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Treated wastewater (TW) and roof-collected rain water (RW) that meet the required

microbial quality as per Food Safety Modernization Act (FSMA) regulation may serve

as alternative irrigation water sources to decrease the pressure on the current water

scarcity. Alternative water sources may have different water characteristics that influence

the survival and transfer of microorganisms to the irrigated produce. Further, these

water sources may contain pathogenic bacteria such as Shiga-toxigenic Escherichia

coli. To evaluate the risk associated with TW and RW irrigation on the fresh produce

safety, the effect of TW and RW irrigation on the transfer of two non-pathogenic

E. coli strains as surrogates for E. coli O157:H7 to different lettuce cultivars grown

in the field was investigated. Lettuce cultivars “Annapolis,” “Celinet,” and “Coastline”

were grown in the field at the Fulton farm (Chambersburg, PA). Approximately 10

days before harvest, lettuce plants were spray-irrigated with groundwater (GW), TW,

or RW containing 6 log CFU ml−1 of a mixture of nalidixic acid-resistant E. coli

O157:H12 and chloramphenicol-resistant E. coli K12 in fecal slurry as non-pathogenic

surrogates for E. coli O157:H7. On 0, 1, 3, 7, and 10 days post-irrigation, four

replicate lettuce leaf samples (30 g per sample) from each group were collected

and pummeled in 120ml of buffered peptone water for 2min, followed by spiral

plating on MacConkey agars with antibiotics. Results showed that the recovery

of E. coli O157:H12 was significantly greater than the populations of E. coli K12

recovered from the irrigated lettuce regardless of the water sources and the lettuce

cultivars. The TW irrigation resulted in the lowest recovery of the E. coli surrogates

on the lettuce compared to the populations of these bacteria recovered from the

lettuce with RW and GW irrigation on day 0. The difference in leaf characteristics

of lettuce cultivars significantly influenced the recovery of these surrogates on lettuce

leaves. Populations of E. coli O157:H12 recovered from the RW-irrigated “Annapolis”
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lettuce were significantly lower than the recovery of this bacterium from the “Celinet” and

“Coastline” lettuce (P < 0.05). Overall, the recovery of specific E. coli surrogates from

the RW and TW irrigated lettuce was comparable to the lettuce with the GW irrigation,

where GW served as a baseline water source. E. coli O157:H12 could be a more suitable

surrogate compared to E. coli K12 because it is an environmental watershed isolate. The

findings of this study provide critical information in risk assessment evaluation of RW and

TW irrigation on lettuce in Mid-Atlantic area.

Keywords: cultivar, irrigation water, food safety, E. coli, pre-harvest, fresh produce

INTRODUCTION

The World Health Organization encourages people to consume
at least 400 g of fresh produce such as fruits and vegetables per
day to prevent chronic disease including heart disease, diabetes,
and obesity (World Health Organization, 2018). Lettuce is the
most consumed leafy green vegetables in the United States with
an annual consumption of 5.9 kg per person [U.S. Department
of Agriculture (USDA), 2016]. As the consumption of fresh
produce increased during the past decades, incidences for
foodborne outbreaks linked to fresh produce have also increased
[Sivapalasingam et al., 2004; European Food Safety Authority
(EFSA), 2012; Painter et al., 2013]. In European Union, fresh
produce-associated outbreaks accounted for 8.7% of all reported
outbreaks in 2010 compared to 2.1% in 2009 [European Food
Safety Authority (EFSA), 2011, 2012]. A total of 110 outbreaks
in the U.S. between 2010 and 2017 were associated with the
consumption of the contaminated lettuce; pathogenic Escherichia
coli was responsible for 24 of these outbreaks that resulted in 506
illnesses, 159 hospitalizations, and one death [National outbreak
reporting system (NORS), 2019].

Contamination of produce may occur at any point during
the production of fresh produce through soil, animal manures,
farming equipment, and post-harvest processes (Holvoet et al.,
2015; Weller et al., 2017); however, agricultural water has
been identified as a major risk factor in the contamination
of leafy greens [Steele and Odumeru, 2004; Food and Drug
Administration (FDA), 2008; Gerba, 2009; Jung et al.,
2014; Araújo et al., 2017]. Cross-contamination of field-
grown vegetables by the foodborne pathogens through the
contaminated irrigation water with fecal waste or improperly
composted manure is suggested to be a possible source of
pathogen at the pre-harvest level (Oliveira et al., 2012).
Attachment of human bacterial pathogens on fresh produce
during spray irrigation can be affected by the bacterial strains,
bacterial population, stress tolerance, and their biofilm formation
ability (Carey et al., 2009; Ge et al., 2012; Yaron and Römling,
2014; Kljujev et al., 2018). Other factors such as produce growing
conditions, plant development stage, and the leaf characteristics
of cultivars also affect bacterial attachment on the fresh produce
leaf (Barak et al., 2011; Ge et al., 2012; Hirneisen et al., 2012;
Quilliam et al., 2012).

Traditionally, groundwater and surface water are commonly
used for irrigation in the United States, where groundwater
withdrawals at 57.2 billion gallons per day account for 48%

of total water usage for irrigation (Dieter et al., 2018). In
Pennsylvania, nearly 58 million gallons per day of water were
used for irrigation and livestock purposes, which constituted
more than 10% of the total water consumption in the state [Penn
State Extension (PSE), 2007]. The water scarcity has become
an issue due to the unpredictable climate and the increased
food demands for the growing world populations (Cabera,
2017), requiring approaches to mitigate the scarcity of irrigation
waters or supplement more common water sources. Several
water management strategies have been employed to overcome
the water scarcity issue, including the selection of water-use
efficient crops and the use of water-conservation practices such
as mulching and sensible irrigation technologies (Pereira et al.,
2012). Additionally, research studies have been conducted on
the use of alternative water sources such as treated domestic
wastewater and roof-collected rain water for fresh produce
irrigation (Ahmed et al., 2011; Mizyed, 2013; Yin et al., 2018,
2019).

Domestic wastewater that contains household sewage and
industrial wastewater could be a reliable alternative water source
for agriculture once treated at the wastewater treatment plant
[Xie, 2009; Pedrero et al., 2010; European Commission (EC),
2016]. Reuse of domestic wastewater reduces the release of
nutrient-rich wastewater from the wastewater treatment plants
into surface water sources such as stream and river (Scott
et al., 2004). In Pennsylvania, treated domestic wastewater
can be reused for the irrigation of crops intended for human
consumption that would be peeled, skinned, cooked, or thermally
processed before consumption or commercially processed
foods [Department of environmental protection (DEP), 2012].
However, such wastewater used as irrigation water for edible
crops should undergo at least a secondary treatment with
filtration and disinfection steps at the wastewater treatment
plants and should meet the requirements for Class B or better.
For spray irrigation of edible crops, Class B wastewater should
contain fecal coliforms <2.2 log CFU per 100ml during the
biweekly monitoring process and apply for a period of 15
days prior to harvest as per the wastewater reuse guidance in
Pennsylvania [Department of environmental protection (DEP),
2012]. Rain water harvested from the rooftop is another strategy
that may serve to cope with current water shortages; however,
such water could be contaminated by the bird and rodent
droppings on the roof (Zhu et al., 2004; Fletcher et al., 2008;
Yin et al., 2019). Although the use of treated wastewater and
roof-collected rain water has been increasingly seen as alternative
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agricultural water sources to overcome water scarcity, these
water sources may contain bacterial pathogens including E.
coli O157:H7 and Salmonella spp. (Steele and Odumeru, 2004;
Yin and Patel, 2018). Potential transfer of pathogens from
contaminated irrigation waters to fresh produce could pose
significant risk as fresh produce is often consumed raw (Beuchat,
2002).

Previous studies have confirmed the transfer of fecal
microorganisms from the irrigation water to the irrigated
vegetables (De Roever, 1998; Yin et al., 2018, 2019). Water
characteristics such as total organic carbon, hardness, ion
composition, pH, and indigenous microflora influenced the
survival of E. coli O157:H7 in different water sources (Williams
et al., 2007; Avery et al., 2008). Spray irrigation of spinach with
wastewater and roof-collected rain water significantly altered its
microbiome compositions (Gu et al., 2019). Effects of alternative
irrigation waters on the transference and persistence of non-
pathogenic E. coli surrogates from the water to the lettuce
cultivars at farm levels need further investigation. This study
investigated the impact of secondary-treated wastewater and
roof-collected rain water on the transfer and persistence of E.
coli O157:H12 and E. coli K12 as non-pathogenic surrogates for
E. coli O157:H7 on three lettuce cultivars in the field. Lettuce
cultivars “Annapolis,” “Celinet,” and “Coastline,” with different
leaf structures and ∼35 days of maturity time were selected.
“Annapolis” cultivar has wavy red leaves, and “Celinet” variety
has medium green leaves and thin petioles (Skrsyniarz, 2016; U.S.
Patent No. 9,392,765). “Coastline” lettuce is a type of Batavian
lettuce with medium green leaves.

MATERIALS AND METHODS

Preparation of Bacteria Inoculum
Non-pathogenic E. coli strains E. coli O157:H12 and E. coli
K12 (ER2420/pBeloBAC11) were used as surrogates for E.
coli O157:H7 in water for lettuce irrigation (Fonseca et al.,
2011; Ingram et al., 2011). E. coli O157:H12 isolated from the
environment was spontaneously resistant to nalidixic acid (NA;
Sigma-Aldrich, St. Louis, MO, USA) as previously described
by Ingram et al. (2011). E. coli K12 (New England BioLabs,
Ipswich, MA) contained the plasmid pBeloBAC11, which carried
the chloramphenicol-resistant gene (CP; Sigma-Aldrich). The
antibiotic-resistant properties enabled the differentiation of these
E. coli surrogates from the generic E. coli present in the water and
lettuce plants (Ingram et al., 2011).

E. coli O157:H12 and E. coli K12 were individually grown in
10ml of tryptic soy broth (TSB; Fisher Scientific, Waltham, MA)
that contained NA at 50 ng ml−1 or CP at 200 ng ml−1 at 37◦C
for 24 h. After incubation, overnight cultures were centrifuged
at 5,000 × g for 15min, followed by re-suspending bacterial
pellets with 10ml of phosphate-buffered saline (PBS, Fisher
Scientific). Two milliliter portions of each bacterial suspension
were transferred to 100ml of fecal slurry and incubated at 37◦C
for 48 h. Bovine fecal slurry was prepared as described by Patel
et al. (2010), in which dairy manure solids were obtained from
the USDA-ARS Holstein dairy herd (Beltsville, MD). After 48 h
of incubation, equal amount of E. coli O157:H12 and E. coli K12

cultures was mixed (8 log CFU ml−1) and supplied as 1:100
ratio to each type of irrigation waters to obtain final bacterial
populations at 6 log CFU ml−1 in irrigation water samples.

Irrigation Water on Lettuce Grown in Field
Field experiment was conducted at the Fulton farm in
Chambersburg, PA, in October 2018. Seeds of lettuce cultivars
“Annapolis,” “Celinet,” and “Coastline” were planted into flats
with 128 cells and then manually transplanted into the field after
the growth of true leaves was observed. Approximately 150 plants
of each lettuce cultivar were planted in each 4× 2-m plot.

Three irrigation waters were used in this experiment including
groundwater (GW), secondary-treated wastewater (TW), and
roof-collected rain water (RW). Prior to the experimental
irrigation treatments, lettuce plants were drip irrigated weekly
with GW without the supplementation of E. coli surrogates. The
GW collected from the Fulton farm (Chambersburg, PA) was
chosen as the baseline water source in this study because it is
the main water source used for farm irrigation, and it is also
commonly used in the Mid-Atlantic area. The TW was obtained
from the stage of secondary treatment that removed ∼80% of
organic matter in the sewage with denitrification by microbial
process, followed by the filtration and ultraviolet disinfection
at Chambersburg Wastewater Treatment Plant (Chambersburg,
PA). RW was collected from the rain barrels located at the
Fulton farm. Microbiological properties of these irrigation waters
(GW, TW, and RW) were determined by using the membrane
filtration method as previously described by Yin and Patel (2018)
for analyzing the populations of indicator bacteria including
total coliforms, fecal coliforms, and generic E. coli. The pH and
electrical conductivity of these irrigation waters were measured
with a pH meter (Orion, St. Louis, MO, USA) and a conductivity
meter (HMDigital, Culver City, CA, USA) as described by Castro
et al. (2009).

The irrigation treatments were initiated at 25 days of lettuce
transplant in the field soil. Freshly collected irrigation treatment
waters including GW, RW, and TW were inoculated with E.
coli O157:H12 and E. coli K12 as previously described and
used for irrigation. A total of nine lettuce plots (three plots per
cultivar) were used in this study, and each cultivar plot was
separately irrigated with each type of irrigation treatment water.
Each lettuce plot (4 × 2m) was spray irrigated with ∼5 L of
treatment water by using handheld sprayers (Forestry suppliers,
Jackson, MS, USA) and lettuce plants were allowed to dry in the
field for 2 h. After irrigation, four lettuce leaf samples (∼30 g
per sample) from each plot were randomly collected on days 0,
1, 3, 7, 10 post-irrigation. Lettuce leaf samples were aseptically
harvested by cutting∼2 cm above the soil with sterile scissors and
forceps and transferred to sterileWhirl-Pak bags. Lettuce samples
were stored on ice and transported to the USDA laboratory for
microbiological analysis.

Microbiological Analysis
The lettuce leaf sample (∼30 g) collected in sterile Whirl-Pak
bag was homogenized with 120ml of buffered peptone water
(BPW) by pummeling for 2min in a stomacher (Interscience
Lab Inc., Woburn, MA, USA). Serial 10-fold dilutions of the
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homogenate were made with PBS and the homogenate or its
appropriate dilution was spiral plated onto the MacConkey agar
(MAC; Neogen) with NA and CP for the enumeration of E.
coli O157:H12 and E. coli K12, respectively. Agar plates were
then incubated at 37◦C for 24 h, and the bacterial populations
were determined and expressed as log CFU g−1. Prior to the
experiment, irrigation water samples and lettuce leaves were
analyzed by spiral plating onto MAC agar supplemented with
NA or CP to ensure that the natural bacteria in irrigation waters
and lettuce leaves were unable to grow on these agar media.
The lettuce-BPW homogenate samples were incubated at 37◦C
for 24 h, followed by streaking a loopful of the enrichment onto
MAC with NA and CP to determine the presence of the applied
E. coli surrogates. Lettuce samples, in which E. coli surrogates
were undetectable by the direct plating method but positive by
the enrichment procedure, were reported as 1 log CFU g−1 in
this study.

To detect the presence of the pathogenic bacteria including
Salmonella, L. monocytogenes, and E. coli O157:H7, the
homogenates of lettuce samples with BPW were incubated
at 37◦C for 24 h as primary enrichment [American Public
Health Association (APHA), 2005]. A portion of primary
enriched sample (5ml) was transferred to 45ml of tetrathionate
broth (Neogen), Fraser broth (Neogen), and mEHEC broth
(Biocontrol, Bellevue, WA, USA) and incubated at 37◦C for 24 h,
followed by streaking a loopful of these enrichment broths on
xylose lysine tergitol-4 agar (XLT4; Neogen), rapid Lmono agar
(BioRad), and sorbitol MacConkey agar with CT supplement
(CT-SMAC; Neogen), for the detection of Salmonella, L.
monocytogenes, and E. coli O157:H7, respectively. Presumptive
isolates of the target pathogens on selective media (XLT4, rapid
Lmono, or CT-SMAC) were further confirmed by real-time
quantitative PCR (RT-qPCR) as previously described (Yin and
Patel, 2018).

Statistical Analysis
Completely randomized design was used to study the effect
of irrigation treatment waters (GW, RW, and TW) on the
persistence of E. coli surrogates on different lettuce cultivars. A
three-way factorial repeated measurement ANOVA model with
PROC MIXED procedure of Statistical Analysis Software (SAS
9.4, Cary, NC) was used for each of the two E. coli surrogates (E.
coliO157:H12 and E. coliK12). Four individual samples of lettuce
collected from each plot were analyzed at each sampling time
point. The factors included water (GW, RW, and TW), lettuce
cultivar (“Annapolis,” “Celinet,” and “Coastline”), and time (0,
1, 3, 7, and 10 days after irrigation). The standardized skewness
was verified to assure normal distribution of the data. Differences
among the means were analyzed at P < 0.05 using Fisher’s least
significance difference test.

RESULTS

Prior to the supplementation of E. coli surrogates and fecal slurry,
microbiological analysis of the irrigation waters revealed that GW
sample contained 1.8 log, 1.7 log, and 1.0 log CFU per 100ml of

total coliforms, fecal coliforms, and generic E. coli, respectively.
Further, 0.3 log CFU per 100ml of total coliforms was recovered
from the TW and RW samples, whereas fecal coliforms and
generic E. coli were not detected. Bacterial pathogens including
Salmonella, L. monocytogenes, and E. coli O157:H7 were not
detected from lettuce and water samples throughout the entire
experiment. The values of pH and electrical conductivity of all
three irrigation waters met irrigation water quality standards
according to FAO’s guideline. The pH values of GW, TW, and
RW were at 7.08, 7.77, and 8.21, respectively. The GW contained
the highest electrical conductivity at 371 µs/cm, followed by TW
(60 µs/cm) and RW (4 µs/cm).

Figure 1 presents the recovery of E. coli O157:H12 on the
three lettuce cultivars “Annapolis,” “Celinet,” and “Coastline”
with three types of irrigation waters including GW, RW, and TW.
After irrigation, E. coliO157:H12 populations recovered from the
irrigated lettuce leaves were in the range of 4.1 ± 0.1 and 4.6 ±

0.0 log CFU g−1 on day 0. Results of the ANOVA table showed
that lettuce cultivars significantly affected the recovery of E. coli
O157:H12 on the irrigated lettuce leaves (Cultivar P = 0.0013;
Table 1). On 0 and 1 day after irrigation with GW, RW, and TW,
populations of E. coli O157:H12 recovered from the “Annapolis”
lettuce samples were lower than the “Celinet” and “Coastline”
lettuce samples that received the same type of irrigation water.
Precisely, when three lettuce cultivars were irrigated with RW,
E. coli O157:H12 populations recovered from the “Annapolis”
lettuce (2.9 ± 0.5 log CFU g−1) on day 1 were significantly
lower than the bacterial populations recovered from “Celinet”
and “Coastline” lettuce samples (4.0 ± 0.2 log and 3.9 ± 0.2
log CFU g−1). Likewise, significantly lower E. coli O157:H12
populations were recovered from the GW-irrigated “Annapolis”
lettuce on day 1 (2.8± 0.4 log CFU g−1) and day 7 (1.1± 0.1 log
CFU g−1) compared to GW-irrigated “Coastline” lettuce samples
on day 1 (3.6 ± 0.3 log CFU g−1) and day 7 (1.9 ± 0.2 log CFU
g−1), respectively. Additionally, recovery of E. coli O157:H12
from the irrigated lettuce leaves was also significantly affected
by the interaction effect of the irrigation water and the lettuce
cultivar (water × cultivar P = 0.0218; Table 1). Populations of
E. coli O157:H12 recovered from different lettuce cultivars were
dependent on the source of irrigation water. The recovery of E.
coli O157:H12 was similar in the TW and GW-irrigated lettuce
irrespective of the lettuce cultivars on day 3 (P > 0.05); however,
irrigation with RW resulted in variable bacterial populations in
different cultivars of lettuce when compared to the GW irrigation.

Recovery of E. coliK12 on the lettuce cultivars with alternative
irrigation waters is shown in Figure 2. E. coli K12 populations
were recovered at the lower levels than E. coliO157:H12 from the
lettuce leaves on day 0 after irrigation (P < 0.05); the populations
of this bacterium were in the range of 3.2 ± 0.2 and 3.8 ± 0.2
log CFU g−1. Populations of E. coli K12 on the lettuce leaves
were significantly affected by the source of irrigation waters
(water effect P = 0.0264; Table 1). Higher recovery of E. coli K12
from RW to the leaves of “Celinet” and “Coastline” lettuce was
observed (3.7± 0.1 and 3.8± 0.1 log CFU g−1) compared to the
lettuce samples irrigated with TW (3.3 ± 0.0 and 3.4 ± 0.1 log
CFU g−1) on day 0 (P < 0.05).
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FIGURE 1 | Populations of E. coli O157:H12 recovered from three cultivars of lettuce irrigated with groundwater (GW), roof-collected rain water (RW), and

secondary-treated wastewater (TW). Three cultivars included “Annapolis,” “Celinet,” and “Coastline,” and sampling time points were 0, 1, 3, 7, and 10 days

post-irrigation. Four replicate samples were analyzed per treatment group at each sampling time point (n = 4). Error bars indicate the SD. abMeans of bacterial

populations in the same sampling time point for the same lettuce cultivar with different letters are significantly different (P < 0.05). xyMeans of bacterial populations in

the same time point on different lettuce cultivars irrigated with the same type of irrigation water with different letters are significantly different (P < 0.05).

FIGURE 2 | Populations of E. coli K12 recovered from three cultivars of lettuce irrigated with groundwater (GW), roof-collected rain water (RW), and secondary-treated

wastewater (TW). Three cultivars included “Annapolis,” “Celinet,” and “Coastline” and sampling time points were 0, 1, 3, 7, and 10 days-post-irrigation. Four replicate

samples were analyzed per treatment group at each sampling time point (n = 4). Error bars indicate the SD. abMeans of bacterial populations in the same sampling

time point for the same lettuce cultivar with different letters are significantly different (P < 0.05). xyMeans of bacterial populations in the same time point on different

lettuce cultivars irrigated with the same type of irrigation water with different letters are significantly different (P < 0.05).

Populations of E. coli K12 recovered from the lettuce samples
irrigated with the TW and GW were similar throughout the
10-day experimental period (P > 0.05). Similar results were
observed with the recovery of E. coli O157:H12 in TW- and
GW-irrigated lettuce samples. Lettuce irrigation with alternative
TW irrigation did not significantly increase the transfer of
E. coli O157:H12 compared to the control GW irrigation,
irrespective of lettuce cultivar. For example, irrigation of TW
resulted in the transfer of E. coli O157:H12 at ∼4.2 log CFU
g−1 on the lettuce compared to ∼4.4 log CFU g−1 of E. coli

O157:H12 from the GW irrigated lettuce leaves immediately after
irrigation (P > 0.05).

Regardless of the type of the irrigation waters and the lettuce
cultivars, populations of these E. coli surrogates on the irrigated
lettuce leaves gradually decreased during the 10-day experimental
period. The recovery of E. coli O157:H12 and E. coli K12 from
the irrigated lettuce was not significantly different 10 days after
irrigation as populations of both E. coli strains on the lettuce
leaves had become non-culturable by direct plating method
(detection limit 1.0 log CFU g−1), except for RW irrigation,
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TABLE 1 | Analysis of variance (ANOVA) table for identifying the significant effects

and their interactions with lettuce data on E. coli O157:H12 and Escherichia K12.

E. coli O157:H12 E. coli K12

Sourcea DFb F-value Pr > F DF F-value Pr > F

Water 2 1.73 0.1821 2 4.00 0.0264

Cultivar 2 7.07 0.0013 2 2.26 0.1179

Day 4 925.55 <0.0001 4 2,965.17 <0.0001

Water × Cultivar 4 3.01 0.0218 4 2.05 0.1063

Cultivar × Day 8 4.41 0.0002 8 6.23 <0.0001

Water × Day 8 1.58 0.1486 8 3.02 0.0077

Water × Cultivar × Day 16 3.27 0.0002 16 3.12 0.0007

aThe main effect “water” includes groundwater, roof-collected rain water, and secondary-

treated wastewater; the main effect “cultivar” includes “Annapolis,” “Celinet,” and

“Coastline”; the main effect “day” includes 0, 1, 3, 7, and 10 days-post-irrigation.
bDF, degrees of freedom.

which resulted in higher E. coli K12 populations on “Annapolis”
lettuce in comparison to other two types of irrigation.

DISCUSSION

Our previous reports investigated the impact of RW and TW
irrigation on the microbiological quality of spinach and lettuce
by monitoring the transfer of indicator bacteria including total
coliforms, fecal coliforms, and generic E. coli from the irrigation
water to the produce under different growing conditions (Yin
et al., 2018, 2019, 2020), and the results of these studies support
the use of alternative waters for fresh produce irrigation in
the Mid-Atlantic area provided that these waters contained
acceptable levels of bacterial indicator populations. In the current
study, the potential usage of RW and TW as irrigation water
sources for fresh produce was further investigated by inoculating
known concentrations of E. coli surrogates to the irrigation
water and then determining the transfer and persistence of these
surrogates on the irrigated lettuce.

The use of water contaminated with fecal materials for
irrigation could be a direct route of produce contamination
(Wood et al., 2010; Gorman, 2014). The TW and RW could
contain fecal materials as human waste could present in TW
and roof could be contaminated by bird and rodent droppings
(Ahmed et al., 2011; Madoux-Humery et al., 2013). Further, as
manure application is commonly used to fresh produce fields, it
has been noted that leafy greens could be contaminated by fecal
materials owing to fecal splash subsequent to spray irrigation.
Atwill et al. (2015) reported that E. coli O157:H7 in simulated
wildlife feces could be transferred to field-grown lettuce via
splash during irrigation. Fecal slurry has been used to mimic
the potential fecal splash by wild and farm animals during foliar
irrigation (Chase et al., 2019).Weller et al. (2017) used rabbit fecal
slurry to examine the transfer of E. coli on lettuce once splash
contaminated by wild animal waste, and the populations of E. coli
decreased from 8.9 log to 3.6 logMPN per lettuce head during the
10-day study between the inoculation and the harvest. It has been
previously reported that E. coli could adapt better on the fresh

produce and spinach when applied with fecal slurry (Patel et al.,
2010; Chase et al., 2017).

Several factors affect the likelihood of fresh produce becoming
contaminated during irrigation including the frequency of
irrigation, the microbial quality of irrigation water, the
characteristic of the leaf surface, and the type of irrigationmethod
(Gerba, 2009; Uyttendaele et al., 2015). The U.S. Food and Drug
Administration (FDA) (2009) reported that the irrigation of
edible crops by flooding and spraying method represents the
highest risk as any bacteria in the water can be transferred to
the leaf of these crops during the contact with water. Persistence
of E. coli on irrigated produce increased by ∼50% through
spray (overhead) irrigation system compared to a drip irrigation
system (Allende et al., 2017). In the current study, a direct
contact of irrigation water with lettuce via spray irrigation
method was employed to maximize the potential for microbial
contamination (Solomon et al., 2002), and yet irrigation of TW
did not significantly affect the recovery of E. coli surrogates from
the irrigated leaves compared to the GW irrigation.

In this study, lettuce cultivars influenced the recovery of
E. coli surrogates on the lettuce leaves; lower populations of
E. coli O157:H12 were recovered from the “Annapolis” lettuce
than from “Celinet” and “Coastline” lettuce. Plant variety may
have different leaf surface properties including morphology,
chemical constituent, and metabolic activity that could affect the
bacterial colonization on phyllosphere (Heaton and Jones, 2008;
Leveau, 2009; Quilliam et al., 2012). In addition, leaf surfaces
harbored microbiota communities that were well-adapted to the
nutrient-scarce environment, and the competition of microbiota
to the invading human pathogens on the leaves could affect the
persistence of these pathogens (Monier and Lindow, 2004; Poza-
Carrion et al., 2013). Leaf structural morphology of different
cultivars of fresh produce have played an important role in
the fate of enteric pathogens residing in lettuce foliage (Lopez-
Velasco et al., 2015; Van der Linden et al., 2016; Erickson et al.,
2019).

The recovery of E. coli surrogates from the irrigated lettuce
varied with E. coli strains. E. coli O157:H12 populations
recovered from the irrigated lettuce leaves were ∼1 log CFU g−1

greater than the recovery of E. coli K12 on the lettuce leaves on
day 0 following irrigation. Previous reports have suggested that
bacterial attachment to produce surfaces varied depending on the
sources of the bacteria being isolated (Patel et al., 2010; Sharma
et al., 2016). It is possible that E. coli O157:H12 strain attached
at a higher rate to lettuce leaves than E. coli K12 because of its
environmental origin characteristic.

Plant surfaces are considered harsh environments for the
enteric organisms and the pre-harvest conditions in the field
such as the competition of natural flora, solar radiation, and
temperature pose additional challenges for the survival of
microorganisms (Aruscavage et al., 2006). The survival profile
of E. coli surrogates on the lettuce observed in this study was
similar to the results of other previous ones, where spinach
and lettuce were directly spray-inoculated with E. coli surrogates
(Moyne et al., 2011; Gutiérrez-Rodríguez et al., 2012; Lopez-
Velasco et al., 2015). In the current study, ∼2–3 log reductions
in E. coli surrogate populations were observed during the 10-day
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experimental period. Themean E. coliO157:H12 levels decreased
from∼4.5 log CFU g−1 on day 0 to below detection limit (1.0 log
CFU g−1) after 10 days of irrigation treatments. Decline in E. coli
populations on fresh produce surface between the inoculation
and the harvest was also previously reported; E. coli populations
on “Green Tower” lettuce leaves grown in the field reduced from
8.9 log to 3.6 log MPN per sample after 10 days of inoculation
(Weller et al., 2017).

The current study supports the use of alternative RW and
TW as irrigation waters for fresh produce since the recovery
of E. coli surrogates from the irrigated lettuce leaves were
mostly comparable to the GW irrigation. RW is commonly
collected by the rooftops of the households, temporarily stored
in barrels, and used as small-scale practices in the United States
(Campisano et al., 2017). Large-scale rainwater harvesting
systems may be used as demonstrated by Lani et al. (2018)
and Zhang et al. (2020); however, the performance of these
harvesting systems may be affected by the rainfall pattern, the
roof area, and the tank size (Morales-Pinzón et al., 2014).
Unlike GW and RW, TW could be considered as a reliable
and stable water source since it is not significantly affected by
the season, climatic condition, or precipitation level (Zhang
and Shen, 2019). There were no pathogenic bacteria including
L. monocytogenes, Salmonella, and E. coli O157:H7 found in
water samples and the irrigated lettuce in the current study;
however, microbiological quality of these alternative irrigation
waters must be confirmed prior to use as irrigation water sources
for fresh produce.

CONCLUSION

The current study investigated the applicability of RW and TW as
alternative agricultural water sources for fresh produce irrigation.
The transfer of two non-pathogenic E. coli surrogates from GW,
RW, and TW to “Annapolis,” “Celinet,” and “Coastline” cultivars
of lettuce grown in the field was examined. The recovery of

E. coli on the irrigated lettuce was affected by bacterial strains,
irrigation water types, and lettuce cultivars. The recovery of E.
coli surrogates from the RW and TW irrigated lettuce samples
was comparable to the populations of these bacteria recovered
from the GW-irrigated lettuce. The E. coli surrogates transferred
via irrigation waters persisted for at least 7 days on the lettuce
leaves irrespective of water sources and lettuce cultivars, which
suggests that incidental contamination of lettuce with irrigation
water during the later stage of harvest could pose potential
health concern and may require additional mitigation strategies
to remove bacteria attached to the lettuce leaves. The findings
of the current study provide data on the transfer of E. coli
surrogates from RW and TW to the lettuce leaves that can be
used in quantitative risk assessments of fresh produce grown in
the Mid-Atlantic area.
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