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Abstract
Aflatoxins represent a global public health and economic concern as they are
responsible for significant adverse health and economic issues affecting con-
sumers and farmers worldwide. Produced by fungal species from the Aspergillus
genus, aflatoxins are a toxic, mutagenic, and carcinogenic group of fungal
metabolites that routinely contaminate food and agricultural products. Climate
and diet are essential factors in the aflatoxin contamination of food and subse-
quent human exposure process. Countri
es with warmer climates and staple foods that are aflatoxin-susceptible shoul-
der a substantial portion of the global aflatoxins burden. Enactment of regula-
tions, prevention of pre- and postharvest contamination, decontamination, and
detoxification have been used to prevent human dietary exposure to aflatoxin.
Exploiting their chemical and structural properties, means are devised to detect
and quantify aflatoxin presence in foods. Herein, recent developments in several
important aspects impacting aflatoxin contamination of the food supply, includ-
ing: fungal producers of the toxin, occurrence in food, worldwide regulations,
detection methods, preventive strategies, and removal and degradation methods
were reviewed and presented. In conclusion, aflatoxin continues to be a major
food safety problem, especially in developing countries where regulatory limits
do not exist or are not adequately enforced. Finally, knowledge gaps and current
challenges in each discussed aspect were identified, and new solutions were pro-
posed.
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1 INTRODUCTION

Aflatoxins are a group of structurally related toxic, muta-
genic, and carcinogenicmycotoxins that contaminate large
numbers of food and agricultural products with a special
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affinity to cereals and nuts. Mycotoxins are chemical sub-
stances produced by certain species of fungi as secondary
metabolites in the field and during the storage of agricul-
tural products (Shephard, 2009). Among themany analogs
and derivatives of aflatoxins that have been identified, the
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F IGURE 1 Chemical structures of class B1, B2, G1, G2, and M1 aflatoxin

B-series (aflatoxins B1 and B2), the G-series (aflatoxins G1
and G2), and M-series (aflatoxin M1; Figure 1) are of the
most relevance from a food safety point of view (Afsah-
Hejri et al., 2013).
Depending on environmental factors (temperature,

humidity, and rainfall) and farm management practices
(cropping, harvesting, and storage conditions), fungal pro-
liferation and subsequent mycotoxin excretion could hap-
pen at any stage of the crop production chain (Waliyar
et al., 2015). Plant immunocompromising factors such as
drought stress, injury, pest infestation, and poor fertiliza-
tion are also known enablers of aflatoxin production in
agricultural products (Bhat & Vasanthi, 2003). Aflatoxins
are ubiquitous and occur in various food crops, includ-
ing cereals, nuts, dairy products, among other food and
agricultural products. A recent review by Eskola et al.
(2019) suggests that about 60% to 80% of the global food
crops are contaminated with mycotoxins. This estimation
pushed back the widely cited 25% estimation attributed
to the Food and Agricultural Organization (FAO) of the
United Nations. Nonetheless, these figures are staggering;
a large proportion of the world’s population is faced with
the risks associated with exposure to aflatoxin and a host
of other mycotoxins. A recent rise in global temperatures
has also presented another scenario; aflatoxins are increas-
ingly detected in some parts of Italy and South Europe in
quantities not seen before (Moretti et al., 2019).
Biblical and other written records of human illness and

death related to food spoilage suggest mycotoxins have
haunted humans for an extended period, perhaps since
the beginning of human engagement in crop production
for food (Pitt & Miller, 2017). However, scientific research
into aflatoxin did not start until 1960 when a sudden death
of more than 100,000 young turkeys in English poultry

farms due to an unknown condition termed “turkey X dis-
ease” caught the attention of scientists (Stoloff, 1976). Mul-
tidisciplinary scientific research attributed these deaths to
feed contaminated with a toxin produced by the fungus
Aspergillus flavus, thus the name “aflatoxin” (Nesbitt et al.,
1962). Research resulted in a sufficient understanding of
the toxin enabling the development of better analytical
methods and a better understanding of its public health
impact (Pitt & Miller, 2017).
Humans may be exposed to aflatoxins through the con-

sumption of aflatoxin-contaminated foods or the ingestion
of foods produced by animals previously exposed to afla-
toxins (Leong et al., 2012). Chronic dietary exposure to afla-
toxins poses severe health complications in humans and
animals (Williams et al., 2004). Aflatoxin B1, due to its
toxic, mutagenic, immunotoxic, teratogenic, and carcino-
genic effect on humans and animals, is classified as a group
1 carcinogen in the International Agency for Research on
Cancer (IARC) classification of carcinogenic substances
(Ostry et al., 2017). As potent carcinogen, aflatoxin B1 may
affect organs like the liver and kidneys (Alvarez et al., 2020;
Li et al., 2018). It is also reported to suppress humans’
immune systems, rendering them vulnerable to infectious
diseases like HIV and AIDS (Jiang et al., 2008; Jolly et al.,
2013). Prolonged exposure to aflatoxin has also been linked
to congenital disabilities and stunting in children (Smith
et al., 2015).
Additionally, acute aflatoxin exposure can be life-

threatening. Exposure to high levels of aflatoxin within
a short period is found to cause aflatoxicosis (Williams
et al., 2004). Recently, multiple outbreaks of acute afla-
toxin exposure have been reported, particularly from
regions with tropical climates, such as Kenya and Tanza-
nia (Awuor et al., 2017; Kamala et al., 2018).
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The implications of aflatoxin contamination of agricul-
tural products go beyond public health issues; it equally
carries trade and economic ramifications for both devel-
oped and developing countries. Maize farmers in the
United States incur an annual loss of $160 million due
to aflatoxin-related issues (Wu, 2015). These figures are
higher in developing countries, especially sub-Saharan
Africa, where losses amount to $450 million, represent-
ing 38% of the global agricultural losses due to aflatoxin
(Gbashi et al., 2018).
Furthermore, aflatoxin is responsible for a significant

decline in agricultural trade between developed and devel-
oping countries (Wu, 2015). Attempts to quantify the health
and economic burden of aflatoxin contamination of food
crops have been made by Liu and Wu (2010) at a global
scale, and country and regional studies are published by
Matumba et al. (2019).
Different mitigation and control measures are being

applied to prevent or minimize human and animal expo-
sure to aflatoxin. These include regulation enactment
(FAO, 2004), prevention of pre- and postharvest con-
tamination of agricultural products, or their reduction
to acceptable levels in already contaminated products
through removal, degradation, or decontamination. Basic
measures such as Good Agricultural Practices (GAPs) and
Good Manufacturing Practices (GMPs) as aflatoxin pre-
ventive measures have proven effective when combined
with proper postharvest handling practices (Hell&Mutegi,
2011). Scientific advances have also permitted the use of
sophisticated biological, chemical, and physical measures
for the prevention and decontamination of already con-
taminated agricultural products (Lizárraga-Paulín et al.,
2013).
Since its discovery, aflatoxin has been extensively stud-

ied, creating a good body of knowledge. This review
compiles the most significant recent developments in
the research and understanding of aflatoxin from a sci-
entific perspective, from fungal producers of aflatoxin,
agricultural products, and food contaminated by afla-
toxin, worldwide regulations, current detection, preven-
tion, removal, to degradation methods. The review also
identified research gaps, discuss futures challenges, and
propose new research efforts to control aflatoxin contami-
nation of food.

2 FUNGAL PRODUCERS OF
AFLATOXIN

Aflatoxin production and contamination of crops is a long
biochemical process that initiates with the Aspergillus
fungi producers of aflatoxin’s invasion and subsequent
toxin production in infected crops (Abrar et al., 2013).

The biosynthesis of aflatoxin consists of a sequence of
about 13 enzymatic reactions starting with a fatty acid
synthase-hexanoate. About 30 genes are involved in the
fungal production of aflatoxins (Yu, 2012). Fungal invasion,
growth, and aflatoxin production in crops is principally
determined by environmental factors, the type of crops,
and other ecological make-up of an environment (Negash,
2018). Not all Aspergillus species produce aflatoxin, and
not all species invade all types of crops. Therefore, the
levels and severity of aflatoxin contamination of agricul-
tural products are, to a certain extent, determined by the
fungal ecology of the production field (Cotty & Mellon,
2006). A considerable amount of research has been done
to identify those fungal spices capable of excreting afla-
toxin. Unfortunately, certain species have been wrongly
identified and assigned as aflatoxin producers (Sohrabi &
Taghizadeh, 2018). Althoughmodernmolecular tools have
remedied this to a large extend, there is still a consider-
able amount of details to learn and elucidate as to why cer-
tain members of the Aspergillus genera produce aflatoxin.
Members of the Aspergillus genera are genetically diverse
(Kjærbølling et al., 2020). Studies on the Aspergillus sec-
ondary metabolism gene clusters revealed that the degree
of similarity between clusters from different species could
determine the potential similarities in the metabolites that
they excrete. Clusterswith 90% to 100% similarity normally
code for the same secondary metabolite (De Vries et al.,
2017).
As detailed in (Table 1), currently available literature

indicates that aflatoxins are excreted by around 24 species
of the Aspergillus genus belonging to three sections: Flavi,
Nidulantes, and Ochraceorosei (Varga et al., 2015):

2.1 Section Flavi

This section includes 33 species, the majority of which are
toxigenic (produce aflatoxin). Prominent toxigenic mem-
bers of the section are A. flavus and A. parasiticus. It was
generally accepted that A. flavus only produces B-series
aflatoxins; however, a recent study has reported Korean
strains that excrete G-type aflatoxins (Frisvad et al., 2019).
A. flavus is a ubiquitous soil-borne fungus that resides
on nutrient-rich sources like organic remains, grains, and
other food sources (Klich, 2002, 2007). Its optimal growth
conditions are temperatures between 28 and 37 ◦C with
the ability to survive 12◦ above or below that. A. flavus is
not host-specific; it invades different types of food crops
(Makhlouf et al., 2019).
A. parasiticus, on the other hand, is more host-specific

with a high affinity for peanuts (Kumar et al., 2017).
Almost all known strains of A. parasicticus are toxigenic
and produce other metabolites, including kojic acid and
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aspergillic acid (Al-Hmoud et al., 2012). It produces both
B- and G-series of aflatoxin (Martins et al., 2017). A. toxi-
carius, another member of the section and closely related
to A. parasiticus, produces both B- and G-type aflatoxins
(Murakami, 1971; Pildain et al., 2008). A. pseudotamarii
and A. togoensis are other species of the section that only
produce aflatoxins B1 and B2 (Pildain et al., 2008) while
there are 14 different species that both produce aflatoxins
B1, B2, G1, and G2 (Frisvad et al., 2019).

2.2 Section Nidulante

This section consists of few toxigenic species: A. astella-
tus, A. olivicola, A. venezuelensis, and A. miraensis (Frisvad
et al., 2004; Frisvad & Samson, 2004; Zalar et al., 2008).
Members of this section also produce other metabolites
apart from aflatoxin (Chen et al., 2016). For instance, A.
astellatus produces aflatoxin B1, arugosins, asperthecin,
shamixanthone, sterigmatocystin, terrain, and variecox-
anthones (Frisvad et al., 2004), while A. venezuelen-
sis produces aflatoxin B1, sterigmatocystin, terrein, and
compounds with chromophores of the shamixanthone,
emerin, and desertorin type (Frisvad & Samson, 2004).
Another toxigenic species, A. olivicola produces B1, sterig-
matocystin, and terrain (Zalar et al., 2008).
These three species require different growth conditions.

A. olivicola grows well at 37 ◦C in contrast to A. astel-
latus and A. venezuelensis that have shown little to zero
growth in the same conditions.Members of this section are
ubiquitous and are known to play an active participatory
role in decomposition processes (Chen et al., 2016; Dom-
sch et al., 2007). They are mostly found in indoor environ-
ments. Members of the section are known to be infectious
to humans (Henriet et al., 2012).

2.3 Section Ochraceorosei

Established by Frisvad et al. (2005), the section comprises
two toxigenic species: A. ochraceoroseus and A. rambel-
lii excreting aflatoxin B1 and sterigmatocystin with 3-O-
methylsterigmatocystin reported. The ability to produce
aflatoxin and sterigmatocystin simultaneously is a feature
unique to members of this section (Varga et al., 2009).
Based on physiological and morphological resemblance,
A. ochraceoroseus was initially placed under Aspergillus
section Circumdati however, the characterization and
phylogenetic analyses based on DNA sequence analysis
of the aflatoxin biosynthetic genes of A. ochraceoroseus
and aspergilli from sections Circumdati, Flavi, Nidulantes,
and Versicolores revealed that the taxonomic status of A.
ochraceoroseuswas closer to the subgenusNidulantes than
to Circumdati (Cary et al., 2005). Isolated in Ivory Coast,
members of this section include species incapable of grow-

ing at 37 ◦C, producing yellow ellipsoidal conidia, biseriate
conidial heads and long, smooth conidiophore stipes (Cary
et al., 2009). Compared to other toxigenic species, A. ram-
bellii ismore productive in producing aflatoxin B1 than any
other species, while A. ochraceoroseus produce more afla-
toxin B1 than E. venezuelensis and E. astellata, but less than
members of section Flavi (Frisvad et al., 2005).

3 AGRICULTURAL PRODUCTS AND
FOODS CONTAMINATED BY
AFLATOXINS

Mycotoxigenic molds are widespread throughout the
world; thus, mycotoxins, including aflatoxin, contaminate
a variety of crops and foods worldwide, especially those
grown in tropical regions. As mentioned earlier, the level
of aflatoxin contamination is determined by a myriad of
factors, including crop types and environmental factors
(Reddy et al., 2010). Although aflatoxin’s occurrence is
widespread and affects many food crops, certain crops are
more susceptible than others.
Crop susceptibility to fungus invasion and subsequent

toxin production is determined by a combination of envi-
ronmental and crop intrinsic factors, including nutritional
content, moisture content, pH, among others (Smith et al.,
2016). As reviewed and outlined by Tai et al. (2020), the
role of environmental factors on crop susceptibility to afla-
toxin contamination is adequately understood. However, it
is essential to note that these factors do not work in isola-
tion; they interact with plant intrinsic features to enable
fungal invasion and toxin production. Nutritional com-
position plays an important role in crop susceptibility to
aflatoxin contamination. For instance, Liu et al. (2016)
observed low levels of A. flavus invasion and aflatoxin pro-
duction in defatted peanut, soybean, corn, wheat, corn
germ, and corn endosperm substrates, but aflatoxin levels
significantly increased when corn-oil was added to these
same substrates. They also observed that low concentra-
tions of soluble sugars (stachyose, raffinose, sucrose, fruc-
tose, maltose, and glucose) have no effects on aflatoxin B1
production by A. flavus. However, when these concentra-
tions were increased to 3% and 6%, aflatoxin B1 production
was significantly enhanced suggesting a positive correla-
tion. In another study, Rajasekaran et al. (2017) observed
that total lipid content positively influences the formation
of aflatoxin B1 in cotton seeds during growth. Addition-
ally, Casquete et al. (2017) demonstrated that substrate’s
pH, temperature, andwater activity significantly influence
growth and aflatoxin production by A. flavus in cheese.
Moreover, Majeed et al. (2017), in their work, revealed that
tocopherols content negatively correlates with aflatoxin
formation in maize. Furthermore, Singh and Sinha (2013)
demonstrated a positive correlation between aflatoxin B1
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formation in paddy rice and total starch and amylopectin
content.
The influence of water activity (aw) in the accumula-

tion of aflatoxin in agricultural products has been studied
and reported onnumerous occasions (Hassan&Aziz, 1998;
Mannaa & Kim, 2017; Sahar et al., 2015; Trenk &Hartman,
1970). Generally, lowwater activity is required tominimize
postharvest accumulation of aflatoxin in cereals. Accord-
ing to a study by Lahouar et al. (2016), aflatoxin B1 occur-
rence in stored sorghum could be prevented if grain water
activity is maintained at ≤0.9. Equally, a water activity of
0.83 has been reported to prevent aflatoxin accumulation
in peanuts (Dorner, 2008).
As previously mentioned, these factors are interdepen-

dent and interact with each other to enable aflatoxin
production by the fungal producers of the toxin. Ribeiro
et al. (2006) studied the influence of water activity, tem-
perature, and incubation time on mycotoxins produc-
tion on barley rootlets. They observed that at 0.95aw and
25 ◦C, A. flavus produced more aflatoxin B1 than other lev-
els during 7, 14, and 21 days of incubation, however, at
0.80aw and 25 ◦C, aflatoxin B1 accumulation reaches max-
imum levels in 14 days of incubation. The authors further
noted that an increase in aw levels reduced the aflatoxin
B1 production at 30 ◦C. Therefore, aflatoxin occurrence in
crops is determined by the interaction between environ-
mental and crop intrinsic factors.
Levels of crop contamination will, to a large extent,

determine the levels of human exposure to aflatoxin. For
instance, several surveys in Africa (Table 2) report high
levels of contamination in staple crops (Gnonlonfin et al.,
2013); this is consistent with the observed high levels of
human dietary exposure (Table 3) in these countries.

3.1 Occurrence of aflatoxins in cereals
and cereal products

Cereals are the staple foods for a large portion of the
world’s population (Awika, 2011). Wheat provides up to
14.1% and 24.3% of the total calorie intake in America and
Asia, respectively, while rice alone provides up to 28.5%
of total calorie intake in Asia (Andrade & Caldas, 2015).
Africans get 30% of their daily energy from wheat and
maize (Andrade & Caldas, 2015). Cereals also form a large
proportion of infant formulas worldwide (Nicklas et al.,
2020). Additionally, cereals also make a significant propor-
tion of animal feed in all parts of the world (Alvarado et al.,
2017). Unfortunately, cereals and cereal-based products are
prone to aflatoxin contamination.
Due to its worldwide production and consumption,

maize (Zeamays L) is one of the primary human-exposure
vehicles to aflatoxin. Several aflatoxicosis outbreaks origi-

nate from contaminated maize (Muthomi et al., 2009). For
this reason, maize-related dietary data forms a vital com-
ponent of many aflatoxin risk and exposure assessments.
Maize-induced human and animal aflatoxin-exposure
remains a significant food safety concern, as maize is a
staple food in regions where climatic conditions are favor-
able for fungal growth and aflatoxin production. There are
multiple reports documenting aflatoxin contamination of
maize and maize-based products from almost all parts of
the world (Lee & Ryu, 2017).
Aflatoxin occurrence in maize starts in the field where

the kernels are infected with the fungi producers of afla-
toxin and continue to accumulate as the products progress
along the value chain. For instance, in a study to ana-
lyze aflatoxin occurrence in the maize supply chain in
Congo, Kamika, and Tekere (2016) observed that aflatoxin
incidence rate increased as the maize progressed through
the value chain, from 32% during preharvest to 100% at
retail level of the 52 samples. They observed that aflatoxin
levels also increased from 3.1 μg/kg to 300 times higher
than the maximum limit of 10 μg/kg for total aflatoxin
set by Codex Alimentarius. In a similar study Liverpool-
Tasie et al. (2019) investigated the co-occurrence of afla-
toxin and fuminisin in themaize value-chain in Southwest
Nigeria. Of 140 samples analyzed, 52% were contaminated
with aflatoxin at levels beyond the Nigerian Regulatory
limit. Surveys in Burundi, Togo, and Kenya (Hanvi et al.,
2019; Nabwire et al., 2020; Udomkun et al., 2018) reported
similar contamination levels. As detailed in Table 2, these
high incidence rates and levels are not uncommon in sub-
Saharan Africa, where one of the most severe mycotoxin-
poisoning incidents in the last decade occurred (Chemi-
ning’wa et al., 2009). It is not a coincidence that the highest
aflatoxin-exposure levels are reported (Table 3) from this
part of the world.
Several studies in Latin America have also reported

maize contaminationwith aflatoxin. In a survey conducted
between 2003 and 2015 in Costa Rica, 1285 maize and
maize-based product samples (intended for human food
and animal feed) were collected and screened for aflatoxin
contamination. Of these samples, the highest levels of afla-
toxin were detected in maize (38.6%) and maize products
(27.8%;Granados-Chinchilla et al., 2017). In another survey
conducted inMexico, wheremaize is a staple crop, 171 sam-
ples of maize products were analyzed for aflatoxin B1, 18%
and 26% of the samples exceeded the Mexican and EU reg-
ulatory limits, respectively (Zuki-Orozco et al., 2018). Pre-
vious studies of similar products in different parts of Mex-
ico also reported aflatoxin contamination levels beyond the
Mexican regulatory limit of 12 ug/kg (Castillo-Urueta et al.,
2011; Espinosa et al., 1995). In Brazil, of 148 maize sam-
ples screened for mycotoxin contamination; aflatoxins B1
and G1 were detected in 25.6% (38) and 7.4% (11) of the
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samples, respectively. Of these positive samples, 1% was
beyond the Brazilian regulatory limits of 20 ug/kg (Oliveira
et al., 2017). Similar levels have been previously reported in
Brazil (Amaral et al., 2006; Souza et al., 2013).
A review by Sun et al. (2017) indicated that maize

aflatoxin-contamination in China varies from region to
region. Still, overall incidence rates ranged from 36.96% to
91.84%, with a mean contamination range of 1.15 to 107.93
ug/kg. However, in a more recent assessment, Yang et al.
(2019) reported a lower incidence level (0.87%) of aflatoxin
B1 inmaize. Variance in contamination levels could be due
to different reasons, including different climatic conditions
within the same country. Different incidence rates and lev-
els have been reported from other countries within Asia
(Table 2).
Until recently, aflatoxin contamination of food was not

a food safety concern in Europe; however, recent fluctua-
tions in climate patterns have changed this situation (Bat-
tilani et al., 2016). In a survey in Serbia, 180 maize samples
were analyzed for aflatoxin contamination. Aflatoxins B1,
B2, G1, andG2were detected in 57.2%, 13.9%, 5.6%, and 2.8%
of maize samples in the concentration ranges of 1.3 to 88.8,
0.60 to 2.8, 1.8 to 28.5, and 2.1 to 7.5 μg/kg, respectively. Of
these, 32.2% and 21.1% of the samples presented contamina-
tion levels beyond the regulatory limits for aflatoxin B1 and
total aflatoxins, respectively. In another survey in France,
6% of 114 maize field samples and 15% of 81 of maize silo
samples were found aflatoxin-positive (Bailly et al., 2018).
Moreover, an exposure and risk assessment of aflatoxins
intake through consumption ofmaize products in the adult
populations of Serbia, Croatia and Greece, concluded that
average aflatoxin intake through the consumption ofmaize
or maize-based products was between 0.44 and 5.59 ng/kg
bw/day (Udovicki et al., 2019).
In the United States, occurrence of aflatoxin in food

is generally considered low. However, from 2004 to 2013,
there were 18 reports of food and feed recalls due to afla-
toxin contamination, although most of these recalls were
related to dog feed (Mitchell et al., 2016). In a more recent
survey, Zhang et al. (2018) did not detect aflatoxin in any of
the 215 samples of infant foods and breakfast cereals in the
US retail market screened for the presence of mycotoxins.
Additionally, according to theCornHarvestQuality Report
2018 to 2019 of theUSGrains Council, of 181maize samples
screened for aflatoxin, 98% have no detectable levels. This
is similar to the previous 2 years when only 0.6% (1) of the
181 samples showed an aflatoxin level higher than the Food
and Drug Administration (FDA) regulatory limit of 20 ppb
(parts per billion; US Grain Council, 2019).
Rice (Oryza sativa L.), one of the most consumed cere-

als globally, is another food crop susceptible to aflatoxin
contamination (Millán & Martinez, 2003). Rice is mainly
produced in environmental conditions suitable for fungal

growth and aflatoxin production.Hence, its contamination
with aflatoxin starts in the field where grains are infected
with fungal producers of aflatoxin (Sales & Yoshizawa,
2005). This aggravates during postharvest sun-drying, leav-
ing the grains’ moisture content much higher than the
required 14% (Reddy et al., 2009). Prietto et al. (2015),
in their study, observed that stationary drying of newly
harvested rice resulted in higher levels of aflatoxin contam-
ination. Therefore, postharvest drying and moisture con-
tent reduction in grains is critical for preventing aflatoxin-
contamination in rice. Generally, dryingwithin 24 h of har-
vest to reduce the moisture content down to14% or below
inhibits the growth and aflatoxin production byAspergillus
producers of the toxin (Masood et al., 2018).
In China, Lai et al. (2015) investigated the presence of

aflatoxin in 370 rice samples collected from six different
regions of the country. Of these samples, 63.5% were afla-
toxin B1 positive, of which 1.4% contained levels beyond
the EU regulatory limits. In a mini-survey in Saudi Arabia,
samples of imported rice from India, Pakistan, the United
States, Egypt, andAustralia were analyzed for the presence
of aflatoxin. Apart from the US parboiled rice, at least one
class of aflatoxin was detected in all the 75 samples in lev-
els ranging from 0.014 to 0.123 µg/kg for aflatoxin B1 and
0.052 to 2.58 µg/kg for total aflatoxins (Al-Zoreky & Saleh,
2019).
Furthermore, in a study carried out in Brazil, 187 rice

samples from the field, processing and retail markets from,
wetland and dryland, were analyzed for fungi belonging
to Aspergillus section Flavi and the presence of aflatox-
ins. Five fungal species were identified: A. flavus, A. cae-
latus, A. novoparasiticus, A. arachidicola, and A. pseudo-
caelatus, and 14% of the samples were aflatoxin-positive
with two samples exceeding the Brazilian regulatory limit
of 5 ug/kg (Katsurayama et al., 2018). In another study
conducted in Guyana, 186 samples of rice were tested for
aflatoxin, of these, 16 and 3 samples had detectable lev-
els of aflatoxin in concentrations higher than the US and
EU regulatory limits, respectively (Morrison, 2016). Iqbal
et al. (2016) screened 208 samples of rice and rice-based
products collected from central areas of Punjab, Pakistan.
Results obtained indicated that 35% of the samples were
contaminated with aflatoxin, of which 19% and 24% of the
samples were above the EU regulatory limit for aflatoxin
B1 and total aflatoxins, respectively. The authors observed
that brown rice has a higher mean level of aflatoxin B1 and
total aflatoxins. This is in accordance with previous obser-
vations (Choi et al., 2015; Mousa et al., 2013), suggesting
that brown rice is more prone to aflatoxin contamination
than other types of rice.
Although aflatoxin levels in rice are lower than other sta-

ple cereals like maize, it is a staple food in many parts of
the world. Therefore, it could represent a significant route
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of human exposure to aflatoxin (Elzupir et al., 2015). A
similar observation was made in a global assessment of
aflatoxin’s human exposure through cereal consumption
(Andrade & Caldas, 2015).
Sorghum, wheat, barley are other cereals reported to

be contaminated with aflatoxin. In a study in Kenya,
164 sorghum samples were screened for the presence of
aflatoxin B1 of which 60% were found positive and 11%
of the samples with levels beyond the Kenyan regula-
tory limit of 5 ppb for sorghum (Sirma et al., 2016). In
another survey by Hanvi et al. (2019), of 12 samples of
sorghum collected from Togolese markets, 25% were con-
taminated with aflatoxin with a contamination range of
6 to 16 µg/kg. Like other cereals, fungal proliferation and
aflatoxin production in sorghum can happen both in the
field and during storage if the conditions are adequate
(Kange et al., 2015). A report by Ssepuuya et al. (2018) stud-
ied mycotoxins’ occurrence in sorghum and its contribu-
tion to human dietary exposure in Burkina Faso, Ethiopia,
Mali, and Sudan revealed that sorghum could be a sig-
nificant contributor to aflatoxin-dietary exposure among
sub-SaharanAfricans. In India, 1606 sorghum samples col-
lected across 4 years were screened for aflatoxin contami-
nation. The authors concluded that aflatoxin contamina-
tion of sorghum in India is not a big concern as only 35
samples of the 1606 samples analyzed contained aflatoxin
B1 at levels beyond the Indian regulatory limit of 20 ug/kg
(Ratnavathi et al., 2016).
In a survey in Lebanon, of two sets of wheat sam-

ples collected from different warehouses, 23.3% and 25.3%
were found to be contaminated with aflatoxin B1 at levels
beyond the 2 µg/kg regulatory limit (Joubrane et al., 2020).
Turksoy and Kabak (2020) analyzed 144 wheat samples
from different parts of Turkey for the presence of aflatoxin
and ochratoxin A. Aflatoxin was detected in 2% of the 141
samples in levels ranging from 0.21 to 0.44 µg/kg. Further-
more, of 36 wheat samples collected from different parts of
Egypt, about 33% were aflatoxin B1 positive, 16% of which
were beyond the EU regulatory limit of 2 µg/kg (Hathout
et al., 2020). Generally, compared to other cereals, wheat
is less prone to aflatoxin contamination (Armorini et al.,
2015).
Mycotoxins occurrence in cereal food crops is a com-

mon issue regardless of the geographic or climatic condi-
tions. Fungal toxin production happens both in cereals in
the field and stored grains (Filazi & Sireli, 2013).

3.2 Occurrence of aflatoxins in oilseeds
and oilseed products

Oilseeds crops, including peanut, sunflower, soybeans,
canola, rapeseed, flaxseed, mustard seed, sesame, cotton-

seed, and their products, are susceptible to aflatoxin con-
tamination (Filazi & Sireli, 2013). Other nuts, including
almonds, pistachios, walnuts, chestnuts, apricots, Brazil
nuts, are equally prone to aflatoxin contamination (Diella
et al., 2018). Among oils crops contaminatedwith aflatoxin,
peanuts are the most susceptible. The invasion of peanuts
plants by toxigenic fungus and the posterior contamina-
tion of the nuts with aflatoxin is a serious food safety
concern in peanut-producing regions worldwide (Waliyar
et al., 2015). Peanuts are a significant contributor to afla-
toxin’s dietary exposure among consumers in West Africa,
where it is both a cash and staple crop (N’dede et al.,
2012). The type of soils, environmental and farmconditions
under which peanut is typically grown, favors toxigenic
fungal proliferation and aflatoxin production in peanuts
(Bankole & Adebanjo, 2003).
As previously mentioned, surveys of aflatoxin-

contamination of peanuts in Africa and other parts
of the world revealed that peanuts and their products
are highly prone to aflatoxin-contamination (Chauhan,
2017). A decade-long survey of aflatoxin contamination
in Gambian peanuts found that 42% of 1168 analyzed
samples were contaminated with levels higher than the
Codex recommended limit of 15 ppb. Contamination
levels ranged from 8.55 to 112 ppb (Jallow et al., 2019). Like
several other aflatoxin-susceptible crops, the invasion and
aflatoxin production in peanuts starts in the field and
continues as the products progress toward the consumers
(Soni et al., 2020). A study in Mali reveals that aflatoxin
accumulation in peanuts occurs at all stages of production;
however, it is more pronounced during postharvest storage
(Waliyar et al., 2015). Occurrence and factors associated
with aflatoxin contamination of raw peanuts from Lusaka
district’s markets, Zambia was investigated by Bumbangi
et al. (2016). Of the 92 samples analyzed, 51 were positive
with levels ranging from 0.014 to 48.67 ppb, 6.5% of which
were above the codex limits for aflatoxins in peanuts.
Another study in the same country surveyed the presence
of aflatoxin in imported and nationally produced peanut
butter from 2012 to 2014. Of the samples collected from
2012 to 2014, 73%, 80%, and 53% were contaminated with
levels ranging from 20 to 1000 µg/kg, respectively. Some
of the products were imported from countries within the
East African region (Njoroge et al., 2016).
Contrary to initial suppositions that vegetable oils

are not prone to aflatoxin contamination (Mahoney
& Molyneux, 2010), several studies have reported the
presence of aflatoxin in peanut oil. In Guangdong, China,
from 2016 to 2017, 427 samples of peanut oil were screened
for aflatoxin content. Aflatoxin B1 was detected in 22.5%
of the samples in levels ranging from 15.4 to 49.9 µg/kg
in 2016 and in 15.1% of the samples in a range of 8.8 to
22.2 µg/kg in 2017. Another study in Haiti reported a carry-
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over of 0.5% of initial aflatoxin in peanut to the extracted oil
(Schwartzbord & Brown, 2015). The same authors reported
that 14%, 97%, and 30% of 21 raw peanut samples, 32 peanut
butter samples, and 30 maize samples, were contami-
nated with aflatoxins, respectively. In Malaysia, aflatoxins
occurrence in raw peanut samples collected from retail-
ers and manufacturers was investigated by Norlia et al.
(2018). Of the screened samples, 38% and 22% of the sam-
ples exceeded the Malaysian Regulation limit. Aflatoxin
contamination of peanuts in Malaysia has been recently
reviewed (Nor-Khaizura et al., 2019).

3.3 Spices and herbal products affected
by aflatoxin

Spices and herbs are widely used food products with an
estimated global production of $3 billion. Black pepper,
capsicums, cumin, cinnamon, nutmeg, ginger, turmeric,
saffron, coriander, cloves, dill, mint, thyme, and curry
powder are the most widely used in the food and culi-
nary industry spices worldwide as organoleptic enhancers,
preservatives, and medicines in some cultures. Sadly,
spices and herbs are reported to be a source of human-
aflatoxin exposure (Kabak & Dobson, 2017). Although
studies have reported black pepper plants to have some
inhibitory powers against the growth of toxigenic strains of
A. flavus andA. parasiticus, and toxin production (Ibrahim
et al., 2017), several studies have reported aflatoxin pres-
ence in black pepper. In a survey conducted in Iran, afla-
toxin was detected in 5 of 40 black pepper samples (12.5%)
in levels ranging from 0.88 to 1.45 µg/kg. In the same
study,100% of 36 red pepper samples were contaminated
with aflatoxin ranging from4.22 to 28.6 µg/kg (Barani et al.,
2016). In another survey conducted in India, aflatoxin was
detected in 78.1% of 55 black pepper samples contami-
nated with total aflatoxins with average amount of 320 ppb
(Jeswal & Kumar, 2015a).
Chilli (capsicum) is another widely consumed spicy

product that is susceptible to aflatoxin contamination. The
climatic conditions of the major producers, handling, and
chili processing procedures make it vulnerable to fun-
gal invasion and subsequent aflatoxin contamination. Like
other crops, chilli contamination with aflatoxin can occur
both during pre-and postharvest stages (Duman, 2010).
Reports from different parts of the world have documented
aflatoxin presence in chili in levels higher than regulatory
limits (Ezekiel et al., 2019; Golge et al., 2013; Klieber, 2001).
Evidence of aflatoxin contamination of other spicy prod-

ucts including cinnamon and cassia, cloves, coriander,
cumin, ginger, nutmeg, saffron, turmeric, black cumin,
dill, mentha, thyme, curry powder, among others, have
been detailed by Kabak, and Dobson (2017). Addition-

ally, aflatoxin present in samples of Chinese Traditional
Medicines and other herbal medicines are reported in vari-
ous published literature. A summary of research data accu-
mulated from 2000 to 2018 indicates that 2979 batches of
Chinese traditional herbs from 66 varieties prone to afla-
toxin contamination were tested, of which 697 batches
tested positive for aflatoxinwith levels ranging from0.02 to
1268.8 µg/kg (Qin et al., 2020). Another study by Zhao et al.
(2016) reported that 14 of 22 samples were contaminated
with at least one type of aflatoxin at concentrations rang-
ing from 0.2 to 7.5 µg/kg. A similar study in South Korea
reported 58 of 700 samples of herbal medicines were afla-
toxin positive, with 6 and 10 samples exceeding the Korean
regulatory limits of 10 and 15 µg/kg for aflatoxin B1 and
total aflatoxins, respectively (Shim et al., 2012).

3.4 Coffee and tea

Despite previous assumptions that caffeine can inhibit fun-
gal toxin production, aflatoxin has been isolated in both
ground and coffee beans. In a study to assess human
exposure tomycotoxins through coffee consumption, sam-
ples collected from nine different countries were analyzed.
Although sporadic and lower (maximum level of 1.2 µg/kg)
in quantity compared to other mycotoxins, aflatoxin was
detected in some samples (Bessaire, et al., 2019). In a study
in Spain, aflatoxin was detected in 53% of 169 studied cof-
fee samples. Of these, no sample exceeded 2 µg/kg of afla-
toxin B1, but 15% of samples had a concentration of total
aflatoxins beyond 5 µg/kg (García-Moraleja et al., 2015). In
Pakistan, 30 coffee sampleswere analyzed for aflatoxin and
heavy metals. Of these samples, 50% and 20% exceeded the
EU limit for aflatoxin B1 and total aflatoxin, respectively.
Contamination levels ranged from < LOD (limit of detec-
tion) to 25.75 µg/kg and < LOD to 13.33 µg/kg for total afla-
toxins and aflatoxin B1 (Azam et al., 2020).
Studies have revealed that aflatoxin levels in roasted cof-

fee are often low (Al-Ghouti et al., 2020; Bessaire, Perrin,
et al., 2019). This is attributed to the thermal treatment cof-
fee beans are subjected to during the roasting process. A
study by Micco et al. (1992) found that roasting reduces
aflatoxin levels in coffee beans. Different reduction lev-
els have been reported. A recent study by Humaid et al.
(2019) observed that roasting of aflatoxin-contaminated
green coffee beans resulted in a 20% reduction in initial
aflatoxin concentration levels. In a previous study, Soli-
man (2002) reported that roasting reduced about 42.2% to
55.9% of aflatoxin content in coffee beans depending on the
type and roasting parameters. This same study also con-
cluded that caffeine content in coffee beans reduces poten-
tial fungi growth and aflatoxin production.
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As one of the most consumed beverages globally, tea is
often associated with healthy food choices due to its high
content of health-promoting phytochemicals like polyphe-
nols (Khan & Mukhtar, 2013). Until recently, scientific
research on tea has mostly focused on its health bene-
fits, paying little attention to its safety. However, new data
from different parts of the world suggest that mycotoxin-
contamination of tea should be a cause of concern (Sedova
et al., 2018). Aflatoxin occurrence in tea has been reported
from different parts of the world (Sedova et al., 2018). For
instance, of 44 commercial tea samples analyzed for the
presence ofmycotoxins, aflatoxin B2 (14.4 to 32.2 µg/L) and
aflatoxin G2 were detected in 14% and 18% of the samples,
respectively (Pallares et al., 2017). In another study con-
ducted in Iran, 60 tea sampleswere tested for aflatoxin con-
tent. The results showed that 40% of the samples presented
detectable levels of aflatoxin butwithin the regulatory limit
of≥10 µg/kg (Pakshir et al., 2020). Few studies have looked
into the carryover of aflatoxin from contaminated raw tea
leaves to the beverage. Ismail et al. (2020) observed that
more than half of the aflatoxin content in naturally con-
taminated raw leaves is transferred to the beverage during
processing. Another study reported a 28% to 33% carryover
in artificially contaminated tea samples (Viswanath et al.,
2012).

3.5 Alcoholic beverages

The presence of aflatoxin inwine is not frequent. However,
traces of aflatoxin have been occasionally isolated in both
traditional and industriallymade beer (Scott, 2008). Di Ste-
fano et al. (2015) reported a 57.9% incidence rate of afla-
toxin G1 in 57 market samples of Sicilian red wines. One of
the samples contaminatedwith aflatoxinG1 contained 0.13
and 0.15 µg/L of aflatoxin G1 and aflatoxin B1, respectively.
In a survey, a selection of 1000 beer samples, of which

60% were traditionally brewed (craft beers) collected from
47 different countries, were screened for the presence of
aflatoxin B1 and other mycotoxins. Of these samples, five
were confirmed to contain aflatoxin B1 in levels ranging
from 0.1 to 1.2 µg/L. Three of the aflatoxin B1-positive sam-
ples also contained aflatoxin B2 in concentrations ranging
from0.1 to 0.2 µg/L.AflatoxinM1was detected in one of the
samples (Peters et al., 2017). The authors further noted that
all the aflatoxin-contaminated samples were from Africa.
Furthermore, in a survey conducted in China, 101 market
samples of beer were analyzed for the presence of afla-
toxin B1 and sterigmatocystin. Interestingly, none of the
samples, presented detectable aflatoxins levels (Zhao et al.,
2017).
Reports have indicated that locally brewed traditional

alcoholic beverages could be a source of aflatoxin expo-

sure among Africans primarily due to the high contami-
nation levels in the raw materials (Lulamba et al., 2019). A
survey evaluated the aflatoxin levels in industrially brewed
local and imported beers collected from an Ethiopian local
market. Of 12 domestic alcoholic beer brands sampled,
11 were aflatoxin-positive with a range of total aflatox-
ins between 1.23 and 12.47 µg/L. None of the imported
brands had detectable aflatoxin. The authors observed that
aflatoxin-related knowledge was low among local manu-
facturers (Nigussie et al., 2018). In another survey in Nige-
ria, 90 samples of imported and locally brewed beers were
screened for aflatoxins. Aflatoxin B1 levels ranging from
3.43 to 38 ug/L was detected in 17.9% of the locally made
beers and 16.7% of the imported beer (Salami Oluwafemi
et al., 2019). In another survey in South Africa, aflatoxin
B1 was detected in only 2 of 32 beer samples in values
ranging from 5.8 to 7.0 µg/L, which are higher than the
South African national regulatory limit for aflatoxin B1 (5
µg/kg) but within the permissible levels of total aflatoxins
(10 µg/kg) in South African foods (Adekoya et al., 2018).
Carryover of aflatoxins from contaminated raw materi-

als into beer has been previously studied (Chu et al., 1975).
In more recent works, a laboratory-scale study evaluated
the fate of mycotoxins during brewing of beer and wine.
The authors observed that brewing reduced aflatoxin lev-
els to below 20% of the initial contamination levels (Inoue
et al., 2013b). A similar study evaluated aflatoxin’s fate dur-
ing beer andwine fermentation andobserved that aflatoxin
B1 levels remained unaffected by the fermentation used for
beer production but were reduced to 30% of their initial
concentration in wine fermentation (Inoue et al., 2013a).

3.6 Aflatoxin contamination of foods of
animal origin

Aflatoxin contamination of food is not unique to plant-
based products. Numerous reports have documented the
presence of aflatoxins in foods of animal origin. Their
detection in dairy products, eggs, and edible animal prod-
ucts triggered the formulation of regulations to control
their presence in animal feed, the route via which ani-
mals are exposed to aflatoxins (Fink-Gremmels & Van Der
Merwe, 2019). Aflatoxin has also been detected in human
milk among lactating mothers in aflatoxin hotspots of the
world. A Survey inNigeria byOluwafemi (2012) concluded
that about 14% of 121 samples of human breast milk was
contaminated with aflatoxin M1 at levels between 2 and
187 ng/L.
Twelve hours upon the consumption of aflatoxin B1-

contaminated feed, milking animals start to excrete afla-
toxin M1 in their milk (Applebaum et al., 1982). Aflatoxin
B1 is transformed in the liver by the hepatic microsomal
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cytochrome P450 into aflatoxinM1 in the lactating animals
through the hydroxylation of the fourth carbon in the afla-
toxin B1 molecule (Nabney et al., 1967).
The amount of aflatoxin B1 converted to aflatoxin M1

varies depending on several factors, including milk-yield
and lactating period (Veldman et al., 1992). Britzi et al.
(2013) reported a carryover of 1% to 2% in low-milk-yielding
cows and up to about 6% in high-milk-yielding cows. A
more recent study by Churchill (2017) reported a 6.5%
carry-over in high-milk-yielding dairy cows. In ewes and
goats, estimated levels of 1.5% and 0.8% per kgmilk, respec-
tively, have been reported (Walte et al., 2016). Generally,
carryover of aflatoxin B1 from the feed to milk varies
among animal species and rates are higher during the early
stages of lactation (Prandini et al., 2009).
As a possible food safety risk to consumers, aflatoxin

M1 is categorized as a group 2B human carcinogen by the
IARC (Ostry et al., 2017). Hence, its presence in foods and
agricultural products is regulated in many countries (Iqbal
et al., 2015).
Numerous studies in different countries have reported

different occurrence levels of aflatoxin M1 in different cat-
egories of milk and dairy products. A study conducted
in Lebanon surveyed the aflatoxin contamination in 868
samples of raw milk, pasteurized ultra-high temperature
(UHT) milk, and dairy products. The study revealed an
occurrence rate of 58.8%, 90.9%, and 66% in raw milk, pas-
teurized UHTmilk and dairy products, respectively, in lev-
els ranging from 0.011 to 0.440, 0.013 to 0.219, and 0.015
to 7.350 µg/L, respectively. The authors noted that 28%,
54.5%, and 45.5% of the contaminated raw milk, pasteur-
ized and dairy products were, respectively, above the EU
regulatory limits for aflatoxin M1 (Daou et al., 2020). In
Indonesia, another survey screened 20 samples of fresh,
16 pasteurized milk, and 16 recombined milk products for
aflatoxin M1. Of these samples, 92.5% were contaminated
in a range of 24 to 570 ng/L. The highest average concen-
tration of aflatoxinM1was detected in the pasteurizedmilk
at 244 ng/L, followed by fresh milk at 219 ng/L. The lowest
was observed in the recombined milk samples (131 ng/L;
Sumantri et al., 2019). A study in South China found afla-
toxin M1 in 62.5% of 136 raw buffalo milk and 74.4% of 86
dairy products samples in concentrations ranging from 4
to 243 ng/kg and 4 to 235 ng/kg, respectively (Guo et al.,
2019). The authors observed that aflatoxin M1 incidence
rate and concentration levels were higher in cheese than
other products. Amore recent survey around the same area
in China observed an 80.4% incidence rate of aflatoxin M1
in 734 milk samples, comprising raw milk (133 samples),
pasteurized milk (410), extended shelf-life milk (93), and
UHTmilk (98) with amean concentration ranging from 5.1
to 104.4 ng/L (Xiong et al., 2020). Furthermore, in a study
in Italy, 31,702 milk samples were tested for aflatoxin M1.

Of these samples, 63 (0.20%) raw milk samples contained
aflatoxin M1 higher than 50 ng/kg (Serraino et al., 2019).
AflatoxinM1 incidence rates and levels inmilk and dairy

products, generally vary and hardly follow a regular pat-
tern as evidenced in the cited literature and those detailed
in Table 2. This variability could be due to multiple factors
including processing procedures, storage, types of product,
geographical and seasonal effects (Barukčić et al., 2018;
Campagnollo et al., 2016; Peña-Rodas et al., 2018; Tomaše-
vić et al., 2015). A 2-year survey in Egypt observed a signif-
icant (p ≤ .001) variation in aflatoxin M1 levels in milk.
Milk samples collected in winter presented higher inci-
dence and contamination levels than those collected in
summer (Ismaiel et al., 2020). In a similar study in El Sal-
vador, Peña-Rodas et al. (2018) registered more aflatoxin
M1-positive samples during a drought year than a non-
drought year. Their study revealed a 16.5%higher incidence
rate during the drought year compared to the nondrought
year. Contrastingly, in a survey conducted in Brazil, 40
samples of milk collected from subtropical and temper-
ate regions of the country were screened for the pres-
ence of aflatoxin M1, of these samples 87.50% contained
detectable levels of aflatoxinM1with amean concentration
of 16.66 ng/L.However, the authors did not observe any sig-
nificant differences in the levels of aflatoxin M1 between
the two climate zones in both summer and winter (Venân-
cio et al., 2019).
AflatoxinM1 is known to be stable under different condi-

tions andprocessing parameters (Iha et al., 2013).However,
certain levels of reduction have been reported as a result
of processing. For instance, researchers subjected aflatoxin
M1-contaminated milk to pasteurization (95 ◦C for 5 min)
and observed 18% and 16% reduction of in milk contami-
nated with 1.5 and 3.5 µg/kg of aflatoxin M1, respectively
(Şanli et al., 2012). Another study reported a 7.62% reduc-
tion in aflatoxin M1 with similar processing parameters
(Bakirci, 2001). Deveci (2007) reported that pasteurization
(72 ◦C for 2 min) resulted in about 12% and 9% reduction
in aflatoxin M1 in milk contaminated with 1.5 µg/kg, and
3.5 µg/L aflatoxin M1, respectively. Purchase et al. (1972)
observed that in general, aflatoxin M1 reduction in milk
positively correlates with the amount of heat applied in the
processing. Contrastingly, Jasurent et al. (1990) observed
that pasteurization (95 ◦C for 3 min) had no significant
effect on aflatoxin M1 content in milk. Other studies by
Govaris et al. (2001) and Awasthi et al. (2012) reached sim-
ilar conclusions.
In terms of processing, Iha et al. (2013) observed that

aflatoxin M1 in milk was reduced by 3.2% when pro-
cessed into cheese and by 6% when processed into yogurt.
Some researchers reported higher reduction levels by low-
ering the dairy product’s pH (Iqbal et al., 2015). For
instance, Kuboka et al. (2019) reported a 73.6% reduction in
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aflatoxin M1 in yogurt after lowering its pH from 4.4 to
4.0 through fermentation. Differences in reduction levels
could be attributed to various factors including, the time-
temperature combination of the process, initial aflatoxin
M1 load of the rawmilk, and the type of analytical method
used to assess the end product (Rustom, 1997).
Occurrence and levels of aflatoxin M1 in dairy products

are heavily dependent on animal feed (Der Fels-Klerx &
Camenzuli, 2016). Therefore, it is of food safety relevance
that aflatoxin levels in animal feeds aremonitored and kept
at minimum levels. Moreover, while milk and dairy prod-
ucts have not been reported as significant contributors to
the overall aflatoxin exposure levels, they form a large part
of children and infant diets that may be more sensitive to
high exposure levels. The same could be said about the
presence of aflatoxins in human breast milk. Consump-
tion of aflatoxin-contaminated foods poses a risk to the
lactating mothers and the more vulnerable breastfeeding
children and infants. Therefore, attention needs to be paid
to the contamination levels in milk and other dairy prod-
ucts. Additionally, as observed by Van Der Fels-Klerx et al.
(2019), changes in global climate patterns will impact afla-
toxin levels in animal feed, which will lead to fluctuations
in aflatoxin levels in animal-derived foods. Therefore, it is
crucial that the aflatoxins levels in foods of animal origin
are monitored.

3.7 Recent aflatoxin-exposure
assessments

Evaluation of dietary exposure to aflatoxin and the risk
this poses to consumers has been the objective of numer-
ous recent studies (Table 2). In general, two approaches
are used to estimate human-aflatoxin exposure. The first
and the most widely used method involves integrating
aflatoxin levels in food samples with food consumption
data (Udovicki et al., 2019). These results are further stan-
dardized by dividing them by average human body weight
(60 kg for adults) and expressed as nanogram/kilogram
body weight/day (ng/kg bw/day; Li et al., 2018). Dietary
data are typically obtained through dietary intake surveys
like 24-h recalls and food frequency questionnaires. The
European Food Safety Authority (EFSA) has developed
detailed guidelines for dietary data collection and process-
ing for risk and exposure assessment purposes (European
Food Safety Authority, 2009).
Using the method described above, Kabak (2016)

assessed aflatoxin exposure through aflatoxin-
contaminated hazelnuts and dried figs among the Turkish.
The author indicated that on a daily basis, Turkish con-
sumers are exposed to 0.014 to 0.018 ng/kg bw at the lower
bound and 0.016 to 0.023 ng/kg bw at the upper bound

of aflatoxin B1 from the consumption of hazelnuts. Dry
figs contribute a mean aflatoxin B1 intake of 0.004 ng/kg
bw/day at the lower bound and 0.005 ng/kg bw/day at
the upper bound. In another work Kooprasertying et al.
(2016) used the same method to assess the exposure and
risk posed by aflatoxin-contaminated peanuts to Thai
consumers. The authors estimated the average daily
intake of aflatoxin at 0.49, 0.40, and 2.13 ng/kg bw/day
for raw, roasted, and ground peanuts, respectively, and
an estimated potential risk of liver cancer of 0.01 to 0.12
cancer/year/100,000 persons. Additionally, a 1.34 ng/kg
bw/day aflatoxin exposure from the consumption of
Omena (Rastrineobola argentea) among Kenyans has
been reported by Marijani et al. (2020). Another study
in Tunisia reported that daily intake of aflatoxin B1 from
pearl millet consumption is 3.89 ng/kg bw/per day. The
authors concluded that millet could be a significant route
of aflatoxin exposure among Tunisia consumers (Lasram
et al., 2020). Furthermore, it is reported that consumers
in Caldas Colombia are exposed to 0.732 and 3.093 ng/kg
bw/day of aflatoxin B1 from the consumption of “arepas”
(maize tortillas) and rice, respectively (Martinez-Miranda
et al., 2019). In Spain Herrera et al. (2019) reported an
aflatoxin B1 exposure level ranging from 0.17 to 0.37 ng/kg
bw/day when they assessed aflatoxin exposure among
infants through the consumption of cereal-based baby
foods.
Although this method is widely used and has proven

effective in measuring human-aflatoxin exposure, it has
some limitations that may compromise the accuracy of the
collected data. As pointed out byGong et al. (2016), the typ-
ical heterogeneous distribution of aflatoxin in food sam-
ples combined with the subjectivity and bias-proneness of
dietary intake surveys may result in over or underestima-
tion of aflatoxin exposure levels among consumers. Addi-
tionally, management of contamination levels below the
LOD of analytical methods and effect of food processing
on aflatoxin levels could threaten the exactitude of estima-
tions made through this method (Marin et al., 2013).
An alternative approach considered a direct and more

accurate way of measuring human-aflatoxin exposure is
by measuring aflatoxin biomarkers in human biological
fluids (Al-Jaal, Jaganjac, et al., 2019). Aflatoxin biomark-
ers, including the aflatoxin-N7-guanine adduct excreted in
urine and aflatoxin M1 excreted in breast milk are used
to determine the short term exposure to aflatoxin B1 and
aflatoxin–albumin adduct in plasma or serum is used for
chronic exposure assessment, (Routledge & Gong, 2011).
A study in Portugal analyzed urine samples for the

presence of aflatoxin biomarkers and found that 13% con-
tained aflatoxin B1, 16% contained aflatoxin B2, 1% had
aflatoxin G1, 2% contained aflatoxin G2, while 19% of the
samples contained aflatoxin. Daily intake of aflatoxin was
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estimated to be 13.43 ng/kg bw/day resulting in 0.13 extra
cases of hepatocellular carcinoma (Martins et al., 2020).
In the Gambia, where peanut is a staple food, Hernandez-
Vargas et al. (2015) assessed aflatoxin exposure in pregnant
women using an ELISA method to measure aflatoxin–
albumin (AF–alb) adducts in plasma. AF–alb levels rang-
ing from 3.9 to 458.4 pg/mg albumin were detected in all
the samples. The authors further noted that aflatoxin expo-
sure in the mothers was associated with DNAmethylation
in their infants.
Being a carcinogenic substance, there is no established

tolerable daily intake (TDI) for aflatoxin B1 (EFSA Panel
on Contaminants in the Food Chain et al., 2020). Daily
exposure to levels as low as 1 ng/kg is considered danger-
ous and a threat to human health (Al-Jaal et al., 2019).
As such, taking into account the as low as reasonably
achievable (ALARA) approach applied when managing
aflatoxin-related risks in food, aflatoxin-exposure levels
(Table 3) remain high in numerous countries in the world,
especially in countries in sub-Saharan Africa and some
parts of Asia. Staple diets made up of aflatoxin-prone foods
and climatic conditions suitable for fungal proliferation
and aflatoxin biosynthesis are the major contributors to
these high levels. However, socioeconomic factors, includ-
ing subsistence farming, low awareness, and the inability
to establish and enforce regulations, also play significant
roles.

4 WORLDWIDE REGULATIONS OF
AFLATOXIN IN FOOD

Since their discovery, aflatoxins have remained a persistent
food safety issue and continue to pose risks to human and
animal health. The US FDA considers them unavoidable
contaminants in food (Wood, 1992). Therefore, countries,
regions, and international agencies enacted regulations to
minimize the levels of aflatoxin in food and feed (Williams
et al., 2004).
Development and institutionalization of food safety reg-

ulations require a thorough consideration of both scien-
tific and socioeconomic factors. Scientific factors, includ-
ing the availability of toxicological and human exposure
data, sampling, and analytical capacity, are indispensables
for the development of aflatoxin and other food safety-
related regulations. Socioeconomic factors such as food
security, existing regulations in trade partners’ countries,
level of development of a country or region, and the type
of food system in a country are equally important factors
taken into account when formulating regulations to pro-
tect consumers against contaminated foods (FAO, 2004).
Aflatoxin regulatory limits are formulated using risk

assessment models. They are often developed by spe-

cialized national and multilateral agencies, like the
FAO/WHO Joint Expert Committee on Food Additives of
theUnitedNations (JECFA), EFSA, TheMinistry ofHealth
of the People’s Republic of China, and the FDA in the
United States (Van Egmond et al., 2007; Zhang et al., 2018).
Difference in countries’ risk perception, data, approaches,
and risk assessment models create disparities between
countries in terms of aflatoxin regulatory limits.
Developed countries with better scientific and techni-

cal know-how often tend to adopt lower regulatory lim-
its (more stringent) than those set by the global food
safety regulatory body-WHO/FAO joint Codex Alimentar-
ius Commission. In some instances, these disparities have
brought up trade disputes between importing and export-
ing countries, with importing countries often accused of
using food safety regulations to disguise trade barriers.
Fortunately, The World Trade Organization’s Sanitary and
Phyto-sanitary (SPS) Agreements recognized the limits
set by Codex Alimentarius Commission as the standards
upon which international trade dispute settlements will
be based. According to the SPS Agreements, Countries
could imposemore stringent limits, provided that these are
based on logical scientific reasoning reached through a risk
assessment (Roberts & Unnevehr, 2005).
Some countries and regions have moved to harmonize

their aflatoxin-related food safety regulations to facilitate
trade and avoid trade conflicts. Australia and Zealand, The
EU, and Mercosur (Argentina, Brazil, Uruguay, Paraguay,
and Venezuela) are notable examples of these kinds of ini-
tiatives (King et al., 2017).
Notwithstanding, setting up and enforcing regulations

requires a considerable amount of resources and efforts.
Some countries have been more successful than others
in doing so. For instance, The EU possesses arguably the
best food safety (including aflatoxins) surveillance and
information sharing system in the Rapid Alert System for
Food and Feed (RASFF). The system enables the sim-
ple, rapid collection, sharing, and storage of food safety-
related data (Parisi et al., 2016). This allows fast decision-
making among relevant institutions to prevent the entry of
aflatoxin-contaminated food products in theEU.Data from
the system (Figure 2) are often cited to point out aflatoxin-
related indicators like economic losses incurred by export-
ing countries attributable to aflatoxin, remotely evaluate
aflatoxin-contamination levels in exporting countries and
even evaluate exporting countries’ regulation enforcement
effectiveness. A high number of alerts for products from a
particular country may indicate one of these issues.
Globally about 120 countries have enacted regulatory

limits on allowable aflatoxin levels in human food and
animal feed (Bui-Klimke et al., 2014). Some countries set
limits for the four most prominent types of aflatoxins in
food: B1, B2, G1, and G2. For example, the US and Kenyan
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F IGURE 2 Number of aflatoxin-related Rapid Alert System for Food and Feed (RASFF) notifications of the 10 countries with the highest
number of notifications from 2015 to 2019
Note: Data were adopted from the RASFF annual reports of 2015 (European Union, 2015), 2016 (European Union, 2016), 2017 (European
Union, 2017), 2018 (European Union, 2018), and 2019 (European Union, 2019)

regulations stipulate a maximum limit of 20 and 10 ppb for
the sum of the four types of aflatoxins (total aflatoxins),
respectively. In contrast, the EU that has different limits
for different aflatoxin–food combinations has a maximum
level of 2 and 4 ppb for aflatoxin B1 and total aflatoxins in
maize and peanuts, respectively (European Commission,
2006). Additionally, many countries have adopted maxi-
mum limits for milk and dairy products (aflatoxinsM1 and
M2; Lalah et al., 2019).
In LatinAmerica, several countries, including nonmem-

bers of the Mercosur group, have enacted regulations to
prevent aflatoxins in food and feed (Miranda et al., 2013).
In Asia, almost all the states have written regulations
for aflatoxin, mostly for cereals, nuts, and their prod-
ucts (Anukul et al., 2013). Members of the Gulf Cooper-
ation Council (the United Arab Emirates, Saudi Arabia,
Qatar, Oman, Kuwait, Bahrain) have also jointly adopted
aflatoxin-related regulations (Al-Jaal, Salama, et al., 2019).
Notably, despite the high occurrence and exposure lev-

els often reported from Africa, only a few African coun-
tries have aflatoxin regulations (Matumba et al., 2017);
among them are Nigeria, Kenya, Ivory Coast, Zimbabwe,
Senegal, Mauritius, Algeria, South Africa, Malawi, Egypt,
Morocco, and Tunisia (Chauhan, 2017; Lahouar et al.,
2018). Socioeconomic issues, such as food scarcity, lack of
proper infrastructure, expertise, and technical know-how
are among the many reasons few African countries have
aflatoxins regulations, and those with regulations barely
enforce them (Shephard & Gelderblom, 2014).
Regulation development and enforcement is an essen-

tial piece in the overall institutional setup against human-

exposure to aflatoxin. When effectively implemented and
enforced they serve as the last line of defense against
human-aflatoxins exposure. Therefore, they should be
developed through robust risk assessments, sound, and
representative data obtained from unbiased sources or
means.

5 CURRENT AFLATOXIN DETECTION
METHODS

As previously mentioned, about 120 countries have estab-
lished regulatory limits to protect consumers against afla-
toxins’ harmful effects. To monitor and enforce these reg-
ulatory limits, fast, accurate, and reliable means of detect-
ing and quantifying aflatoxins in foodstuffs are required.
As such, multiple detection methods have been devel-
oped (Krska et al., 2008). Detection methods need to be
sensitive, accurate, reproducible, and easy-to-use. Afla-
toxin detection procedures are multistage. They involve
sampling, extraction, purification, enrichment, analysis,
and post-analysis data interpretation (Wolf & Schweigert,
2018). Due to the uneven distribution of aflatoxin in agri-
cultural products, sampling is essential in its detection
in food products (Whitaker et al., 1974; Whitaker et al.,
1994). However, sampling has been identified as a signif-
icant source of error in the process of aflatoxin detection
in food samples. Common mistakes related to sampling
are either good lot (a lot that has overall content within
the required limit) will fail and will be rejected, or bad lots
will be tested negative and accepted. Proper and adequate
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sampling reduces results variability and the number of
misclassified lots. Therefore, sampling is an attention-
worthy step in the overall detection process, regardless of
the type of detection method used (Reiter et al., 2009).
In the sample preparation of grains or nuts or any par-

ticulate product for mycotoxin detection, it is essential that
the entire representative sample be comminuted before
laboratory samples are collected for analysis (Whitaker,
2003). For effective detection and quantification of afla-
toxin in food samples, chromatography and immunoassay-
based methods require the toxin to be extracted from
the sample and cleaned up to minimize the effects of
the matrix on the final analytical results (Krska et al.,
2008). There are different extraction and clean-up meth-
ods used for aflatoxin detection. The choice of extraction
and clean-up method to a large extent depends on the type
of matrix, the detection techniques to be used, and the
level of contamination of the food samples. Currently, the
following extraction and clean-up techniques are widely
used: liquid–liquid extraction (LLE), liquid–solid extrac-
tion (LSE), Quick, Easy, Cheap, Effective, Rugged, and
Safe (QuEChERS), ultrasonic extraction, pressurized liq-
uid extraction (PLE), supercritical fluid extraction (SFE),
solid-phase extraction (SPE), immunoaffinity chromatog-
raphy (IAC), microwave-assisted extraction (MAE), solid-
phase microextraction (SPME), matrix solid-phase dis-
persion (MSPD), and Mycosep multifunctional clean-up
(MFC; De Saeger, 2011; Miklós et al., 2020; Reiter et al.,
2009; Sirhan et al., 2014).
Broadly, aflatoxin detection methods could be catego-

rized into three groups: chromatographic, immunochem-
ical, and spectroscopic. Each of these methods has its
advantages and drawbacks (Table 4). Additionally, novel,
portable, faster, and reliable emerging techniques are being
developed for the on-site determination of aflatoxins in
food products (Wolf & Schweigert, 2018).

5.1 Chromatographic methods

Chromatography analysis is one of the oldest and most
widely used aflatoxin detection methods. The most com-
mon aflatoxin detection techniques based on this method
include gas chromatography (GC), liquid chromatography
(LC), high-performance liquid chromatography (HPLC),
thin-layer chromatography (TLC), and high-performance
thin-layer chromatography (HP-TLC). The overall idea of
aflatoxins’ chromatography detection is based on divid-
ing a sample solute between two phases of the stationary
and mobile phase. The mobile phase (often a fluid) passes
through the stationary bed (liquid or solid; Wacoo et al.,
2014a).

GC was first used to detect aflatoxin B1 in 1981; it was
further developed and adopted for the detection of both
B1, B2, G1, G2 classes of aflatoxin (Goto et al., 1990). GC
as an aflatoxin detection technique is fading away prin-
cipally due to the availability of cheaper and less labor-
intensive alternatives (Liang et al., 2005). It has been previ-
ously used to determine aflatoxin in different foodmatrices
(Goto et al., 1988; Trucksess et al., 1984).
Chromatography techniques are the reference meth-

ods for the determination of aflatoxin in food samples.
HPLC is one of the most used laboratory-based methods
for detecting and quantifying organic compounds (Li et al.,
2011). Currently, HPLC connected to a fluorescent detector
(FLD), ultraviolet (UV) detector, photodiode array detector
(PDA), mass spectrometer (MS), single mass spectrometry,
or tandem MS (MS/MS) are employed for the determina-
tion of aflatoxin and other contaminants in food samples
(Valenta, 1998). HPLC-FLD is currently one of the most
widely used techniques in determining aflatoxin in food
products, principally due to its sensitivity. Based on thenat-
ural fluorescence exhibited by aflatoxin, FLD is more sen-
sitive and specific than other detectors (Zhang & Baner-
jee, 2020). Although in some matrices, the natural flu-
orescence of aflatoxins B1 and G1 need to be enhanced
through postcolumn derivatization to increase sensitivity
(Kok et al., 1986). This is in most cases done using triflu-
oroacetic acid and potassium bromide (KBr) as reagents
(Miklós et al., 2020).
Several methods based on this technique have recently

been reported. Kim–Soo and Chung (2016) analyzed milk,
yogurt, and cheese samples for aflatoxin M1 using an IAC
clean-up with reversed-phase HPLC separation coupled to
an FLD detector. They obtained an LOD of 0.003 µg/kg in
milk, 0.07 µg/kg in yogurt, and 0.05 µg/kg in cheese, and
an overall recovery rate of 83%. In another work, Muñoz-
Solano and González-Peñas (2020) reported developing an
LC-FLD-based method suitable for the determination of
aflatoxins in animal feed. The technique’s analytical char-
acteristics were an LOD of 2 µg/kg for aflatoxins B1 and G1
and 0.64 µg/kg for aflatoxins B2 and G2 and a recovery rate
of 73.6% and 88.0% for all toxins.
As discussed above, UV detectors are less widely used

than FLD; however, they are still used by researchers to
determine aflatoxin in various food samples. For instance,
anHPLC-UV-based techniquewas used byAmirkhizi et al.
(2015) to detect aflatoxin B1 in eggs and chicken liver
matrices. The LOD and limit of quantitation (LOQ) were
0.08 and 0.28 µg/kg, respectively. In another study, an
SPE method and a reverse-phase HPLC coupled to a UV
detector was used by Kulkarni et al. (2015) to quantify
aflatoxin in dry coconut samples. Moreover, an HPLC-
PDA-basedmethodwas developed byMochamad andHer-
manto (2017) for the determination of aflatoxin B1 in
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animal feed supplements. The LOD, LOQ, and recovery
rate of the method were 3.5 × 10−6, 1.06 × 10−5 µg/mL, and
88% to 98%, respectively.
Building on the knowledge and understanding of HPLC

accumulated over the years led to the development of
ultra-HPLC (UHPLC)—a more efficient HPLC-based sep-
aration technique that overcomes the limitations of ordi-
nary HPLC (Nováková et al., 2017). The ability to use small
particle-packed columns with small diameter of the sta-
tionary phase is an advantage UHPLC has over the ordi-
naryHPLCmethod, as it positively affects both system effi-
cacy and duration of analysis (Huertas-Pérez et al., 2018;
Nováková et al., 2006). Additionally, UHPLC is cheaper to
run as it consumes less solvents than the ordinary HPLC
(Chawla & Ranjan, 2016).
UHPLC has been applied in the detection of mycotox-

ins in different food samples. For instance, Huertas-Pérez
et al. (2018) detected aflatoxins B1, B2, G1, and G2 in rice
samples using a UHPLC coupled to chemical postcolumn
derivatization and fluorescence detection. According to
the authors, the method has limits of detection and quan-
tification below the maximum limits established by the
EU regulation for aflatoxins in rice. Recently, Kumar et al.
(2020) reported a method for analysis of aflatoxins in ani-
mal feeds by UHPLC with fluorescence detection. Accord-
ing to the authors, in pigeon pea husk feed, the method
reached an LOQ of 0.5 ng/g for each aflatoxin with recov-
eries of aflatoxins B1, B2, G1, and G2 as 71.5%, 75.6%, 82.4%,
and 78.2%, respectively.
LC-MS/MS has recently gained popularity due to its sen-

sitivity, selectivity, and suitability for multi-toxins detec-
tion in foodmatrices (Woo et al., 2019). Additionally, unlike
HPLC, LC-MS/MS does not require derivatization for flu-
orescent enhancement (Rahmani et al., 2009). A recent
international collaborative study by 23 entities evaluated
the performance characteristics of a LC-MS/MS proce-
dure for the simultaneous determination of 12 mycotox-
ins, including aflatoxins B1, B2, G1, G2, and M1 in spices,
nuts, milk powder, dried fruits, cereals, and baby food.
Relative standard deviations of repeatability and repro-
ducibility and trueness values for each of the analyzed
samples confirmed the suitability of the method for ana-
lyzing regulated mycotoxins in food samples, including
those intended for infants and younger children (Bessaire,
Mujahid, et al., 2019). Al-Taher et al. (2017) reported over-
all recoveries of 81% to 130% in rice, 70% to 119% in barley,
87% to 123% in oat, and 82% to 127% in mixed-grain cereals
and a relative standard deviation of < 20% for all analytes
in infant cereals using an LC-MS/MS-based technique for
the detection of aflatoxins B1, B2, G1, G2, and other myco-
toxins. Furthermore, Deng et al. (2020) reported LOD and
LOQ ranging 0.1 to 2.0 and 0.3 to 5.0 µg/kg, respectively,

using a LC-MS/MS for the detection of mycotoxins includ-
ing aflatoxins in dried seafood samples.
LC-MS/MS is limited by ion suppression or enhance-

ment due to matrix effects (Li et al., 2011) therefore, to
enhance sensitivity and selectivity, MS/MS coupled with
UHPLC to determine aflatoxin in food samples has been
reported. Liang et al. (2019) developed a UHPLC-MS/MS-
based method for the simultaneous determination of sev-
eral mycotoxins including aflatoxins B1, B1, G1, and G2 in
chestnut samples. The technique achieved a LODandLOQ
ranging from 0.02 to 1 and 0.1 to 2 µg/kg, respectively, and
recovery rates ranging from 74.2 to 109.5%, with relative
standard deviations below 15%. Kos et al. (2016) compared
ELISA, HPLC-FLD, and HPLC-MS/MS methods for deter-
mining aflatoxin M1 in milk Samples and concludes that
both methods were suitable for determining aflatoxin M1
in milk samples.
TLC is one of the oldest chromatographic techniques

used to determine aflatoxin in food samples (Wacoo et al.,
2014b). It has been used to quantify aflatoxin in differ-
ent food matrices (Trucksess et al., 1984). TLC’s sensitivity
combinedwith its simplicity, cost-effectiveness, and capac-
ity to detect multiple toxins in a single test made it a widely
used technique for the screening and quantification of afla-
toxin, especially in developing countries (Marutoiu et al.,
2004; Miklós et al., 2020; Stroka & Anklam, 2000). Aiko
andMehta (2016) used TLC andHPLC techniques to detect
aflatoxin B1 and citrinin in medicinal herbs and spices in
India. Additionally, Qu et al. (2018) combined TLC with
surface-enhanced Raman spectroscopy for the rapid sens-
ing of aflatoxin B1, recording a detection limit of 1.5× 10−6,
1.1× 10−5, 1.2× 10−6, and 6.0× 10−7 M for aflatoxins B1, B2,
G1, and G2, respectively. However, vulnerability to fluores-
cence interferences, lack of precision due to accumulated
errors during sample application, plate development, and
plate interpretation are typical TLC problems.
Efforts to overcome these drawbacks led to high-

performance TLC (HPTLC), an upgraded version of the
ordinary TLC. HPTLC is more efficient than the conven-
tional TLC method, as it is more selective, accurate, and
less prone to error as the sample handling is automated.
The main differences between the two techniques are the
differences in the stationary phases’ particle size sensitiv-
ity and data processing methods (Gurav & Medhe, 2018).
Using HPTLC, Matsiko et al. (2017) determined aflatoxin
in cassava and maize flours, recording a LOD of 0.15,
0.2, 0.2, and 0.5 ppb for aflatoxins B1, B2, G1, and G2,
respectively.
As mentioned in Table 4, although they generally offer

sensitivity, reliability, and accuracy, chromatography tech-
niques have some significant drawbacks. Chromatography
methods generally require a highly trained operator, are
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cumbersome, expensive, and are not suitable for on-site
use (Maragos, 2004).

5.2 Immunochemical methods

Immunochemical detection techniques have been used
as an alternative to chromatographic detection methods
for over a decade now. Aflatoxin determination tech-
niques based on these methods offer simplicity, rapid-
ity, easy-to-use, sensitivity, high sample throughput, and
straight forward analysis, often without the pre-analytical
steps required in the chromatographic methods (Gory-
acheva et al., 2007). These methods are principled on
the ability of a specific antibody to recognize the three-
dimensional structure of a particular mycotoxin (Zheng
et al., 2006).
Multiple detection techniques based on this technol-

ogy have been developed over the years. Enzyme-linked
immunosorbent assays (ELISA), lateral flow immunoas-
says (LFIAs), immunosensors, colorimetric and lumines-
cent sensors, and Surface plasmon resonance sensors are
among the techniques based on this technology (Gory-
acheva et al., 2007; Zheng et al., 2006).
Developed in the 1960s by Rosalyn Yalow and Solomon

Berson, ELISA is one of the most widely used immuno-
chemical method for the detection of mycotoxins in food
samples (Agriopoulou et al., 2020). The basic operational
principle of ELISA is that a range of antibodies is printed
on a microplate or column. When an analyte is passed
through this plate or column, it is recognized by the anti-
bodies printed on the plate or column to form a complex
that then interacts with a chromogenic substrate and cre-
ates a readable signal (Bakırdere et al., 2012). There are dif-
ferent formats of ELISA (Aydin, 2015), however, the indi-
rect competitive format is the most widely used for myco-
toxin detection (Nolan et al., 2019).
One of the most cherished features of ELISA is its sen-

sitivity as it is one of the most sensitive immunoassays
used in the determination of aflatoxin in food samples.
Recently different detection ranges have been reported.
Peng et al. (2016) developed a monoclonal antibody-based
indirect competitive ELISA for the determination of the
aflatoxinM1 inmilk. The assay exhibit recovery rates rang-
ing from 85.3% to 107.6% and a positive correlation (r> .99)
when compared to results obtained with HPLC-MS/MS.
The LOD and LOQ were 27.5 and 35 ng/L, respectively.
In another work reported by Chu et al. (2015) aflatoxin B1
was detected in lotus seeds using an indirect ELISA assay.
The LOD obtained was 0.128 µg/L and a good correlation
(R2 > .978.) was observed when results obtained with the
ELISA method were compared with those obtained with
an ultra-fast LC-MS/MS.

Different detection ranges and assay efficiencies have
been reported. The analytical capacity of immunoas-
says is determined by various factors, but principally by
the antibody–antigen interaction (Zhang, Garcia-D’angeli,
et al., 2014). Other important factors include the type of
labels and the concentration of the assay immunogens
(Cox et al., 2019). As detailed in Table 4, ELISA is highly
sensitive, selective and cost effective, however, false posi-
tives or negatives, cross-reactivity and antibody instability
are drawbacks that could limit it usage (Sakamoto et al.,
2018).
LFIA also referred to as immunochromatographic strip

is another immunochemical method widely used for the
detection of aflatoxin in food. LFIAs gained attention
largely due to their simplicity, portability, and their mul-
tiplexibility. Based on the affinity between specific anti-
bodies and an antigen, LFIA are a paper-based test strips
made up of a sample pad, a nitrocellulose membrane and
an absorbent pad all fixed in a backing card (Bahadır &
Sezgintürk, 2016). When a sample is dropped on the sam-
ple pad, it moves across the strip via capillary force to react
with the immune-reagents immobilized on the membrane
and forms a readable complex (Koczula & Gallotta, 2016).
There are direct and indirect LFIAs formats, however, the
indirect format is the approach used for the detection of
small molecules like aflatoxins (Kaiser et al., 2018).
Like other immunoassays, antibodies are the back-

bone of the LFIAs, their specificity and sensitivity deter-
mine the analytical features of the immunoassay. Another
important component of the LFIAs is the label. Labeling
material are required to be stable under different condi-
tions, detectable over a wide dynamic range and easy to
conjugate (Koczula & Gallotta, 2016). Different labeling
materials are use in the development of LFIAs including
quantum dots (Hu et al., 2017), lanthanide nanoparticle
(Salminen et al., 2019), carbon nanoparticles (Zhang et al.,
2017), and gold nanoparticles (Chen et al., 2016). The use
of gold nanoparticle-specific antibody conjugates in colori-
metric LFIA is currently a widely used approach (Urusov
et al., 2014). This is principally due to the favorable phys-
iochemical characteristics of gold nanoparticles, including
high surface area, affinity with biomolecules like antibod-
ies, among other signal-enhancement convenient features
(Koczula & Gallotta, 2016).
Several LFIAs have been reported recently. For instance,

Santos et al. (2017) described a LFIA suitable for the
detection of aflatoxin in soybean-based foods. The method
detected aflatoxin at levels as low as 0.5 ug/kg within
10 min. Versatility is an added advantage of LFIAs as
the same strip can be multiplexed for the simultaneous
detection of multiple mycotoxins in a single test (Li et al.,
2018). Chen et al. (2016) developed a gold nanoparticle-
based multiplex LFIA for the simultaneous determination
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of aflatoxin B1, zearalenone, and ochratoxinA in corn, rice,
and peanut samples. The assay achieved a LOD of 0.10 to
0.13 µg/kg for aflatoxin B1 and a mean recovery rate rang-
ing from 86.2% to 114.5%. Other authors have also reported
the simultaneous determination of different mycotoxins
using LFIA (Di Nardo et al., 2019; Han et al., 2019). Multi-
mycotoxins detection is of particular importance as it low-
ers cost and could be useful in a scenario where food
products need to be screened for different contaminants.
A complete review of immunochemical methods used in
the detection of aflatoxins has been compiled by Matabaro
et al. (2017).
Radioimmunoassay (RIA) is another type of immuno-

chemical method use for the determination of aflatoxin in
food (Ayoub et al., 2016). However, the use of RIA is limited
principally due to the complexity of the assay, safety con-
cerns in dealing with radioactive materials and extensive
incubation periods (Kim et al., 2015). Fluorescence polar-
ization immunoassay is another type of immunochemi-
cal method used for the determination of aflatoxin in food
products (Zhang et al., 2019).
As detailed in Table 4, immunochemical methods offer

numerous advantages and possibilities in the determina-
tion and quantification of aflatoxin in food. Suitability for
on-site use is indeed an important feature of these meth-
ods. However, development of assays that could tolerate
different environmental conditions, reduction of matrix
effects, and improvement of immunoassay-specialized
data management software are still challenges that need
to be overcome.

5.3 Spectroscopic methods

Spectroscopic methods such as near-infrared (NIR),
Raman, fluorescence, and hyperspectral imaging (HSI)
techniques have been used for the nondestructive evalua-
tion of quality and safety attributes of food and agricultural
products for a while now (Boyaci et al., 2015). Some of
these techniques are being applied to detect mycotoxins
in foods (Wu et al., 2018). Spectroscopic detection meth-
ods represent the most widely nondestructive aflatoxin
determination methods. They offer a variety of advan-
tages over the previously discussed techniques. They
are nondestructive, as such, minimum to no sample
preparation is required; they offer the possibility to locate
and eliminate contaminated foodstuffs within a lot by
simple, rapid, and nondestructive means (De Saeger,
2011). Based on the behavior of light (absorption, emis-
sion, and scattering) when interacting with a specimen
over a broad wavelength range, spectroscopic techniques
have been used in screening and detecting aflatoxin in
a variety of food matrixes (Min & Cho, 2015). Equally,

some techniques based on this idea have demonstrated
good fungal detection ability (Tao et al., 2018). Durmuş
et al. (2017) obtained a classification accuracy of 100%
using a Fourier-transform NIR reflectance spectroscopy
method to group figs into aflatoxin-contaminated and
uncontaminated. Durmuş et al. (2015) reported similar
results using the same technique in the same matrices.
In another study, Chu et al. (2017) obtained classifica-
tion accuracies of 83.75% and 82.50% for calibration and
validation set, respectively, using wave infrared HSI to
detect aflatoxin B1 in maize kernels. The authors observed
that the classification accuracy of kernels reached 95.56%,
96.15% for low level (< 20 ppb), and 82.35%, 75.00% for high
levels (> 100 ppb). Chaitra, and Suresh (2016) obtained
and evaluated imaging techniques such as thermal
imaging, fluorescence imaging, and color imaging for
their suitability for aflatoxin detection in peanut. Results
showed that color imaging was more effective in screening
peanuts for aflatoxin content; the method obtained an
accuracy of 100% and 90.62% depending on the statistical
tool used for data processing. The method has also been
used for on-processing line sorting and identification of
aflatoxin-contaminated nuts. Liu et al. (2019) obtained
a 99% specificity and 75% sensitivity for aflatoxin B1
using a laser-based in-line sorting technology in a peanut
processing factory. Of 80 trials, the technique with 99%
accuracy detected aflatoxin B1 below 10 µg/kg at an
average operational speed of 3.2 tons/h. In another work
using an on-line laser induced fluorescence spectroscopy
system coupled with three collection probes Wu, and Xu
(2020) obtained more than 91% accuracy classifying single
variety of pistachios contaminated with low concentration
of aflatoxin B1.
Although techniques based on this technology offer

many possibilities in aflatoxin detection, especially for
large-scale production line screening, they are mostly lim-
ited to screening as they are still limited in calibration.
Their functionality is overly matrix-dependent and are
unsuitable for multi-toxins detection.
In response to the co-occurrence of differentmycotoxins

in food samples, a lot of scientific research has been ded-
icated to the development of highly sensitive and multi-
toxin-capable detection methods. However, a recent study
by Sa’ed (2019) indicates that aflatoxin-related scientific
research is shifting toward the development of rapid on-
site analyticalmethods. Some of these rapid detection tech-
niques are still in their infancy and come with consider-
able drawbacks. Therefore, optimizing them to minimize
these drawbacks and increase their field usability in devel-
oping countries could be helpful in tackling the aflatoxin
problem. They will also be useful in screening grains and
nuts to determine the necessity for a further laboratory test,
saving cost and time in the entire process.
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6 CURRENT
AFLATOXIN-CONTAMINATION
PREVENTIONMETHODS

GAPs (timely planting, timely harvesting, use of resistant
crop varieties, crop rotation, irrigation, insect control, and
proper soil management techniques), good storage (at low
humidity and low temperatures) combined with GMPs
(sorting of raw materials, washing, dehulling), and Haz-
ard Analysis and Critical Control Points (HACCP) imple-
mentation are proven basic effective aflatoxin preventive
measures. Additionally, biological, chemical, and plant-
breeding techniques are currently being applied to this end
(Mahato et al., 2019).

6.1 Biological preventive measures

Several microorganisms including fungi, bacteria, and
yeast possess exploitable features to the benefit of the
fight against aflatoxins. To this end, many organisms have
been screened for their suitability as aflatoxin bio-control
agents. Research on this particular area is currently attract-
ing a lot of interest. Three mechanisms of action are being
studied: the antagonistic method (a particular species will
out-compete the toxigenic strains for survival in the field),
the growth inhibition method (a particular microorgan-
ism will prevent the growth and eventual colonization of
the toxigenic strains) and inhibition of the fungal–aflatoxin
production (Mwakinyali et al., 2019).
Although a good number of microbial species have

demonstrated their ability to counter the growth and afla-
toxins excretion in toxigenic aspergillus species, currently,
the most successful bio-control measure is the use of atox-
igenic species of Aspergillus flavus strains to out-compete
toxigenic strains in the field. The idea is to alter a par-
ticular area’s fungal community, outnumbering the tox-
igenic fungi strains with atoxigenic strains (Mehl et al.,
2012). This method is being successfully commercialized
inWest Africa (Aflasafe) and the United States (Aflaguard;
Gasperini et al., 2019;Weaver &Abbas, 2019). Additionally,
in Italy, research is in its final stages to produce aflatoxin
bio-control products under the commercial name AF-X1™
(Mauro et al., 2018). A study in Serbia by Savić et al. (2020)
reported a 73% reduction in on-field aflatoxin contami-
nation of maize using similar approaches. Many factors,
including formulation, inoculation rate, and application
time of the bio-control product on the field, are determi-
nant factors in this method’s success (Jane et al., 2012).
Reasonable contamination reduction rates are reported
from areaswhere thismethod is applied. For instance, con-
siderable reduction in contamination levels were observed

in peanuts and maize fields in Nigeria and Senegal where
biocontrol products were applied (Bandyopadhyay et al.,
2019; Senghor et al., 2020). However, there are still environ-
mental concerns and some “unknowns” as to this method.
As pointed out by Chang et al. (2012), there are concerns
that the repeated application of atoxigenic strains may
result in an ecological imbalance, and these strains may
end up affecting unintended targets.
Additionally, there are concerns that due to the diver-

sity and genetic complexity of Aspergillus species, genetic
mutations may occur in the atoxigenic Aspergillus strains
enabling them to develop aflatoxin production capacity
(Ren et al., 2020). Therefore, it is recommended that
research focus on these concerns but also explore the use
of other types of microorganisms to avoid the overde-
pendence on one kind of bio-control agent to enable
large-scale and long-term use of this method to prevent
aflatoxins-contamination of foods.
Another fungal species that has shown potentials in

inhibiting aflatoxin production in Aspergillus species is
Trichoderma; a mycoparasitic fungus, which has in var-
ious studies demonstrated the ability to inhibit aflatoxin
production (Braun et al., 2018). A laboratory study by
Gachomo and Kotchoni (2008) identified two strains of
T. harzianum and two isolates of T. viride, that are capa-
ble of suppressing peanut molds’ growth and significantly
crippling their aflatoxins excretion capabilities. It was also
observed that, the degree to which Trichoderma species
suppressed the growth of peanut molds correlated to their
extracellular enzymatic activities.
Research on the potential use of bacterial species

to antagonize or inhibit toxin production in toxigenic
Aspergillus species is active and positive results have been
reported at least from laboratory studies (Dorner, 2004).
Bacillus spp., Streptomyces spp., Pseudomonas spp., among
other bacterial species have demonstrated inhibitory pow-
ers against aflatoxin producers (Azeem et al., 2019; Caceres
et al., 2018; Schallmey et al., 2004; Shams-Ghahfarokhi
et al., 2013; Siahmoshteh et al., 2017; Silva et al., 2015).Bacil-
lus spp. is among themost studiedmicroorganisms for bio-
control. In fact, according to a recent review by Ren et al.
(2020), up to 21% of the published research on microbial
control of aflatoxin is related to this microorganism. This
could be due tomany reasons, including Bacillus’s compet-
itive and colonization ability, production of lipopeptides
and antibiotics, and other features that allow it to out-
compete and suppress competitors (Shafi et al., 2017). Siah-
moshteh et al. (2017) studied the efficacy of Bacillus sub-
tilis and Bacillus amyloliquefaciens to prevent the growth
and aflatoxin production by Aspergillus parasiticus in pis-
tachio samples. Both strains demonstrated the ability to
suppress fungal growth and significantly reduce aflatoxin
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production. Some of these studies using this organism
reported a significant level in inhibiting toxin production
in toxigenic Aspergillus strains. For instance, Siahmoshteh
et al. (2018) reported that Bacillus subtilis was able to sup-
press 92% growth and inhibited aflatoxin production in tox-
igenic strains of A. parasiticus.
Furthermore, macro-molecular organics, organic acids,

anti-bodies, and enzymes produced by certain species of
Bacillus,Lactobacillus, Streptomyces, and yeast strains have
in laboratory trails shown potentials to inhibit the produc-
tion of aflatoxins by toxigenic species (Ren et al., 2020).
Moreover, plant extracts are also being screened for

their potential use in the control of aflatoxin contamina-
tion of agricultural products (Saleem et al., 2017). Bioac-
tive plant compounds like carvacrol, cinnamaldehyde,
eugenol, limonene, terpineol, thymol, and turmerone are
reported to be effective in suppressing fungal growth and
aflatoxin production. Their mechanism against toxigenic
fungi includes tampering with the cell membrane, sup-
pressing the ability of the fungus to secretes enzymes
involved in the synthesis of cell wall components, weak-
ening its ergosterol metabolism, inducing ultrastructural
changes in cell compartments, inhibiting cytoplasmic and
mitochondrial proteins and altering the osmotic and the
redox balance in fungi (Loi et al., 2020). A recent study
by Wang et al. (2019) demonstrated the inhibition power
of complex essential oils (cinnamaldehyde, citral, eugenol,
and menthol) against toxigenic fungi strains.
Bio-control, without doubt, has shown promising poten-

tials in the fight against aflatoxins-contamination of food.
However, there are still knowledge gaps that need to be
bridged to realize these possibilities. As noted by Ren et al.
(2020), due to the complexities associated with growing
these organisms in the field, the majority of the success
achieved so far is limited to laboratory studies; therefore,
on-field trials must be conducted to enhance understand-
ing of the interaction between the biocontrol agents and
environmental factors. It is equally essential to increase
and diversify bio-control agents and application methods.
New and creativemeans like bio-active packaging could be
other avenues to explore.
Moreover, it is essential to note that before commer-

cial production of any bio-control product, cost consider-
ations should be made; the cost of producing a bio-control
product should not outweigh its benefits (Dorner, 2004).
The same could be said about the use of plant extracts to
counter aflatoxins in food; many of the studies done so
far are in vitro. Therefore, there is little knowledge of how
plant bioactive compounds will react in an in vivo scenario
and how crops’ defensive mechanisms will react to these
compounds. Additionally, they could be limited in applica-
tion due to their instability and volatility (Loi et al., 2020).

6.2 Crop breeding methods

Although there is still no commercially available aflatoxin
resistance cultivars, real progress has been registered
in the understanding of the host genes responsible for
resistance against aflatoxin in peanut andmaize (Fountain
et al., 2016; Soni et al., 2020). A recent study by Sharma
et al. (2018) using biotechnological tools offers a glimpse of
hope in the pursue of aflatoxin-resistant peanut. Intense
research to identify mycotoxins resistance traits in maize
is underway. Scientists from different institutions around
the world are using various means including molecular
(proteomics, genomics, transcriptomics), and breeding
techniques like quantitative trait loci (QTLs), Genome-
Wide Association Study (GWAS) techniques, among other
means to identify resistant traits in maize (Pandey et al.,
2019; Warburton & Williams, 2014). There is hope that
inheritable resistance in these crops could be achieved
shortly.

6.3 Predictive modeling of aflatoxin
occurrence

Predictive models fed with environmental data such
as temperature, humidity, rainfall are currently being
employed to predict aflatoxins contamination of crops in
the field and during storage. These models have been suc-
cessfully used to predict the aflatoxin contamination of
food crops in Australia and Europe (Ojiambo et al., 2018).
The development of mycotoxin predictive models is a

difficult task as the conditions that favors fungal growth
may not necessarily mean mycotoxin production, and the
presence of the fungal producers of aflatoxin may not
necessarily mean a food product contain aflatoxin (Gar-
cia et al., 2009). Therefore, different modeling approaches
have been used to predict aflatoxin occurrence in food
and agricultural products. Kaminiaris et al. (2020) recently
developed a mechanistic weather-driven model to predict
Aspergillus flavus growth and the aflatoxin B1 contamina-
tion of pistachios. Internal validation of the model indi-
cated that 75% of the predictionswere correct and the exter-
nal validation with an independent 3-year dataset shows
a 95.6% correct prediction rate. A different approach was
used by Jiang et al. (2019) who developed a probabilistic
model based on logistic regression and versicolorin A lev-
els to estimate the risk of aflatoxin contamination in stored
corn. The model obtained a 96.4% and 93.3% precision in
internal and external model validations, respectively.
These kinds of models are preventive in that they pro-

vide farmers and decisionmakers the right information in
terms of planting, harvesting time, and storage conditions
to prevent or limit aflatoxin contamination of crops in the
field and stored harvests. However, as pointed by Battilani
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and Leggieri (2015) predictive models can never be error-
free and therefore their use should be combinedwith other
aflatoxin management methods.

6.4 Aflatoxin-related awareness
creation

Creating awareness among stakeholders (farmer, con-
sumers, policymakers, etc.) does not often receive much
attention compared to other aflatoxins mitigation and con-
trol measures despite many reports documenting the gen-
erally low awareness as to the risks posed by aflatoxins
in many developing countries (Udomkun et al., 2018). For
instance, A study by Ayo et al. (2018) found that aflatoxin
awareness was deficient among uneducated and socially
unexposed farmers in Tanzania. Similar low awareness
levels are reported from Ethiopia and Uganda (Guchi,
2015; Nakavuma et al., 2020). Studies in Vietnam and
Nigeria also reported similar low aflatoxin-related aware-
ness among consumers (Adekoya et al., 2017; Lee et al.,
2017). Interestingly, this low awareness among stakehold-
ers regarding mycotoxins’ occurrence in agricultural prod-
ucts, is not confined to developing countries. A study by
Sanders et al. (2015) revealed that Belgians are more aware
of bacterial-related food contamination thanmold contam-
ination. In the same study, it was observed that, 39.3% of
140 people working in the agricultural sector did not know
whether toxic plants, bacteria, molds, or viruses are pro-
ducers of mycotoxins.
An increase in the understanding of the issues surround-

ing aflatoxins-contamination of food, its health, and eco-
nomic effects, preventive and control measures will go a
long way in alleviating the menace. For example, a pub-
lic information campaign on aflatoxin contamination of
maize grains in market stores in Benin, Ghana, and Togo
resulted in better handling of maize and reduced aflatoxin
contamination levels (James et al., 2007). A more recent
study by Anitha et al. (2019) observed that despite adverse
weather conditions mean aflatoxin levels in grains were
reduced from 83.6 to 55.8 ppb as a result of training farmers
on aflatoxin-related issues.
Raising aflatoxin-related awareness among consumers

indeed can be a useful tool in preventing human exposure
to aflatoxins, however, as an extremely “scientific” topic;
care must be taken to avoid misunderstanding and unnec-
essary panic among consumers. For example, in Ghana
and Ethiopia, misleading aflatoxin-related news headlines
resulted in panic among consumers, warranting govern-
ments’ and the scientific community interventions (Step-
man, 2018). Therefore, aflatoxin-related risk communica-
tors must ensure that the right information is adequately
delivered to stakeholders.

7 CURRENT AFLATOXIN REMOVAL
AND DEGRADATIONMETHODS

Effective pre- and postharvest aflatoxins-contamination
preventive measures are the first line of defense against
the hazards associated with aflatoxin-contamination of
food. When correctly implemented, these measures pre-
vent or minimize the level of contamination in harvested
food crops (Tian & Chun, 2017). However, due to the dif-
ficulties associated with preventing aflatoxin contamina-
tion of food, Multiple physical, biological, and chemical
means have been employed to degrade, detoxify or remove
aflatoxin from already-contaminated agricultural products
(Wang et al., 2019). Each of these methods uses different
mechanisms to degrade or remove aflatoxins, and each
comes with certain advantages and drawbacks.

7.1 Biological methods

Biological methods are believed to be less aggressive,
more specific, environment-friendly, and cost-effective
compared to other methods of detoxifying aflatoxin. They
involve the use of microorganisms and their products to
remove aflatoxin through surface adsorption, degradation
into nontoxic compounds, and inhibition of their bioavail-
ability by binding (Tian & Chun, 2017).
Several microbial spices are reported to alter the chemi-

cal structure of aflatoxin into a nontoxic substance render-
ing it harmless to human and animal consumers. A study
by Harkai et al. (2016) using Streptomyces sp. achieved 88%
degradation and total elimination of genotoxicity in afla-
toxin B1 without forming a new toxin. Similar achieve-
ments were reported by Wang et al. (2018) when they
used a Bacillus licheniformis (BL010) strain to degrade afla-
toxin into a nontoxic substance. Strains of another bacte-
rial species, Actinomycetales, are reported to be effective
in degrading aflatoxin (Lapalikar et al., 2012). A study to
elucidate the aflatoxin biodegradation mechanism using
three different strains ofActinomycetes, Eshelli et al. (2015)
concluded that each strain has a different way of degrad-
ing aflatoxin. The authors observed that pH and tem-
perature were essential parameters in the process. Lacto-
bacillus, a bacterium used in the fermentation and preser-
vation of food, have been reported in numerous scien-
tific literature to remove aflatoxin from contaminated
mediums (Moghaddam et al., 2019). Due to its non-
pathogenic nature combined with its aflatoxin-removal
ability, the possibility to select strains with probiotic
characteristics to remove aflatoxin from food is being
actively explored by researchers (Elsanhoty et al., 2014;
Silva et al., 2015).
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Furthermore, some yeast strains through cell-wall adhe-
sion have shown aflatoxin detoxification prowess. A study
by Dogi et al. (2017) suggested that yeast could be another
candidate for a probiotic against aflatoxin contamination
as it has an excellent binding ability and is not new
to the food industry. The use of yeast and Lactobacillus
strains as binders has been extensively studied and contin-
ues to attract scientific attention. However, contradicting
results have been reported as its effectiveness against afla-
toxin, for instance, Blanco et al. (1993) reported that afla-
toxin M1 remained unchanged in lactobacillus-fermented
yogurt, whereas Van Egmond et al. (1977) reported a slight
increase in aflatoxin M1 levels in fermented yogurt using
the microorganism for fermentation. In contrast, recent
studies have reported high reduction rates. For instance,
Shigute and Washe (2018) reported 57.33% and 54.04%
aflatoxin M1 reduction in natural and lactic acid bacte-
ria (LAB) inoculums-initiated fermentation, respectively,
in 5 days of incubation. Kuharić et al. (2018) described
a method that yields a 95% reduction in aflatoxin levels
without altering the organoleptic characteristics of milk
using LAB. According to the authors, the method con-
sists of refrigeration at 4 ◦Cwith heat-treated L. plantarum
KM and then centrifugation and filtering. Apart from this
study, few studies have looked into how microorganisms
as aflatoxins decontaminants will impact the organoleptic
and even the nutritional features of food products.
These reported differences in reduction levels could be

attributed to the numerous factors that affect the micro-
bial binding process, including product type, strains of
microorganism, pH, incubation period, levels of contam-
ination, and the binding organisms’ condition (viable
or inactivated). Temperature and inoculum size are
equally important factors in the microbial-binding pro-
cess (Nguyen et al., 2020). It is essential to note the bind-
ing between aflatoxin and microorganisms is reversible.
A 27.8% to 94.4% reversibility has been observed depend-
ing on the strain (Moghaddam et al., 2019). The bind-
ing mechanism is not entirely clarified, it is believed that
the process involves aflatoxin molecules attaching to the
microbial cell walls (Kuharić et al., 2018). This reversibil-
ity leads to questions about how the acidic conditions of
the human gastrointestinal tract and the presence of bile
will affect the bond between aflatoxin and the microor-
ganisms. A study by Huang et al. (2017) indicates digestive
tract conditions affect the binding stability of viable lacto-
bacilli strains to aflatoxin; however, it is not significantly
affectedwhen heat-killed cells of the same strains are used.
Another study reported by Ben et al. (2015) suggest that the
bind could withstand the conditions of the gastrointestinal
tract.
Interestingly, fungi are being used to degrade aflatoxin.

Fungal species, including A. niger, Eurotium herbariorum,

a Rhizopus sp., and atoxigenic species ofA. flavus, can con-
vert aflatoxin B1 to aflatoxicol (a less toxic substance) by
reducing its cyclopentenone carbonyl (Wu et al., 2009).
Other fungal species belonging to phylum basidiomycota,
white-rot fungi such as Peniophora, Pleurotus Ostretus,
and Trametes versicolor are reported to produce oxidative
enzymes capable of degrading aflatoxin (Alberts et al.,
2009). High degradation levels have been observed from
certain fungi species. For instance, Jackson and Pryor
(2017) reported a 94% degradation of aflatoxin B1 in natu-
rally contaminated maize using the fungal strain white-rot
fungus Pleurotus ostreatus (oyster mushroom) as a degrad-
ing agent. A study by Zhang et al. (2014) suggests that pH,
temperature, and metal ions were essential factors in the
fungal degradation of aflatoxins.
Enzymes of different origins have demonstrated to be

effective aflatoxin degraders in different conditions and
mediums (Xu et al., 2017). A Laccase enzyme recovered
from Trametes versicolor is reported to degrade 87.34%
of aflatoxins in a 72-hr incubation (Alberts et al., 2009).
In another recent study, Song et al. (2019) demonstrated
that an enzyme isolated from Pseudomonas aeruginosa
degraded aflatoxin B1. As outline in a reviewed by Lyagin
and Efremenko (2019), indeed, there are multiple reports
supporting enzymes as possible candidates in the degrada-
tion of aflatoxins in agricultural products as they are con-
sidered mild, safe, and precise. However, there are little
data about the degradation mechanism and toxicology of
the new products formed from the degradation of aflatox-
ins by enzymes (Ji et al., 2016).
Other natural substances, including phytochemicals,

have also been screened for their ability to detoxify afla-
toxins. Friedman and Rasooly (2013) reported that organic
citric acid degraded 96.7% of AFB1 in maize with an
initial concentration of 93 ng/g. Trachyspermum ammi
(ajowan), an annual plant from the parsley family, has
been reported to detoxify aflatoxin. In an experiment using
aqueous extracts of the seeds of Trachyspermum ammi
Hajare et al. (2005) achieved an 80% reduction in total afla-
toxins. In a similar study, dialyzed extracts of the seeds
of this same plant degraded about 90% of aflatoxin G1. In
the same study, it was observed that the aflatoxin degrada-
tion prowess of Trachyspermum ammi reduced consider-
ablywhen its temperature rose to 100◦C (Velazhahan et al.,
2010). It is believed that alteration of the lactone ring in the
chemical make-up of aflatoxin is the mechanism through
which these products degrade aflatoxin (Velazhahan et al.,
2010).
Biodegradation, due to the absence of elevated tem-

peratures, pressure, and the application of chemicals,
is considered the best among the aflatoxin degradation
method for food safety and quality reasons. However, for
its practical use, some hurdles, including the reversibility
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observed inmicrobial adsorption, incomplete degradation,
and extended incubation periods need be overcome. Addi-
tionally, some aspects of the entire biodegradation process
need clarification. As noted by Ahlberg et al. (2019), in
using microorganisms as aflatoxin binders in human food,
there are still ethical and safety concerns that need to be
addressed. According to the authors, experimental setups
and data interpretations from studies on the effectiveness
and safety of binding still need to be critically reviewed.
Moreover, as pointed out earlier, there are very little data
and information as to the safety and bioactivity of the
bio-degraded aflatoxin. Another concern is that microor-
ganisms, when introduced to agricultural products as bio-
control agents, would feed on the food tomeet their growth
needs, thereby multiplying their numbers in the food and
possibly excreting undesirable metabolites. A good num-
ber of the active plant extracts are generally considered safe
for human consumption; however, their practical applica-
bility as aflatoxin-degrading agents in food may be con-
strained by the fact they can alter the organoleptic char-
acteristics of food products when in direct contact with it
(Loi et al., 2020). Although, some authors suggest that this
could be overcome by using plant extracts in their vapor-
ized form (Mateo et al., 2017).

7.2 Chemical methods

Various chemical products have been tested for their afla-
toxin degradation and detoxification ability. These includ-
ing oxidizing agents, reducing agents, acids, bases, among
other chemical products (Yang, 2019). In terms of bases
used in the detoxification of aflatoxin, ammonia treatment
is an extensively studied aflatoxin degradation technique
often reporting high degradation rates (Weng et al., 1994).
Because aflatoxins are unstable under alkaline conditions,
the mechanism of ammonia and other bases against afla-
toxin is opening the lactone ring in the toxin’s chemical
built-up reducing it to a less toxic substance (Moerck et al.,
1980). The degradation rate is mainly dependent on cer-
tain intrinsic and extrinsic factors of the substrate. For
instance, a study by Weng et al. (1994) concluded that dur-
ing ammonia treatment of contaminated maize samples,
aflatoxin degradation rates increased with moisture con-
tent and temperature of themedium. Pressure and the type
of substrate are also determinant factors in the efficacy
of ammonia against aflatoxin (Cucullu et al., 1976). Other
bases that have demonstrated various degrees of success in
the degradation of aflatoxin include sodium hydroxide and
calcium hydroxide (Čolović et al., 2019). Another alkaline-
based treatment process is nixtamalization, a food process-
ing technique of Mexican origin; it is a known aflatoxin-
decontamination technique. It involves heating of cereal

grains in abundant limewater (CaOH2) and then steeped
for 8 to 16 h before the solution is decanted. The grain is
thoroughly washed to leave the grain ready for milling to
obtain the maize dough for making the tortillas (Méndez-
Albores et al., 2004).
Ozone, an oxidizing agent, has been postulated as

another aflatoxin-degrading agent. A good number of pub-
lished literatures reported high rates of aflatoxin degrada-
tion with ozone. It is recognized as generally recognized
as safe (GRAS) by the FDA (FDA, 2001). The mode of
action involves its reaction with the C8 to C9 double bond
of the furan ring of aflatoxin through electrophilic addi-
tion, resulting in the formation of primary ozonides and
subsequence reformation of derivatives such as aldehydes,
ketones, and organic acids (Proctor et al., 2004). In a study
reported by Porto et al. (2019), a corn grits product was
treated with gaseous ozone resulting in a 57% reduction
in the levels of aflatoxin. A separate study to determine
the factors that affect ozone detoxification of aflatoxin El-
Desouky et al. (2012) reported that the efficacy of ozone
increases with the level of contamination and the amount
of time the product is subjected to the ozone. Another oxi-
dizing agent that has been used in the degradation of afla-
toxin in food is hydrogen peroxide. It has been reported
to have degraded aflatoxin in various matrices, including
milk, figs, corn, peanut products, and other substrates with
time being an essential factor in the degradation process
(Fountain et al., 2015; Karlovsky et al., 2016). Additionally,
certain chemical food additives including sodium bisul-
fite (NaHSO3) sodium hydrosulfite (Na2S2O4) and sodium
metabisulfite (Na2S2O5) have been reported to be effective
in degrading aflatoxin into nontoxic products (Temba et al.,
2016).
The use of chemical treatments to decontaminate

aflatoxin-contaminated agricultural products has been
successfully applied in different settings, process param-
eters and food products, and has proven effective and, to
some extent, regarded as safe. However, some concerns
in terms of food safety, food quality, and environmental
issues remain unsolved. Not all the approaches herein
mentioned are approved for application in human food
production. According to the FAO for any detoxification
measure to be considered fit for use on human food it is
required: to inactivate, destroy, or remove aflatoxin; not
produce nor leave toxic/carcinogenic/mutagenic residues
on the treated substrate; retain the nutrient, sensory or
other quality attributes of the food product and must be
capable of eliminating fungal and their remnants spores or
mycelium that could proliferate and produce new toxins
(Shi, 2016). The use of chemical reagents raises the con-
cern of residues remnants that could be toxic and unsafe
for human and animal consumption. Furthermore, cur-
rent research has extensively focused on only degrading
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aflatoxin paying little attention to the degraded products
resulting in little knowledge as to the toxicology and safety
of the substances formed when aflatoxin is chemically
degraded. Research data from such studies could be use-
ful in evaluating the safety and effectiveness of degradation
methods.

7.3 Physical decontamination, removal,
and degradation of aflatoxins

Sorting, segregation, sieving, washing, dehulling, float-
ing, milling, heat treatment, and other physical means
are used to decontaminate aflatoxin-contaminated agricul-
tural products. Though tedious and ineffective for exten-
sive scale application, hand sorting and segregation of
grains base on their physical features have been reported
to be effective in reducing aflatoxin in agricultural prod-
ucts. Damaged and broken grains in a lot carry amore con-
siderable amount of mycotoxins; therefore, their removal
reduces the overall contamination in the lot (Dickens &
Whitaker, 1975). Matumba et al. (2015) studied the effec-
tiveness of hand-sorting, flotation, and dehulling on the
decontamination of mycotoxin-contaminated white maize
and observed that hand-sorting is more effective as around
94% reductionwas observed in the aflatoxin levels of hand-
sorted maize samples. The authors observed that floata-
tion has the least effect on the levels of aflatoxins. Another
study by Xu et al. (2017) revealed a 96.7% reduction in afla-
toxin levels in contaminated peanuts when hand-sorted.
Zivoli et al. (2016) reported similar reduction levels using
hand-sorting in apricot kernels.
For practical reasons and perhaps due to increased

production volumes, grain and nuts sorting has come
from handpicking through air-floating, mechanized sort-
ing based on grain size and color to sensor-based opti-
cal sorting. Currently, UV light illumination is being used
to segregate aflatoxin-affected products (Karlovsky et al.,
2016; Leslie&Logrieco, 2014; Stasiewicz et al., 2017). Cheng
et al. (2019) used UV to NIR spectroscopy to segregate
aflatoxin-contaminated single corn kernels.
Certain food processingUnitOperations such aswet and

dry milling, dehulling, and thermal treatments (extrusion,
roasting, and cooking), decrease aflatoxin levels in pro-
cessed foods (Kaushik, 2015). In milling, the toxin is re-
distributed to the process by-products, including the germs
and bran (Park, 2002). Zhong et al. (2015) observed that 60
s of milling reduced the concentration of aflatoxin B1 five-
fold and completely removed all aflatoxin B2 in rice, but
significantly increased aflatoxin levels in the bran. Brera
et al. (2006) studied the effect of industrial milling pro-
cesses on the distribution of aflatoxin and zearalenone in
milled fractions of two corn lots. They observed a four-time

reduction factor in aflatoxin levels in the end product of
the processed maize and a significant increase in the by-
products like germs and bran. It is essential tomention that
conventional cooking temperatures have minimal effects
on aflatoxin levels as it decomposes at temperatures rang-
ing from 237 to 306 ◦C (Rustom, 1997). Therefore, it is not
advisable to entirely depend on cooking to prevent human
exposure to aflatoxins (Kabak, 2009).
Blanching is another physical method known to be

effective in removing aflatoxin in contaminated nuts
(Dorner, 2008). Mahoney et al. (2020) observed that
blanching reduced total aflatoxins in naturally contami-
nated almonds by 13% to 76%, depending on the quality
of the almond and the process time-temperature combina-
tion. In another study Roby and Samah (2019) indicated
that blanching reduced 30% of the total aflatoxins in arti-
ficially contaminated tiger nuts. Dorner (2008) suggested
that combining blanching with color-aided sorting is an
effective strategy in removing aflatoxin from contaminated
peanuts.He reasoned that blanching removes the seed coat
from the kernels enhancing the identification of discol-
orations associated with aflatoxin contamination in the
kernel tissue. Similarly, Anyebuno et al. (2018) indicated
that manual sorting of blanched peanuts kernels, offers a
practical possibility in reducing aflatoxin levels to below
regulatory limits. It has also been observed that the combi-
nation of roasting, blanching and sorting can reduce afla-
toxin accumulation in stored peanuts (Darko et al., 2018).
Irradiation, a widely accepted and extensively studied

food processing technology, is reported to be effective in
aflatoxin decontamination. Sometimes referred to as “cold
pasteurization,” it involves subjecting prepackaged or bulk
foodstuffs to ionizing energy (Calado et al., 2014). The
effectiveness of irradiation in degrading aflatoxin is con-
ditioned by certain factors, including the initial levels of
aflatoxin in the matrix, the irradiation dose, physical state,
and type ofmatrix (Calado et al., 2014). High oily substrates
reduce the irradiation process’s effectiveness (Ghanem
et al., 2008). More sophisticated and novel physical mea-
sures, including microwave heating (Mobeen et al., 2011)
and cold plasma (Gavahian & Cullen, 2020), among other
technologies have shown promising results in the decon-
tamination of aflatoxins in a variety of food samples.
Physical methods like sorting, handpicking, floating are

useful but only suitable for small-scale applications, and
processes like wet-milling may redistribute the toxins to
process-waste products that may be used as animal feed,
which may eventually lead the toxins back to human food.
Another critical issue to consider is the use of high temper-
atures in the physical degradation of aflatoxins may lead to
nutritional loss and alteration of food products’ organolep-
tic characteristics.
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8 CONCLUSION

This review details the fungi producers of aflatoxins, agri-
cultural and food products prone to aflatoxins contami-
nation, aflatoxins regulations around the world, current
aflatoxins detection methods, and current aflatoxins pre-
ventive and curative measures. Despite the amount of
aflatoxin-related scientific information gathered from 1960
to date, aflatoxin-contamination of food remains a signif-
icant food safety challenge globally. To no small extent,
the preventive and mitigation efforts applied so far have
proven insufficient, as evidenced by the high exposure lev-
els in a considerable number of countries. Total elimina-
tion of aflatoxins in the global food chains will be close to
impossible, as its production by toxigenic molds is depen-
dent mainly on environmental factors that are beyond
human control.
Effective implementation of GAPs, GMPs, HACCP,

proper storage, informed stakeholders and the ability to
predict on-field and in-store contamination of food prod-
ucts could serve as first line of defense against human
exposure to aflatoxins. On a long-term basis, it is essential
that on-field contamination of crops is minimized either
through the deployment of bio-control measures or the
use of resistant crop varieties. As logic dictates, preven-
tive measures should be preferred over aflatoxin curative
measures as there are still open knowledge gaps that need
to be bridged. Regulations, when effectively enforced, are
the last line before the food gets to the consumers. Greater
portion of countries in the world have enacted aflatoxins-
related regulations. Despite being an aflatoxins hotspot,
the majority of African countries are without aflatoxins
regulations. Precise, accurate, affordable and simple afla-
toxin detectionmeans are required not only to enforce reg-
ulations but to gauge the effectiveness of aflatoxins con-
trol measures. Current chromatographic, immunochemi-
cal, and spectroscopic methods used to determine aflatox-
ins levels are effective, but new or improved methods to
enhance the speed, detection, and accuracy of aflatoxin
analysis would lead to safer food and agricultural products.
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