and the North Sea) in the Netherlands
(Blaak et al. 2015) and similar results were obtained in
another study in Tunisia, where wastewater had more
ESBL-producing bacteria than surface water, 42.1% (24/
57) vs. 1.7% (1/57) (Said et al. 2016). On the other hand,
surface water in Switzerland (rivers and lakes) and in
Bangladesh (lake) showed higher prevalence, 36.2%
(21/58) and 75% (3/4), respectively (Zurfluh et al. 2013;
Haque et al. 2014). There is also evidence showing the
high prevalence of ESBL-producing K. pneumoniae at all
stages of hospital sewage treatments (Prado et al.
2008). Substantial studies showed the presence of
b-lactam resistance genes including blaTEM, blaIMP, and
blaOXA-2 derivatives in sewage sludge in Europe
(Tennstedt et al. 2005; Henriques et al. 2006; Mesa et al.
2006). Sewage sludge can provide ideal conditions for
HGT because of high concentrations of bacteria (Gaze
et al. 2011). Since the wastewater contributes to the
presence of ARMs in surface water (Blaak et al. 2015)
and soil through irrigation (Negreanu et al. 2012) and
flooding (Devarajan et al. 2016), cattle grazing on pas-
ture might be exposed to ESBL-producing bacteria by
wastewater directly or indirectly.

Air

The aerosols in animal farms can harbour diverse
microbes and microbes in farm animals can be associ-
ated with them (Yuan et al. 2010). The air collected
from different points inside cattle farms and outside
surroundings has been shown to contain TEM-1 pro-
ducing E. coli isolates and the isolates harboured other
resistance genes like sul1, sul2, tet(A), and tet(B)
(Navajas-Benito et al. 2017). Airborne ESBL-producing
isolates were reported from swine and broiler chicken
farms. Gao et al. (2015) reported that three out of four
swine farms contained ESBL-producing bacteria in the
air. ESBL-producing Enterobacteriaceae was detected in
stable air samples from the pig farms (6/35) at the
German-Dutch border region (Schmithausen et al.
2015). Similarly, 6% (2/36) ambient air samples in the
vicinity of the pig barns and 9.5% (6/63) air samples
inside the barn contained ESBL/AmpC-producing E. coli
(von Salviati et al. 2015). In broiler chicken farms, air
from inside and outside of the farms had a prevalence
of ESBL-producing E. coli of 16% (10/63) and 7.5% (3/
40), respectively (Laube et al. 2014). Huijbers et al.
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(Huijbers et al. 2016) isolated ESBL/AmpC-producing
E. coli in air samples on an organic broiler farm as well.
The presence of ESBL-producing bacteria in the air sug-
gests that inhalation of contaminated air might provide
another transmission route, contributing to the preva-
lence of ESBL-producing bacteria in farm animals
(Dohmen et al. 2017a).

Manure, farm environment and waste

In the US, about 14 million kilograms of antibiotics,
approved for use in food-producing animals, were sold
in 2016 (FDA 2017) and approximately 6.8 million tons
of animal manure (FAO 2018) were spread onto pasture
for forage and silage production as well as agricultural
fields as a fertiliser to provide nutrients to crops and to
improve soil quality. Therefore, continuous selective
pressure by antibiotic residues in the treated soil may
facilitate the acquisition of novel ARGs by the microor-
ganisms. Soil treated with cattle manure has a higher
abundance of b-lactam resistant bacteria than
untreated soil, showing manure-amended soil could
include more ARMs (Udikovic-Kolic et al. 2014). The
resistome of cow manure including b-lactam, phenicol,
aminoglycoside, and tetracycline resistance genes,
showed a low identity of protein sequences against
known reference genes, suggesting manure may carry
various novel ARGs (Wichmann et al. 2014). Because of
the residues of antimicrobials in cattle manure, animal
manures may have a relatively higher prevalence of
ARMs compared to other reported reservoirs in farm
environments (Hou et al. 2015). In addition to manure,
barn dust collected from cattle farms carried ESBL-pro-
ducing E. coli (15.4% prevalence) (Schmid et al. 2013).
Also, feed mixer, animal feed, and bedding in dairy
farms were also shown to contain ESBL-producing
E. coli (Braun et al. 2016), suggesting these bacteria are
ubiquitous. A total of 56 environmental samples includ-
ing water trough, feed, and bedding showed a preva-
lence of ESBL-producing E. coli as high as 28.6% (Braun
et al. 2016). Isolates from the feed mixer and animal
feed carried blaCTX-M-15 and blaTEM genes, and isolates
from bedding had blaCTX-M-15, blaTEM, and blaOXA-1
genes (Braun et al. 2016).

Wildlife as potential reservoirs of ESBL-
producing bacteria

Wildlife carry ARMs in a wide range of habitats, and
they can affect the transmission dynamics of ARMs at
the livestock-wildlife interface (Greig et al. 2015;
Vittecoq et al. 2016). Although wildlife is not treated

with antibiotics intentionally, they can acquire ARMs
from a contaminated environment or natural resistome
(Carroll et al. 2015; Swift et al. 2019), transferring the
ARMs to livestock or vice versa via direct and indirect
contacts through the use of shared resources such as
pasture, water, or soil (Wiethoelter et al. 2015). Previous
studies have highlighted the importance of wildlife,
especially migratory birds as important agents of the
ARM prevalence and spread (Greig et al. 2015). Birds
can cover long distance during the migration season
and they could potentially spread ARMs globally (Alcal�a
et al. 2016). One study reported 3% and 5.1% preva-
lence of bacteria encoding the blaCMY or blaCTX-M genes
in wild songbirds on Ohio dairies, respectively (Mathys
et al. 2017). Wild coastline birds (seagulls and pelicans)
in Miami Beach, Florida had 14% prevalence of ESBL-
producing bacteria (Poirel et al. 2012). Hasan et al.
(2016) reported that the prevalence of ESBL-producing
E. coli and K. pneumoniae was 8% in wild birds. The iso-
lates from different sources were closely related to each
other according to the ERIC-PCR data (Hasan et al.
2016). Interestingly, Hasan et al. (2016) reported that
among five different bird species evaluated, cattle
egrets, which forage at the feet of grazing cattle,
showed the highest prevalence of ESBL-producing bac-
teria, suggesting a high probability of transmission of
ARMs between birds and cattle in the environment
where they co-inhabit (Hasan et al. 2016). Other wildlife
including wolves, seabreams, lynxes, wild boars, foxes,
deers, bats, and rodents can also be potential reservoirs
of ESBL-producing bacteria (Nhung et al. 2015;
Crist�ov~ao et al. 2017; Schaufler et al. 2018; Wasyl et al.
2018; Garcês et al. 2019). In addition, flies near livestock
have been shown to carry ESBL-producing bacteria (dos
Santos Alves et al. 2018). Out of 1346 single flies
obtained from an urban and rural area in Germany, 123
flies had ESBL producers (9.1% prevalence)
(Schaumburg et al. 2016). Flies at poultry farms had a
10.5% prevalence of ESBL-producing E. coli (2/19) and
houseflies and barn flies obtained from a cattle barn
showed 10% prevalence (Usui et al. 2013; Blaak
et al. 2014).

ESBL-producing bacteria in livestock
farm workers

In the Netherlands, 2432 adults, who have lived in a
livestock-dense area, were investigated to understand
the risk of neighbouring residents regarding the car-
riage of ESBL-producing bacteria (Wielders et al. 2017).
4.5% (109/2432) of the adults carried ESBL- or
AmpC-producing bacteria. Interestingly, keeping cows
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recreationally was one of the identified risk factors for
colonisation with ESBL-producing bacteria (Wielders
et al. 2017). Among the general population, farmers
closely exposed to livestock and contacted animals
directly had increased chances of transmission of ARMs
(Klous et al. 2016). In Germany, faeces from farmers (5/
73) and pig (15/17), cattle (6/11), and poultry (3/6) car-
ried ESBL-producing E. coli. Five farmers (3 from cattle
farms and 2 from pig farms) harboured ESBL-producing
E. coli, showing 6.8% prevalence and one human isolate
had the same multi-locus sequencing typing (MLST)
(ST3891) and blaCTX-M allele as did cattle isolates from
the same farm (Dahms et al. 2015). ESBL-producing
E. coli have also been isolated from farm workers in
Korea (Tamang et al. 2013) and Netherland (Dohmen
et al. 2015; Dohmen et al. 2017a). The prevalence of
ESBL-producing E. coli in human was significantly asso-
ciated with job title (e.g., stable work, stabbing, dehair-
ing, removal of organs, refrigeration, packaging, and
expedition) in the abattoir, indicating the frequency of
exposure to livestock enhance the transmission of
ESBL-producing bacteria between human and livestock
(Dohmen et al. 2017b). Therefore, understanding the
role of animal carriage might be one of the key factors
in understanding the prevalence of ESBL-producing
bacteria in humans.

The movement of resistant bacteria and ARGs

Resistance genes can be transferred to other bacteria,
even within a distantly related genus, through HGT with
mobile elements such as bacteriophages, plasmids, and
transposons (Andersson and Hughes 2010). However,
due to the magnitude and complexity of the transmis-
sion and natural occurrence of ARMs at the interfaces,
the process by which resistance is transferred between
cattle and the environment within the food-animal pro-
duction systems is poorly understood (Horigan et al.
2016). In this section, we summarise several studies
which reported HGT and clonal transmission of ARMs
between livestock and the environment to build a basic
understanding of the transmission dynamics of ESBL-pro-
ducing bacteria to postulate possible routes for colonisa-
tion of these bacteria in the gastrointestinal tract of
cattle raised without antibiotic use.

Horizontal gene transfer among bacteria at the
environmental interface

The presence of antimicrobial residues or high-density
and high-complexity environments accelerates HGT
among bacteria resulting in the spread and sharing ARGs

at the interfaces of livestock, human, and the environ-
ment (Andersson and Hughes 2014; Fletcher 2015; von
Wintersdorff et al. 2016; Sommer et al. 2017). Among
HGT mechanisms, conjugation is the most common
mechanism to spread ARGs among bacteria. Most ARGs
are located on mobile genetic elements (MGEs), which
help ARGs transfer among bacteria (Karkman et al. 2018).
HGT has been reported in a diverse environment (von
Wintersdorff et al. 2016), including soil bacteria and
human pathogens that share ARGs and flanking regions
of the ARGs (Forsberg et al. 2012). The identified ARGs in
soil were relevant to b-lactams, aminoglycosides, amphe-
nicols, sulphonamides, and tetracyclines, and those ARGs
had a high identity with those found in clinical patho-
gens (Forsberg et al. 2012). Moreover, Nesme et al. (2014)
found ARGs from different environments (soil, ocean, and
human faeces), and showed soil and human faeces
shared ARGs (24/94), suggesting that genes flow between
these environments (Nesme et al. 2014). Also, several
MGEs such as conjugative plasmids including incompati-
bility groups (Inc) F, A/C, N, HI2, I1, and K with specific
insertion sequences (IS) such as ISEcp1 and ISCR1 ele-
ments are frequently reported with ESBLs (Ali et al. 2016;
Irrgang et al. 2017, 2018), indicating these IS elements
are strongly associated with independent acquisition of
the ESBL genes. IncN plasmids encoding CTX-M-1 have
been found in bacteria isolated from pigs, farmers, and
farm environments, such as manure and air, indicating
the spread of conjugative IncN plasmids with blaCTX-M
genes among pigs, farmers, and surroundings (Moodley
and Guardabassi 2009). Similarly, distinct plasmids with
the ESBL genes were shared between farm animals (pig
and poultry) and humans (de Been et al. 2014). Lifshitz
et al. (Lifshitz et al. 2018) reported that cattle and com-
munity derived isolates were related to each other in
sharing CTX-M-15 and its surrounding MGEs (Tn3 or
IS1380 families) (Lifshitz et al. 2018). Another study
showed that ESBL-producing E. coli isolates from cows
were carrying CTX-M-15 flanked with ISCR1 elements (Ali
et al. 2016). ISEcp1–CTX-M-1–Dorf477, was identified
regardless of plasmid origins such as human, cattle, and
swine, demonstrating MGEs are critical units to spread
ARGs among different environments (Jakobsen et al.
2015). ISEcp1 elements are also known to increase expres-
sion levels of ESBLs by providing a promoter at the
upstream of the ESBL genes (Vandecraen et al. 2017).

Clonal transmission of ESBL-producing bacteria at
the interfaces

The intersected sequencing types (STs) across human
and animal populations and the environment were

6 S. LEE ET AL.



identified in Tanzania. ESBL-producing E. coli ST38,
ST131, and ST2852 were isolated across these three
interfaces, showing dissemination of clonal isolates
regardless of the original sources (Seni et al. 2018). In
another study, molecular relatedness between ESBL-
producing isolates from human and animal populations
was substantially close (Dorado-Garc�ıa et al. 2018).
Dorado-Garc�ıa et al. (2018) conducted a meta-analysis
of ESBL-producing isolates from 35 studies in the
Netherlands to understand major ESBL gene types, plas-
mid replicons, and E. coli STs using proportional similar-
ity index (PSIs) and principal component analysis (PCA).
Isolates from humans who live near farms showed
higher similarity to the isolates from their animals
including broilers and pigs, whereas isolates from
humans in the general population were similar with
human clinical samples, surface, and sewage water, and
wild birds (Dorado-Garc�ıa et al. 2018). Dahms et al.
(2015) reported that farm workers, who contacted live-
stock frequently, carried identical ST with cattle isolates,
indicative of zoonotic transfer of ESBL-producing bac-
teria between humans and their animals. Similarly, uro-
pathogenic ESBL-producing E. coli from diverse sources
(livestock, human, surface water, and food) shared ST10
carrying CTX-M-1 (M€uller et al. 2016). In poultry farms,
the ESBL-producing E. coli isolates from all parasitic bird
flies, and excreted manure carried identical ST with the
blaTEM-52 gene, suggesting a clonal transfer between
flies and birds happening at the poultry farms (Blaak
et al. 2014). Bui et al. (Bui et al. 2018) found identical
strains, based on genotyping using pulsed-field gel
electrophoresis (PFGE), among chickens in the same
farms. The isolates carried blaCTX-M-55 and blaCTX-M-65 in
common, suggesting bird-to-bird transmission (Bui
et al. 2018). Furthermore, ESBL-producing E. coli isolates
from faeces, and farm air in broiler chicken farms were
clonal variants, suggesting the ESBL-producing E. coli
from broiler farms can spread to the surrounding envi-
ronments and beyond (Laube et al. 2014). The indistin-
guishable ESBL genes, plasmids, and ST of ESBL-
producing E. coli isolates were identified from retail
chicken meat and humans, suggesting the potential
transmission of ARMs in food production systems as
well as in wildlife areas (Leverstein-van Hall et al. 2011).

Needs for high-resolution analysis of ESBL
transmission

Many studies have shown transmission of ARMs
between livestock and surroundings, but most studies
used low-resolution techniques, such as PFGE, PCR-
based genotyping technologies, and MLST, to evaluate

genetic similarity to conclude gene or bacterial trans-
mission at the interfaces. However, pan-genome based
single nucleotide polymorphism (SNP) analysis has pro-
vided high-resolution tools to verify whether isolated
strains at the interfaces are truly clonal variants or not
(Bekal et al. 2016). Not surprisingly, isolates defined as
the same strains by low-resolution techniques were
found to be non-clonal variants (Knudsen et al. 2017;
Guo et al. 2018). In our recent study (Teng et al. 2019),
strains belonging to the same ST with an identical pro-
file of virulence genes did not cluster together in a
phylogenetic tree. To overcome the issues raised by
low-resolution techniques, the GenomeTrakr network
has been created by the Food and Drug Administration
(FDA) to track pathogens that caused foodborne out-
breaks, by comparing variant SNPs in the whole
genomes of the isolated strains (Wang et al. 2016).
However, there are still limited studies showing ESBL
transmission by applying whole genome sequencing
(WGS). Schaufler et al. showed the interspecies trans-
mission of ESBL-producing E. coli ST410 through SNP
analysis (Schaufler et al. 2016), showing a small number
of SNPs (45 total SNPs, 8.6 SNPs/Mbp) between isolates
from wild mute swan and humans. Furthermore, human
isolates were closely related with avian and dog isolates
with 24 and 29 SNPs, respectively (Schaufler et al.
2016). Similarly, Ma et al. identified identical plasmid
groups, IncFIB and FII, and similar virulence factors in
intrauterine pathogenic E. coli (IUPEC) strains from dif-
ferent dairy cows using WGS (Ma et al. 2018). However,
the IUPEC strains were not clonal variants by phylogen-
etic tree analysis of whole genomes, revealing no ani-
mal to animal transmission of IUPEC (Ma et al. 2018).
Therefore, we propose that accurate and correct under-
standing of gene and ARM transmission using high-
resolution tools such as WGS is pivotal to identify trans-
mission origin and route of ESBL-producing bacteria at
the interfaces of livestock and the environment.

Mitigation for antibiotic resistance

Total elimination of AR is an impossible task, but effect-
ive strategies would slow down the development of
new types of AR and its spread (Livermore et al. 2006).
Antimicrobial stewardship for the selection, dosage,
and duration of antimicrobial treatment is critical to
reduce AR occurrence in the livestock industry (Ma
et al. 2019). Efforts to control ARM transmission at the
interfaces of livestock and environment would be
extremely challenging due to the range of factors
involved in the transmission of ARMs. To reduce the
occurrence and acquisition of ARMs via multiple
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sources as has been discussed here, critical control
points, where transmission of ARMs between livestock
and environment is expected or occurring, should be
identified and managed effectively (Berendonk et al.
2015). Good farming management such as improved
farm hygiene and biosecurity can become one way to
decrease the prevalence and concentration of ARMs in
livestock (Markland et al. 2019). For example, the fre-
quency of cleaning drinking water troughs was nega-
tively associated with the prevalence of ARMs and the
presence of quarantine programmes in farms, and bur-
ial/burning of deceased animals were related to the
reduction of ARMs detection in cattle (Markland et al.
2019). A better understanding of interactions among
microbiological, animal and environmental factors
would provide insights into predicting the occurrence
of ARMs and the creation of novel management strat-
egies. In addition, the transmission rates of ARMs via
different vehicles or sources need to be quantified, and
modelling of transmission should be developed with

such results to evaluate the risks of transmission at the
interfaces and colonisation of ARMs in hosts. There are
still data gaps to quantify the relative contribution of
each factor responsible for ARMs transmission in the
beef cattle industry (Horigan et al. 2016), indicating the
urgency of collecting ecological and epidemiological
data for mitigation of AR. Currently, there are available
alternatives to antibiotics, such as prebiotics and probi-
otics, phage therapy, vaccines, antimicrobial peptides,
antimicrobial polymers, and combination of synergistic
antibiotics (Ma et al. 2019), although the effectiveness
of these methods are not fully evaluated. Development
and application of better AR mitigation strategies will
be needed to reduce the risks of AR.

Conclusions

Multi-drug resistant pathogens are a major threat to
global public health due to the increasing frequency of
antimicrobial resistance and reducing efficacy of

Figure 1. Potential transmission routes of the ESBL genes and ESBL-producing bacteria at the interfaces of livestock and the
environment. ESBL-producing bacteria in livestock can naturally occur and transmit through the environmental sources, such as
manure, soil, water, air, wildlife, and human (especially farm workers) by horizontal gene transfer of the ESBL genes in chromo-
somal DNA and on plasmids medicated by IS elements or bacterial transmission.
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antibiotics. The lack of fully understanding of how
ESBLs-producing Enterobacteriaceae are arising at the
interfaces of livestock, wildlife, and the environment
(Figure 1), inhibits our ability to develop mitigation
strategies. Quantitative mathematical modelling of risks
of ARG/ARM transmission may help identify control
points at the interfaces. High-resolution technologies
may be required to accurately identify ARM transmis-
sion pathways, in order to facilitate tracking of the
causative pathogens in outbreak settings. There is lim-
ited information available to determine the critical nat-
ural carrier/reservoir of ESBL-producing bacteria.
Effective mitigation strategies such as farm manage-
ment, biosecurity, and hygiene might facilitate the
reduction of ESBL-producing bacteria in livestock. New
strategies are needed to combine knowledge of the
environmental, animal, and bacterial aspects to tackle
this global issue.
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