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Abstract
Meat is one of the most consumed agro-products because it contains proteins,
minerals, and essential vitamins, all of which play critical roles in the human
diet and health. Meat is a perishable food product because of its high moisture
content, and as such there are concerns about its quality, stability, and safety.
There are two widely used methods for monitoring meat quality attributes: sub-
jective sensory evaluation and chemical/instrumentation tests. However, these
methods are labor-intensive, time-consuming, and destructive. To overcome the
shortfalls of these conventional approaches, several researchers have developed
fast and nondestructive techniques. Recently, electronic nose (e-nose), computer
vision (CV), spectroscopy, hyperspectral imaging (HSI), and multispectral imag-
ing (MSI) technologies have been explored as nondestructive methods in meat
quality and safety evaluation. However, most of the studies on the application
of these novel technologies are still in the preliminary stages and are carried
out in isolation, often without comprehensive information on the most suit-
able approach. This lack of cohesive information on the strength and shortcom-
ings of each technique could impact their application and commercialization
for the detection of important meat attributes such as pH, marbling, or micro-
bial spoilage. Here, we provide a comprehensive review of recent nondestructive
technologies (e-nose, CV, spectroscopy, HSI, and MSI), as well as their applica-
tions and limitations in the detection and evaluation of meat quality and safety
issues, such as contamination, adulteration, and quality classification. A discus-
sion is also included on the challenges and future outlooks of the respective tech-
nologies and their various applications.
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1 INTRODUCTION

Meat is an essential component of the human diet, as
it is a source of many nutrients vital to human health
maintenance, the most important being proteins (Taheri-

Garavand, Fatahi, Omid, et al., 2019). Meat is highly per-
ishable due to its high moisture content and is therefore
susceptible to rapid quality deterioration if not quickly and
properly preserved. It is considered a breeding ground for
microorganisms, which leads to food contamination and
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spoilage (Mewa et al., 2018; Shi et al., 2019). Guaranteed
quality and safety of raw and processed meat has become a
central focus in the meat industry as a result of an increas-
ing number of recent safety issues and product recalls (Jia
et al., 2018). Also, consumers are becoming more conscious
of food labels and are paying closer attention to the quality
of meat products (Kamruzzaman et al., 2016). These con-
cerns are prompting the meat industry to begin to rede-
fine and reevaluate standards for measuring and monitor-
ing the quality and safety characteristics of meat and meat
products (Grassi et al., 2018; López-Maestresalas et al.,
2019).

1.1 Meat quality evaluation

Meat quality evaluation can be defined as the determina-
tion of the characteristics used to assess the suitability of
fresh or stored meat without any deterioration within a
specified period (Taheri-Garavand, Fatahi, Omid, et al.,
2019). Sensory attributes (color, flavor, and smell) are
the consumer’s initial impression of meat quality that
directly affects purchasing decisions. Physical attributes
include water holding capacity (WHC), marbling, and
Warner–Bratzler shear force (WBSF) test results. Micro-
biological characteristics, such as total viable content
(TVC) and bacterial contamination, are some of the most
critical features in the quality and safety of meat. These
can indicate the lack of or presence of disease or meat
spoilage. Chemical attributes provide information on
the composition and nutritional content of meat such
as protein, moisture, and pH. All of these factors help
to define the quality attributes of meat. Thus, from the
viewpoint of meat quality and safety, reliable technology
is required to monitor and determine meat characteristics
before sale (Peng & Dhakal, 2015; Xiong et al., 2015).

Many well-established analytical methods have been
applied to evaluate meat quality and safety. These methods
are human sensory evaluation (HSE), chemical analysis,
and instrumentation tests (Du et al., 2019). HSE involves
the identification of meat quality manually based on some
attributes including tenderness, flavor, and color. A ben-
efit of HSE is that it provides immediate quality infor-
mation (Sujiwo et al., 2019). However, this method is
tedious, subjective, and depends strongly on the inspec-
tor’s degree of fatigue and cannot assess the internal qual-
ity attributes of meat, such as pH level, moisture content,
and presence of microorganisms (Limbo et al., 2009). On
the other hand, chemical tests used in the detection of bac-
terial contamination in meat include enumeration meth-
ods such as microbial inspection/count (Song et al., 2012),
serological tests such as enzyme-linked immunosorbent

assay (Zvereva et al., 2015), and molecular tests such as
polymerase chain reaction (Furutani et al., 2017). Instru-
mentation methods are applied to assess the texture or
freshness of meat such as WBSF, a pH meter, and meat
colorimeters (Bhat et al., 2019; Sujiwo et al., 2019). These
methods (chemical analysis and instrumentation tests) are
considered valid, consistent, precise, and reliable com-
pared to subjective sensory evaluation (Peng & Dhakal,
2015). Nonetheless, there are many drawbacks to the appli-
cation of these methods in meat quality detection as they
are destructive, have complex sample preparation, require
highly skilled operators, are unsuitable for on/in-line mon-
itoring, and require long processing times (Khulal et al.,
2017; Pophiwa et al., 2020; Wang et al., 2018a). The down-
sides of all three traditional methods highlight the need for
more rapid, accurate, and nondestructive methods that can
be used on meat and meat products for assessing the qual-
ity and safety, from animal breeding through consump-
tion. For a modern meat processing facility, it is essential
to have detection techniques that meet these needs, with as
much ability to parallelize and automate as technological
and economic limits will allow (Zhang et al., 2017).

In response to the above drawbacks, nondestructive
techniques have gained much attention in recent years,
and rapid advances have been seen. Scientists have devel-
oped various advanced techniques including electronic
nose (e-nose) (Jia et al., 2018; Timsorn et al., 2016), com-
puter vision (CV) (Bhargava & Bansal, 2020; Geronimo
et al., 2019; Taheri-Garavand, Fatahi, Omid, et al., 2019),
spectroscopy (de Nadai Bonin et al., 2020; Rady & Adedeji,
2018; Wang et al., 2018a), hyperspectral imaging (HSI)
(Rady & Adedeji, 2020; Siripatrawan, 2018), and multispec-
tral imaging (MSI) (Sendin et al., 2018; Su & Sun, 2018).
These emerging techniques have merits above the conven-
tional methods in that they can be nondestructive, rapid,
and have the potential to be applied as an on-site detection
method (Balage et al., 2015; Li et al., 2016; Velásquez et al.,
2017).

These promising techniques have been extensively
investigated to evaluate the quality and safety of
different foods such as meat, fruits, and vegetables
(Amodio et al., 2020; Bhargava & Bansal, 2020; Du et al.,
2019; Fan et al., 2020; Lan et al., 2020; Mancini et al., 2020;
Weng et al., 2020; Xu et al., 2019). Notably, in terms of appli-
cations in meat quality and safety assessment, these emerg-
ing approaches have been successfully applied to predict
and detect sensory attributes (Peña-González et al., 2017),
physical attributes (WHC) (Barbon et al., 2018), micro-
biological attributes (Khulal et al., 2016, 2017; Liu et al.,
2020), chemical attributes (Geronimo et al., 2019), grading
(Naganathan et al., 2016), muscle discrimination (Alaiz-
Rodriguez & Parnell, 2020), contaminants, adulteration,
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and tumors (Rady & Adedeji, 2018, 2020; Xiong et al., 2015).
This paper provides a comprehensive overview of current
nondestructive techniques for evaluation of the safety
and quality of meat and meat products. Also provided is a
discussion focusing on challenges that must be addressed
for industrial acceptance of these nondestructive
methods.

1.2 Search methodology

This study used specific keywords to search different
databases for relevant literature. The full list of key-
word combinations is as follows: (“meat quality” AND
“e-nose”), (“meat quality” AND “CV”), (“meat qual-
ity” AND “spectroscopy”), (“meat quality” AND “HSI”),
(“meat quality” AND “MSI”), (“meat safety” AND “e-
nose”), (“meat safety” AND “CV”), (“meat safety” AND
“spectroscopy”), (“meat safety” AND “HSI”), and (“meat
safety” AND “MSI”). The pertinent records were retrieved
from Web of Science, ScienceDirect, Springer, Wiley,
Taylor & Francis Group, IEEE, MDPI, Hindawi, and
Scopus from 2015 to 2020 without refining languages,
countries, and types of articles. However, we retained all
references older than 2015 that we believed will add valu-
able background material to the paper. In addition, bib-
liographies were searched for relevant records, and Pro-
Quest and GoogleScholar were searched to ensure the
comprehensive identification of relevant articles.

The studies found through these indexing strategies
were separated into groups based on the emerging
technologies being applied. The total number of stud-
ies indexed was 394, with 157 appearing in the final
manuscript. Studies were removed from consideration in
the final manuscript if their results were not promising, if
they did not have justification for their methodologies, or
if their work did not apply to meat inspection.

2 TRADITIONALMEAT QUALITY
ASSESSMENTMETHODS

Traditional methods of meat quality assessment include
subjective and objective methods, namely, sensory eval-
uation and physicochemical techniques. These methods
measure many different characteristics of meat, including
sensory, toxicological, and nutritional content. The effec-
tiveness and accuracy of these tests have been proven over
time (over 90%). However, there are many disadvantages
of the traditional methods, such as being destructive, the
drudgery involved, long assessment time, the environmen-
tal impact of chemical waste, and the need for highly
trained personnel for their operations.

2.1 Human sensory evaluation

There are different detectable quality traits that consumers
use to determine their desire when purchasing meat. The
essential features that customers used to choose fresh meat
are color, textural patterns, visual appearance, and odor.
These parameters are related in one way or another to the
physical and chemical properties such as marbling, protein
content, and WHC. These detectable traits are useful and
reliable indicators to determine the tenderness, toughness,
or juiciness for cooked products. Many different markers
are used for the determination of raw meat quality, includ-
ing gender, species, and maturity level. The quality grade of
a meat sample often relates to the part of the animal where
it is cut from, the degree of marbling, color, firmness, and
texture. These grades can sometimes be subjective, as they
are evaluated by a human with an assumed level of exper-
tise in the field.

Some studies where HSE for meat quality evaluation
was applied are shown in Table 1. Generally, the results
found in most of the previous studies did not correspond
significantly to the chemical or microbiological changes of
the meat. HSE generally considers only sensory criteria.
Sometimes, when HSE is used to quantify microbiological
characteristics, the error may be too large and result in a
false positive, or false negative. HSE has a much wider con-
fidence interval due to factors such as human error, which
can cause significant problems. This example shows that
HSE is not completely reliable and insufficient to give a
deep insight into the quality of meat. For other reasons
such as cost, time constraints, and subjectivity, HSE is not
feasible or scalable for usage in a modern meat processing
facility (Verplanken et al., 2017).

2.2 Chemical and instrumentation
methods

Chemical and instrumentation methods are well estab-
lished in many sectors for the evaluation of food and agri-
culture products. However, some of them do not meet the
basic requirement of speed and complexity required in
modern food processing facilities. The destructive methods
of chemical tests are only capable of sampling a minimal
amount of tested products (Peng & Dhakal, 2015). Further-
more, chemical and instrumentation tests are expensive,
both in labor and processing/reagents cost and they con-
stitute a waste disposal problem. Often, they leave residues
that constitute disposal problems.

There are currently many methods and tools applied to
monitor and determine the quality and safety of differ-
ent meat types (beef, pork, lamb, and chicken) such as
WBSF (de Nadai Bonin et al., 2020), pH meter (Sahar et al.,
2019), texture analyzer (Sujiwo et al., 2019), and HPLC
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F IGURE 1 General illustration of e-nose system applied for meat quality detection

(Lu et al., 2017). As a whole, chemical and instrumenta-
tion tests are very precise and well standardized; however,
due to their cost and drudgery associated with their use,
they are not suitable for modern and adaptive, large-scale
meat facility where high throughput and scale is required,
and quick feedback is desired.

3 RECENT ADVANCES INMEAT
QUALITY ASSESSMENT

The rapid growth in public awareness and concern for
superior meat quality has increased the demand for the
application of nondestructive techniques in evaluating
meat quality and safety attributes. The need to reduce
human contact with food and food product surfaces, espe-
cially in the wake of the COVID-19 pandemic, coupled with
industrial trends in increasing the presence of automation
and Artificial Intelligence (AI) in the food industry neces-
sitates that many destructive test methods be replaced
with rapid and equally reliable nondestructive techniques.
From the literature reviewed, most advanced technologies
based on imaging and the electromagnetic spectrum that
are applied in evaluating meat quality fit the need criteria,
namely, rapid, nondestructive, and suitable for on-line/in-
line monitoring. In this section, the state-of-the-art of the
following techniques is profiled: e-nose, CV, spectroscopy,
HSI, and MSI. These technologies were chosen due to their

ability to be scaled to industrial level, availability of hard-
ware, and widespread ongoing research at the time of writ-
ing this manuscript (Jia et al., 2018; Lan et al., 2020).

3.1 Electronic nose

E-nose (artificial olfactory sensing system) is a technique
that simulates the human olfactory system (Edita et al.,
2018). Generally, e-nose is an instrument applied to ana-
lyze food aroma and to identify volatile compounds. It is
also capable of qualitative and/or quantitative analysis of
simple or complex gases, vapors, or odors (Jia et al., 2018).
E-nose consists of arrays of sensors that develop electri-
cal signals in response to volatile compounds present in
the gaseous sample (Timsorn et al., 2016). E-nose has typ-
ically three major systems: sample delivery, detection, and
computing, as shown in Figure 1. The sample delivery sys-
tem is used to enable the collection of a sample, which is
then injected into the detection system. Practically, e-nose
employs a pump to pull an air sample through a tube into a
small chamber containing the electronic sensor array. The
detection system includes a group of sensors to sense and
react to the compounds, and the response is recorded by
an electronic interface (Wojnowski et al., 2017). Next, col-
lected signals are processed using an appropriate pattern
recognition algorithm, followed by classification to label
the unknown gas (Ramírez et al., 2018).
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TABLE 2 Previous studies that report use of e-nose technique for meat quality and safety detection

Meat type Quality attributes E-nose type
Statistical
approach

Significant
results Reference

Pork TVB-N Colorimetric
sensor
array

LDA, BP-ANN 97.5% and 100% Li et al., 2014

Beef Physicochemical
indicators

PEN2 PCA, LDA, BPNN,
SLDA, GRNN

96.19% Hong et al., 2014

Tilapia TVB-N PEN3 PCA – Yan et al., 2015
Beef TVB-N, red color,

off-odor
PEN3 PCA, LDA, PLS 93%–99% Sun et al., 2014

Ham Sensory evaluations PEN3 PCA 100% Song et al., 2015
Pork Color, moisture

content, redox
potential, pH

The Food
Sniffer R©
(FS)

PCA CP 1 (71.13%) and
CP2 (12.57%)

Ramírez et al., 2018

Beef Microbial
component

Sensor array kNN 93.64%, 86%, and
85.5%

Wijaya et al., 2017

Poultry Odor Sensor array kNN, Classification
tree, SVM, Naive
Bayes (NB),
Random forest

53%–79% Wojnowski et al., 2017

Chicken VFA MOS system – R2
= .89 Edita et al., 2018

Abbreviations: BP-ANN, back propagation artificial neural network; BPNN, back propagation neural network; GRNN, general regression neural network; kNN,
k-nearest neighbors; LDA, linear discriminant analysis; MOS, metal oxide sensor; PCA, principal component analysis; NB, naive bayes; PLS, partial least squares;
SLDA, supervised latent Dirichlet allocation; SVM, support vector machine; TVB-N, total volatile basic nitrogen; VFA, volatile fatty acids.

Generally, the odor of the sample stimulus generates
a characteristic fingerprint that can be identified by sev-
eral nonspecific sensors in the e-nose system. These fin-
gerprints are compiled into a database, which is used to
classify target scents (Jia et al., 2018). Typically, the signal
analyses of e-nose data are complex and require the appli-
cation of multivariate data analysis tools and specific pat-
tern recognition methods to model signal response with
chemical or physical reference parameters (Timsorn et al.,
2016; Xu et al., 2019). Methods such as principal compo-
nent regression (PCR), partial least squares (PLS), or arti-
ficial neural network (ANN) can be used to treat the com-
plex e-nose data and extract relevant information.

E-nose has been established as a promising technique
for meat freshness detection and it shows high potential
in quality control and assurance. E-nose has many advan-
tages, such as high sensitivity, fast result classification, the
ability to detect hazardous or poisonous gases, and a wide
range of operating conditions. Also, the e-nose has little
to no special sample preparation and low per-sample cost
(Gliszczyńska-Świgło & Chmielewski, 2017; Kiani et al.,
2016; Sanaeifar et al., 2017). Nurjuliana et al. (2011) applied
a zNose™ as an e-nose to evaluate pork quality based
on a surface acoustic wave sensor. The authors found
a two-dimensional olfactory image that successfully dis-
criminates between samples qualitatively in a short time
(15 s). Similarly, Song et al. (2015) used e-nose to investi-

gate ham sensory evaluation. They found PCA model had
the most effective extraction and the best precision in pre-
dicting sensory quality withR2 of 1.0. Table 2 presents some
findings of the application of e-nose on meat quality and
safety detection.

The studies summarized in Table 2 demonstrated that
e-nose technology has been successfully applied in meat
quality detection and can be used as a promising tech-
nique to rapidly evaluate meat quality and safety, as well
as to detect adulteration of meat. The e-nose techniques
obtained satisfactory results of almost 90% average accu-
racy with the assistance of appropriate pattern recognition
techniques for data analysis. These results allow us to con-
clude that it is possible to use the e-nose for meat quality
and safety detection, and for the detection of harmful com-
pounds. There are already several sets of pretrained e-nose
databases, which are currently usable for industry applica-
tions. To be fully commercially viable, e-nose sensors must
be made to last longer before deteriorating. The sensors
currently on the market have a short life span, which needs
to change before widespread usage can occur.

3.2 Computer vision

CV is an emerging technology used for the detection
and evaluation of external quality attributes in many
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F IGURE 2 The overall system of CV system applied in meat quality detection, (a) sample, (b) lighting chamber, (c) light source, (d) CCD
camera, (e) wire, and (f) computer

agricultural products (Barbin et al., 2016; Zhang et al.,
2015). CV collects and analyzes spatial information gained
from digital images of samples, such as color, size, and
surface structure (Girolami et al., 2013). Currently, the
applications of CV are mainly limited to surface detection.
Generally, a CV system consists of a camera, a lighting
chamber, a light source, a computer, and related software
(Figure 2). CV has three different detection modes:
reflectance, absorption, and transmission (Taheri-
Garavand, Fatahi, Shahbazi, et al., 2019). Many factors
determine the light’s response in a measured object such
as the wavelength and penetration of the incident light,
the physical and chemical properties of the object, and
the sample’s refraction index (Barbin et al., 2016). Thus,
having sufficient lighting on the object’s surface can allow
for better contrast and edge detection, which can aid the
camera in surface feature detection.

CV data analysis is composed of two main parts: image
processing and image analysis (scene/object recognition).
In the investigated literatures, many different methods
were applied to measure and analyze images by correla-
tion, segmentation, identification of the regions of interest,
feature extraction, and classification. These approaches
include methods such as partial least squared regression,
k-means clustering, stepwise multiple regression, support
vector machine (SVM), linear discriminant analysis, ANN,
and analysis of variance (Ruedt et al., 2020; Tomasevic
et al., 2019).

CV techniques have proven their potential in the meat
industry for the detection of surface quality characteris-
tics and color classification (Peng & Dhakal, 2015), largely
due to its nondestructive and flexible nature (Cubero et al.,
2011). Zapotoczny et al. (2016) applied CV techniques to
assess the quality of pork and poultry. The correlation
between the image textures and chemical compositions
was found to be in the range of .7–.92. In Table 3, many

more studies are presented that show different ways of
using CV to perform meat quality evaluation. These results
indicate that CV can be used as a nondestructive tool
to assess the quality and safety of meat in production
lines; however, it needs significant refining of its ability
to detect subtle color differences or texture differences
that are equally important to the overall meat quality
certification.

3.3 Spectroscopy techniques

Spectroscopy is considered one of the most promising
nondestructive techniques, due to its merit over many
analytical approaches (Khaled et al., 2018). A typical spec-
troscopy system consists of four components: sampling
devices, photodetector, light-isolating mechanisms, and a
light source, as shown in Figure 3. In spectroscopy, there
are three different data acquisition modes - interactance,
reflectance, and transmittance. The relative locations
of the detector and light source determine the mode.
These modes have a direct influence on the wavelength
passband, where the passband is narrow in transmission
mode and is wide in reflectance mode.

Four different wavelength regions have been identi-
fied for meat applications: fluorescence, visible (VIS),
near-infrared (NIR), and mid-infrared (MIR) regions. The
American Society of Testing and Materials (ASTM) has
quantified these different regions, where fluorescence
wavelength range covers from 100 to 400 nm, VIS from 400
to 750 nm, NIR from 780 to 2500 nm, and MIR from 2500 to
25,000 nm (Fang & Ramasamy, 2015). These regions make
up some of the different modes that a spectroscopic mea-
surement device/procedure will operate in (Mancini et al.,
2020).
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TABLE 3 Previous studies on meat quality and safety detection using computer vision technique

Meat type Quality attribute Color space
Resolution
(Pixels) Statistical approach

Significant
results Reference

Pork Color RGB, HSV 5456 × 3632 Global thresholding,
k-means clustering

R2
= .99 Ruedt et al., 2020

Beef, pork,
chicken

Color L*a*,b* 23.7 × 15.6 mm ANOVA p < .05 Tomasevic et al., 2019

Beef Color RGB, HSI 100 × 100 Fuzzy adaptive
resonance theory map
(ARTMAP), ANN

95.24% Barbri, Halimi, &
Rhofir, 2014

Pork pH CVS, CIEL*a*b* – ANOVA p < .05 Chmiel et al., 2016
Pork Dry matter, protein,

fat, ash, collagen
content

RGB, L*a*b*, XYZ,
S, V, U

– ANOVA >89% Zapotoczny et al., 2016

Pork Color, marbling HSI, L*a*b* – SVM 92.5%, 75% Sun, Young, et al., 2018
Chicken Sorting RGB, HSV 1280 × 1024 PLSR, LDA, ANN 93% Teimouri et al., 2018
Pork IMF RGB, HSI, L*a*b* – SVM 63%, 75% Liu et al., 2018
Chicken Freshness RGB, HSI, L*a*b* 3000 × 4000 CV, GA-ANN, ANN R2

= .99 Taheri-Garavand,
Fatahi, Shahbazi,
et al., 2019

Lamb Marbling RGB – MLP 91% Przybylak et al., 2015
Chicken Color CIE L*a*b* 3648 × 2376 CV colorimeter R2

= .99 Barbin et al., 2016

Abbreviations: ANN, artificial neural network; ANOVA, analysis of variance; CIE, Commission Internationale de l’Elcairage; CVs, computer visions; CVS, com-
puter vision systems; GA-ANN, genetic algorithm–artificial neural network; HSI, hue, saturation, and intensity; HSV, hue, saturation, and value; IMF, intramus-
cular fat; L*a*,b*, lightness, redness, and yellowness; LDA, linear discriminant analysis; MLP, multilayer perceptron; ARTMAP, adaptive resonance theory map;
PLS, partial least squares; PLSR, partial least squares regression; RGB, red, green, and blue; SVM, support vector machine.

F IGURE 3 The general system of spectroscopy technique applied in meat quality detection, (a) sample, (b) lighting chamber, (c) light
source, (d) spectrograph camera, (e) wire, (f) detector, and (g) computer

Spectral reflectance analyses have proven to be very
useful in evaluating meat quality because changes in the
absorption of incident light in the target regions of the elec-
tromagnetic spectrum defer based on the constituent of
the region of interest. There are several published studies
where spectroscopy was used for monitoring and detecting

meat quality and microbial contaminations (Barbon et al.,
2018; de Nadai Bonin et al., 2020; Savoia et al., 2020; Wang
et al., 2018b). These quality attributes include shear force,
TVC, IMF (intramuscular fat), TVB-N (total volatile basic
nitrogen), and thiobarbituric acid-reactive substances in
beef; TVC and TVB-N in pork; and drip loss, moisture,
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water activity, TVB-N, and adenosine triphosphate in
poultry.

Overall, the reflectance properties of meat depend on the
interaction of chemical constituents, fundamental vibra-
tions, and stretching of molecules under exposure to elec-
tromagnetic radiation (Prieto et al., 2017). The variations
of chemical constituents can form detailed fingerprints for
quality detection, such as the freshness of meat (Prieto
et al., 2009). The spectral information involved in VIS and
NIR reflectance techniques indicates molecular vibrations
of chemical constituents of meat, particularly the over-
tones and combination bands of vibrational modes in the
form of C–X, where X is nitrogen, oxygen, or carbon and
C is carbon. MIR spectroscopy can be divided into four
wide regions: the X–H stretching region (2500–4000 nm),
the triple bond region (4000–5000 nm), the double bond
region (5000–6666 nm), and the fingerprint region (6666–
25,000 nm). It has been reported that MIR absorbance
derives from only one type of vibrational response and its
spectral peaks are exclusive for a particular type of organic
bond. Typically, the quantitative and qualitative analyses
of spectroscopy data required in various analyses are com-
putationally expensive, ill-fitting, and can be plagued by
interference (Khaled et al., 2018). In addition, spectroscopy
produces thousands of variables, so there must be careful
consideration of how to deal with noise and informational
redundancy. Methods such as MLR, PLS, and PCR can be
used to preprocess the data and deal with these issues.

Some findings on the use of spectroscopy in meat quality
and safety evaluation are shown in Table 4. In the reviewed
studies, VIS, NIR, MIR, and fluorescence spectral regions
were analyzed with a frequency of 60%, 80%, 8%, and 12%,
respectively. The results display that VIS/NIR was applied
by approximately three quarters of the reviewed studies,
which can partially be explained by the speed, lower start-
up cost, and lower complexity of the equipment. Fewer
studies have reported on the applications of MIR and fluo-
rescence spectroscopy for meat quality assessment. Some
potential reasons for information in these areas include
higher start-up costs and more complex equipment. Fur-
thermore, spectroscopy techniques are in some ways a pre-
cursor to the techniques presented in Sections 3.4 and 3.5.
As technology evolves, this led to HSI and MSI being used
instead of just spectroscopy as a general trend. However,
some recent studies still use spectroscopy techniques to
show their advantages (see the case study in Section 4.1).

3.4 HSI systems

HSI is a relatively new technique that is being applied to
evaluate food product quality nondestructively (Kamruz-
zaman et al., ). HSI combines imaging and spectroscopy

technologies for providing spatial and spectral information
of the sample simultaneously. By this integration, HSI can
detect the external and internal quality characteristics of
a sample (Shi et al., 2019). In HSI, the spatial and spec-
tral information allows the characterization and identifica-
tion of a complex heterogeneous sample and a wide range
of multi-constituent surface and subsurface features. Typ-
ically, an HSI system consists of a light source, a lens, an
imaging spectrograph, a camera, a sample holding plat-
form, and an interfaced computer with sample stage and
data analysis software as illustrated in Figure 4.

HSI provides a large amount of information in three-
dimensional hypercubes (x, y, λ), where x and y are spa-
tial dimensions and λ is the spectral dimension. Hypercube
data can be viewed in two ways: the entire spectrum at
each pixel, or as a stack of images where each image repre-
sents a unique wavelength. There are three major methods
for capturing a hyperspectral image: point-to-point scan-
ning (whiskbroom imaging), where the spectra are col-
lected pixel by pixel, line scanning (pushbroom imaging),
where pixel spectra are acquired line by line, and area scan-
ning (staring imaging) where the spectra are obtained by
scanning all pixels at one wavelength, then repeating for
each desired wavelength. The selection of which type to
use will depend on the application, and the price, as the
prices may vary widely.

Performing hypercube analysis can be challenging,
as it may require applying chemometric modeling and
statistical methods. Furthermore, classification and/or
prediction models that are built using hypercube data will
frequently need dimensionality reduction, as they can
have large dimension and size (Cheng et al., 2017). There
are many commonly applied techniques to preprocess data
from a hypercube, such as interference correction, dimen-
sionality reduction, and feature extraction (Oliveri et al.,
2014). Spectral pretreatment techniques are used to reduce
and correct interferences related to baseline drift, scatter-
ing, and overlapping bands, such as multiplicative scatter
correction, smoothing, and baseline removal. Variable
selection techniques are then applied to select the most
informative spectral regions (the optimal wavelengths)
for simplifying the model. These may include PCA, unin-
formative variable elimination, and genetic algorithms.
Quantitative analyses are used to correlate, classify,
predict, and validate the models such as MLR, ANN, and
least square SVM. Figure 5 shows the flowchart of HSI,
from image acquisition through the prediction model.

The application of HSI in the meat industry to evaluate
quality and safety attributes can raise consumers’ confi-
dence in meat products, largely due to the ability to obtain
specific information about each piece of meat when this
was previously not feasible. Usage of HSI is helpful in
the examination of chemical composition, adulteration,
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F IGURE 4 Schematic of an HSI system: (a) PC, (b) light source, (c) camera, (d) image spectrograph, (e) lens, (f) controller, and (g)
sample

sensory attribute prediction, contaminant detection, and
bacterial spoilage. Table 5 shows examples of many stud-
ies that have utilized HSI for the evaluation of different
parameters in various types of meat (beef, pork, lamb, and
chicken). These studies and their results reported that HSI
combined with chemometric techniques has the potential
for the rapid and nondestructive estimation of meat qual-
ity and safety characteristics. In the reviewed studies, HSI
techniques have been shown to have accuracies ranging
from 38% to 99%, with VIS/NIR with line scanning being
the most frequently used approach. Despite the various
advantages of this technique, it has some limitations with
regard to direct implementation in an on-line system such
as a lack of perfect accuracy (100%), which could portend
high risk when dealing with food allergens or contami-
nants. If there can be a restriction in the number of cap-
tured/processed wavelengths, this will greatly reduce the
amount of data, the amount of redundancy in the dataset,
and the complexity of subsequent analysis and classifica-
tion. Most industrial applications seek to select optimal
wavelengths/features to ensure the quickest feedback from
the multispectral model that ensues.

3.5 Multispectral imaging

MSI is a promising and innovative technology that has
been used in raw and processed meat inspection. MSI is
considered a reformation of HSI, with the difference being
that it takes an optimized subset of wavelengths used in
HSI, such that it will operate on significantly less data
(Ma et al., 2016; Sendin et al., 2018). Typically, MSI will
use between three and 15 wavelengths, which are dis-
crete, noncontiguous, and irregularly spaced (Feng et al.,
2018). Having both a higher quality and lower quantity of
information to process allows for MSI to achieve a more

rapid identification and detection than line-scan HSI (Su
& Sun, 2018). Using lesser wavelengths also allows for
reductions in cost in the hardware and optical sensors as
well (Sendin et al., 2018). Thus, if HSI and MSI met the
same performance standards, MSI would be chosen for
implementation for industrial systems. Just like HSI,
MSI system captures three-dimensional images (a one-
dimensional spectrum [λ] at every two-dimensional pixel
[x and y]), which contain heterogeneous information
reflecting meat physiochemical characteristics (Ma et al.,
2016). Figure 6 shows an example of a typical MSI layout,
where many different wavelength light sources are used
to be able to capture spectral information simultaneously
(Liu et al., 2016).

The main application of MSI in meat assessment has
been quality and safety evaluation of products (Alshejari
& Kodogiannis, 2017; Estelles-Lopez et al., 2017; Ropodi
et al., 2018). Specific applications include frozen minced
beef quality evaluation (Ropodi et al., 2018), heme and non-
heme iron content prediction in pork sausage (Ma et al.,
2016), and adulteration detection in chicken breast fillets
(Spyrelli et al., 2021). In Table 6, many more studies are pre-
sented that show different ways of using MSI to perform
meat quality evaluation.

4 RECENT APPLICATIONS OF
NONDESTRUCTIVE TECHNIQUES IN
MEAT QUALITY AND SAFETY
EVALUATION

4.1 Meat microbiological spoilage
detection

Meat is a highly perishable food and a fertile environ-
ment for bacterial growth due to its high moisture content
(Huang et al., 2013). Thus, TVC of bacteria is considered
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F IGURE 5 Flowchart of HSI technique for acquisition and to
analyze data in meat quality and safety detection

one of the most important indicators that can be measured
to perform the microbiological safety evaluation of meat
(Parlapani et al., 2015). The international standards used
in meat safety and quality assessment have set a thresh-
old value of TVC; if it exceeds this threshold, the bacte-
ria will become harmful to humans. Therefore, accurate
knowledge of the TVC is crucial to protect consumers.
Recently, advanced techniques have become a suitable
alternative to the traditional methods used in meat indus-
tries. These advanced techniques include the use of nonde-
structive methods such as e-nose, CV, and spectroscopy to
determine microbial spoilage in meat in a fast and precise

manner (Feng & Sun, 2013; Huang et al., 2013). Specific
applications of such techniques include e-nose, where Yan
et al. (2015) and Wijaya et al. (2017) applied same to detect
microbial counts and components in beef, as well as aero-
bic bacteria counts and TVC in pork. These studies had a
cross-validation accuracy ranging from 87% to 100%. Addi-
tionally, spectroscopy and HSI techniques have been
applied to determine TVC and Total Plate Count (TPC) in
beef and pork (Khoshnoudi-Nia et al., 2018; Saricaoglu &
Turhan, 2019; Tao & Peng, 2014). These approaches had an
accuracy ranging from 80% to 100%. The variation in the
results shown may be due to the difference in the tech-
nologies applied, as well as due to the surrounding envi-
ronment. For example, temperature directly affects oxy-
hemoglobin formation, which plays a significant role in
spoilage. Overall, these results show that these emerging
technologies can be used to detect microbial spoilage, in a
manner conducive to industrial use.

4.2 Meat safety detection

Meat safety is an extremely important consideration for
both meat producers and consumers. When selling meat,
the producer must ensure that their products are safe and
free from disease. Food production involves several differ-
ent stages, including slaughter, processing, transportation,
and distribution (Saucier, 2016). There are many different
types of issues that need to be detected, including diseases,
toxins, and deformities (Dasenaki & Thomaidis, 2017). HSI
has been very promising thus far and has been investigated
for its potential in identifying safety issues in meat. Kim
et al. (2006) utilized HSI to detect tumors in chicken, with
an accuracy of 98.2% using a PCA-based model. For differ-
entiating healthy and systemically diseased fresh chickens,
Chao et al. (2007) applied HSI. The system was able to
detect 98% of healthy and 93% of systemically diseased
chickens, using the selected feature wavelengths. Simi-
larly, Nakariyakul and Casasent (2009) examined VIS- and
NIR-based HSI to detect tumors in chicken. The authors
selected eight optimal wavelengths and found an accuracy
of 80%. Other studies have utilized HSI techniques to
identify and isolate chicken skin tumors and found overall
detection accuracies of 76%–98% (Barbin, Elmasry, Sun, &
Allen, 2013; Chao et al., 2010; Feng & Sun, 2013; Tao et al.,
2012; Wang et al., 2011). The impressive results that have
been found from previous studies using the HSI system
at VIS and NIR spectral ranges can be attributed to the
difference of color pigments between tumor and meat,
related to water bands such as 750 and 950 nm and to the
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C–H, O–H, and N–H stretching vibrations.

4.3 Meat quality classification

Meat quality classification is based on human perception,
which can be based on physical and chemical attributes
(Barbon et al., 2018). Chemical attributes include protein,
pH, and IMF, whereas physical attributes include tender-
ness, juiciness, marbling content, and flavor. Accurate and
precise meat quality evaluation is also pivotal for the meat
industry, as it can determine better pricing if it has bet-
ter classification. For example, pork can be classified into
five grades: pale, soft, and exudative (PSE); radish, firm,
and nonexudative (RFN); radish, soft, and exudative; pale,
firm, and nonexudative; and dark, firm, and dry (DFD),
where these grades are based on the combination of three
main parameters (texture, color, and exudation) (Sujiwo
et al., 2019; Taheri-Garavand, Fatahi, Omid, et al., 2019).
As for beef quality classification, according to the United
States Department of Agriculture (USDA), beef meat qual-
ity can be classified into three grades: prime, choice, and
standard (USDA, 1997). These grades are based on the
degree of both marbling and maturity.

HSI and spectroscopy are the techniques applied most
often for nondestructive testing, with both based on the
VIS and NIR regions of the electromagnetic spectrum
(400–2500 nm). These wavelength ranges have advantages,
including the ability to identify the biochemical composi-
tion of meat (water, protein, and fat content). For exam-
ple, lights in the range of 950–1000 and 1350–1450 nm are
bands synonymous to water. Also, light between 1100 and
1250 nm is related to C–H and N–H stretching vibrations,
which help to detect some chemical attributes such as pro-
tein and fat. Pu et al. (2015) stated that wavelengths of 440,
470, and 635 nm are assigned to deoxymyoglobin, metmyo-
globin, and sulfmyoglobin, respectively, which are related
to the freshness and color of meat. Kamruzzaman et al.
(2012) examined NIR HSI with wavelengths ranging from
890 to 1700 nm to classify pork, beef, and lamb muscle
(longissimus dorsi). They found an overall correct classi-
fication rate of 98.67% for pork, beef, and lamb samples in
the validation set using PLS-DA. A similar study was con-
ducted by Barbin et al. (2012) to classify pork longissimus
dorsi muscles into three quality grades (PSE, RFN, and
DFD) using a NIR HSI system (900–1700 nm). Their over-
all correct classification rate was 97.44%. Together, these
studies highlight that HSI, coupled with various classifiers,
has the potential to be used as a fast technique to clas-
sify pork meat grades. Many studies applied HSI to clas-
sify lamb meat as well. For example, Sanz et al. (2016)
used HSI to categorize four different lamb muscles (longis-
simus dorsi, psoas major, semimembranosus, and semi-

F IGURE 6 Principal setup of a multispectral imaging system
(a) camera, (b) lens, (c) integrating sphere, (d) LEDs of multiple
wavelengths, (e) NIR, and (f) sample is placed in target opening
(Liu et al., 2016)

tendinosus), and achieved a classification rate of 96.67%
with Least mean squares (LMS). There is a breadth of
material showing how these new technologies can be used
to classify various meat types. This will undoubtedly prove
useful in the future for both meat producers and con-
sumers.

4.4 Meat contamination detection

The supply chain of meat from its source to the consumer
may predispose it to contamination by harmful substances.
Meat contamination can either be internal (present before
the animal is slaughtered) or external (present after slaugh-
ter, due to unclean surfaces or other factors) (Sanaeifar
et al., 2017). Meat contamination leads to the appearance
of signs of spoilage such as spots on the surface (white
or green) or the changing of raw meat color from light
pink/red to dark red/gray (Choi et al., 2020). These changes
are due to the breakdown and damage of internal iron
compounds. Thus, contaminated meat must be disposed
of to prevent food poisoning and ensure that harmful sub-
stances (bleach, fecal matter) do not spread. The meat
industry is facing the difficulty of identifying and sep-
arating contaminated meat from noncontaminated meat
due to the high number of possible contaminants. HSE
is the most commonly used inspection technique in the
meat industry for contaminant detection. As previously
stated, HSE has many limitations, including subjectivity,
inconsistency, and inaccuracy. A better replacement will be



3452 Non-destructive assessment of meat quality

T
A
B
L
E

6
St

ud
ie

so
n

m
ea

tq
ua

lit
y

an
d

sa
fe

ty
de

te
ct

io
n

us
in

g
th

e
M

SI
te

ch
ni

qu
e

M
ea
t

ty
pe

Q
ua
lit
y
at
tr
ib
ut
es

Sp
ec
tr
al

ba
nd

s
W
av
el
en
gt
h

ra
ng
e
(n
m
)

St
at
is
ti
ca
la
pp
ro
ac
h

W
av
el
en
gt
h
se
le
ct
io
n
(n
m
)

Si
gn
if
ic
an
t

re
su
lt
s

R
ef
er
en
ce

Po
rk

bo
ne

fr
ag

m
en

ts
19

40
5−

97
0

SP
A

,L
D

A
,P

C
A

–L
D

A
,

PL
S-

D
A

,
45

0,
47

0,
64

5,
66

0,
70

0,
78

0,
97

0
10

0%
fo

rt
es

ts
et

W
an

g
et

al
.,

20
21

Be
ef

TV
C

18
40

5−
97

0
N

eu
ro

-fu
zz

y
40

5,
43

5,
45

0,
47

0,
50

5,
52

5,
57

0,
59

0,
63

0,
64

5,
66

0,
70

0,
85

0,
87

0,
89

0,
91

0,
94

0,
97

0

94
.6

4%
A

ls
he

ja
ri

&
K

od
og

ia
nn

is
,2

01
7

Be
ef

TV
C

18
40

5−
97

0
O

LS
-R

,S
L-

R,
PL

S-
R,

PC
R,

SV
R,

RF
,

kN
N

–
98

.6
%

Es
te

lle
s-

Lo
pe

z
et

al
.,

20
17

Be
ef

Fr
oz

en
-th

en
-th

aw
ed

18
40

5−
97

0
PL

S-
D

A
,S

V
M

–
10

0%
Ro

po
di

et
al

.,
20

18
Be

ef
,p

or
k

D
et

ec
ta

du
lte

ra
tio

n
18

40
5−

97
0

PL
S-

D
A

,L
D

A
40

5,
43

0,
45

0,
47

0,
50

5,
56

5,
59

0,
63

0,
64

5,
66

0,
85

0,
87

0,
89

0,
91

0,
92

0,
94

0,
95

0,
97

0

98
.4

8%
,9

6.
97

%
Ro

po
di

et
al

.,
20

15
)

Be
ef

M
in

ce
d

be
ef

an
d

ho
rs

em
ea

t
18

40
5−

97
0

PL
S-

D
A

,R
F,

SV
M

–
10

0%
,9

6.
62

%
Ro

po
di

et
al

.,
20

17

Be
ef

W
at

er
-in

je
ct

ed
19

40
5−

97
0

PL
S-

R
40

5,
43

5,
45

0,
47

0,
50

5,
52

5,
57

0,
59

0,
63

0,
64

5,
66

0,
70

0,
78

0,
85

0,
87

0,
89

0,
91

0,
94

0,
97

0

94
.6

%
Li

u
et

al
.,

20
16

C
hi

ck
en

TV
C

,P
se
ud
om

on
as

sp
p.

18
40

7-
97

0
PL

S-
R,

A
N

N
40

5,
43

5,
45

0,
47

0,
50

5,
52

5,
57

0,
59

0,
63

0,
64

5,
66

0,
70

0,
85

0,
87

0,
89

0,
91

0,
94

0,
97

0

90
.4

%
Sp

yr
el

li
et

al
.,

20
21

A
bb

re
vi

at
io

ns
:A

N
N

,a
rt

ifi
ci

al
ne

ur
al

ne
tw

or
ks

;k
N

N
,k

-n
ea

re
st

ne
ig

hb
or

s
;L

D
A

,l
in

ea
rd

is
cr

im
in

an
ta

na
ly

si
s;

O
LS

-R
,o

rd
in

ar
y

le
as

ts
qu

ar
es

re
gr

es
si

on
;P

C
A

–L
D

A
,p

rin
ci

pa
lc

om
po

ne
nt

an
al

ys
is

–l
in

ea
rd

is
cr

im
in

an
t

an
al

ys
is

;P
C

R,
pr

in
ci

pa
lc

om
po

ne
nt

re
gr

es
si

on
;P

LS
-D

A
,p

ar
tia

ll
ea

st
sq

ua
re

sd
is

cr
im

in
an

ta
na

ly
si

s;
PL

S-
R,

pa
rt

ia
ll

ea
st

sq
ua

re
re

gr
es

si
on

;R
F,

ra
nd

om
fo

re
st

;S
L-

R,
st

ep
w

is
e

lin
ea

rr
eg

re
ss

io
n;

SP
A

,s
uc

ce
ss

iv
e

pr
oj

ec
tio

n
al

go
rit

hm
;S

V
M

,s
up

po
rt

ve
ct

or
m

ac
hi

ne
;S

V
R,

su
pp

or
tv

ec
to

rr
eg

re
ss

io
n;

TV
C

,t
ot

al
vi

ab
le

co
un

ts
.



Non-destructive assessment of meat quality 3453

nondestructive techniques to perform contaminant detec-
tion. For this application, spectroscopy and HSI look
promising for industrial use.

Many studies have begun to examine meat contami-
nation using emerging nondestructive techniques. Iqbal
et al. (2013) examined e-nose to detect foodborne bacte-
ria contamination on beef. HSI systems have also seen
usage for contaminant detection, most often with poul-
try. For poultry contaminant detection, fecal matter and
ingesta can introduce pathogenic microorganisms. How-
ever, in order for this detection method to properly work,
the carcasses must be externally cleaned, as these con-
taminants are found internally. The current manual meth-
ods used recently have been having difficulty in detect-
ing a small amount of fecal material in fast-moving car-
casses with consistency. Yoon et al. (2011) highlighted that
contaminated spots on the surface of poultry carcasses
can be modeled by non-Gaussian properties and that the
uncontaminated poultry carcasses could be modeled by a
Gaussian distribution. In general, the detection of contam-
inants in meat depends on the difference in spectral bands
between normal and contaminated skin/flesh. This differ-
ence in spectral bands and the proper multivariate models
can lead to the development of an on-line system where
contaminated meat can be identified in a quasi-real-time
mode.

4.5 Meat adulterant detection

Food fraud is a major concern for the food industry, espe-
cially adulterated meat. Spink and Moyer (2011) defined
food fraud as an intended act of substitution or misrep-
resentation of food ingredients and/or food packaging.
In recent times, the issue of commercial meat fraud has
emerged, and its importance has increased with growing
consumer awareness. Meat adulteration comes in several
forms, such as inaccuracies in the species, gender, or qual-
ity (Johnson, 2014). For example, the horsemeat scandal
in which beef was adulterated with horse by as much up
to 100% in some cases (Premanandh, 2013). Also, minced
meat is another common occurrence of adulteration, and
it is important due to its usage in products such as meat-
balls, hamburgers, and sausages. Adulteration in minced
meat can occur by substituting inexpensive meat or pro-
teins from animal or vegetable origin (Kamruzzaman et al.,
2013). Through traditional evaluation methods, it is dif-
ficult to determine and identify meat types used due to
removing the morphological structure of meat and the
similarity of authentic and adulterated products. Adul-
teration detection has become fundamental in the meat
industry for accurate labeling and to meet the consumers’
standards. Many of these international standards come

from religious, medical, ethical, or dietary concerns (Boy-
aci et al., 2014).

Thus far, previous studies have used emerging tech-
niques such as spectroscopy and HSI to detect adulter-
ation in meat. Alamprese, Casale, Sinelli, Lanteri, and
Casiraghi (2013) applied spectroscopy to study minced beef
adulterated with turkey, and achieved an accuracy rate of
98.3%. Also, Barbin, Elmasry, Sun, Allen, and Morsy (2013)
achieved a classification rate of 94%, 95%, and 97% for
fresh and frozen-thawed minced beef adulterated with beef
offal, beef fat, and pork, respectively. Rady and Adedeji
(2018) investigated the application of spectroscopy at two
ranges including VIS/NIR and NIR to evaluate adulter-
ant minced beef and pork. The authors found a classifica-
tion rate of 69%–100%. The same authors extended their
study with the application of HSI and machine learn-
ing methods to identify adulteration in minced beef and
pork. The optimal classification models based on selected
wavelengths of the test set achieved classification rates of
75%−100% for pure samples and 100% for adulterated sam-
ples (Rady & Adedeji, 2020). Kamruzzaman et al. (2013)
applied NIR HSI to detect the level of adulteration in
minced lamb meat. They found R2cv of .98 was achieved
using the optimally selected wavelengths. The success-
ful application of spectroscopy and HSI in detecting meat
adulteration is due to the differences in the amount of light
absorbance/reflectance for different meats and adulter-
ants. The bands related to the C–H, O–H, and N–H stretch-
ing vibrations in the NIR region were most likely influ-
enced by the adulterant material. Moreover, the VIS region
can detect the adulterant material due to the changes of
water and myoglobin proteins, with the bands (around
440, 475, and 550 nm) related to deoxymyoglobin, sulfmyo-
globin, and oxymyoglobin.

4.6 Meat bone fragments detection

Bone fragments are small, often sharp parts in meat. The
presence of bone fragments can either be due to broken
bones inside the carcass before slaughtering or unbalanced
cutting blades that shaved pieces from the skeleton. In
general, the presence of bone fragments in boneless meat
has risks for both producers and consumers. Consumers
expect their meat to be free of any pollutants that threaten
their safety and the presence of bone fragments may cause
risks to them. On the other hand, producers can lose a lot
of money due to the presence of bone fragments in their
products, insurance claims and legal fees, as well as the loss
of consumer trust. Therefore, it is necessary to detect and
remove bone fragments from meat products before sale.
Currently, the detection of bone fragments is a significant
challenge, and the use of traditional manual inspection is
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difficult. Thus, the described emerging technologies are
promising to solve this problem. Lim et al. (2020) applied
HSI with wavelengths ranging from 987 to 1701 nm to detect
bone fragments in beef, pork, and chicken. The authors
reported a 93.3% accuracy for most bone fragments detec-
tion using an image subtraction algorithm. Their findings
were promising and demonstrate the effectiveness of HSI
when combined with appropriate image processing mod-
els for bone fragment detection.

5 CHALLENGES AND FUTURE
DIRECTION

In general, the emerging nondestructive approaches (e-
nose, CV, spectroscopy, HSI, and MSI) have proven their
potential in nondestructive meat quality assessment and
safety inspection. Most of the previous studies reported
promising results with accuracy rates higher than 80%.
The results of these studies show that these technolo-
gies have useful scientific potential, as well as a strong
need for development in their ability for industrial usage
(or potentially usage by everyday people). To overcome
this shortfall, researchers must address the capability
of their research to scale to an industrial level, such
that the development of these technologies serves a pur-
pose beyond its potential at the laboratory scale. Com-
puting speed, scanning time, and distance needed from
the sensor to the object are some important parameters
for optical systems, as these would greatly define the
development of real-time automated processing systems.
Examples of other challenges that must be overcome
include auto-adaptation/correction for poor lighting con-
ditions, studying the effects of various types of noise,
reducing the cost of sensors/data acquisition hardware,
and reducing the amount of data from these technologies
that must be processed, such that automated decisions can
be made in real time. A specific example of this is that
lighting can be a limiting factor for the precision of opti-
cal methods, and the wavelengths of light from existing
light sources could greatly affect the accuracy and preci-
sion of an optical system. Khaled et al. (2018) stated that
the signal-to-noise ratio could fall due to interference from
noise or random interruptions (e.g., a light switching to
off/on mode for optical applications, or a nearby chemical
spill/contaminant for e-nose).

To overcome these issues, many solutions can be
researched and implemented in the area of hardware
and software. Hardware improvements may include size
reduction (to fit in an on-line setting), new sensor types
(longer e-nose lifetime), innovative environmental sup-
pression procedures (optical filtering glass, sound absorp-
tive materials), and new network integrations that are

faster and more reliable over a longer period. Software
solutions include new algorithm models for optimal wave-
length selection, multispectral model implementation, and
higher computing efficiency (HSI, spectroscopy, CV), all
of which can enable faster on-line detection with accept-
able accuracy, rapid feedback, and improved resistance to
outside noise/interference. Another major improvement is
to use sensor fusion. Utilizing many different technologies
at once can capture a significantly wider variety of infor-
mation in a short time, which can improve both the accu-
racy and reliability of designed systems. Some researchers
investigated sensor fusion combinations such as HSI and
CV to predict minced pork (Barbin, Elmasry, Sun, & Allen,
2013), and NIR spectroscopy, CV, and e-nose to evaluate
meat freshness (Huang et al., 2015). These studies reported
that fusing data from more than one technique led to bet-
ter results than one single approach due to the ability to
leverage nonredundant information collected from multi-
ple systems to provide more accurate and precise evalua-
tions. Another example is where colorimetric sensor array
and optoelectronic nose were used to assess the quality and
safety of meat on a production line (Li et al., 2018; Xiao-wei
et al., 2018). These authors believe that the exact physical
mechanisms of the response between the quality attributes
and spectra/sensor arrays are still unclear in the cur-
rent literature, which warrants for researchers to further
investigate this area as developments continue to bring
these technologies closer to industrial use. Knowledge of
the underlying physical response mechanisms would be a
great asset to confidence in the industrial adaption of these
technologies for commercial purposes.

Another avenue that would be beneficial for researchers
to pursue is improving meat quality control during the
different steps of the supply chain such as transportation,
storage, and packaging. Fluctuating environmental condi-
tions such as high temperature or changing humidity can
negatively impact meat quality and its shelf life. Del Olmo
et al. (2014) reported that modified atmosphere packaging
and high-pressure processing in pork products can influ-
ence pH and microorganism activity, which then changes
the pork’s flavor. Säde et al. (2013) discovered a new type of
enterobacteria that can grow in meat and poultry samples
at the modified atmosphere packaging. To prevent these
changes, there must be careful real-time monitoring of the
packaging conditions for all meat, such that there will be
no risk of microbial spoilage during storage or transport.
These issues present an urgent requirement for technology
that can monitor and control the quality of meat products
during storage and transportation. A strong candidate for
this is the Internet of things (IoT). IoT is a highly promising
family of technologies that is capable of many solutions to
the modernization of agriculture for food security. IoT can
result in a variety of sensor designs (such as those based
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on HSI) that are suitable for real-time monitoring, eval-
uating, and identifying meat quality and safety attributes
including pathogens, carbon dioxide, oxygen, and/or
temperature and provides real-time data for effective
action implementation that reduces risk and cost (Shenoy,
2016).

The recent coronavirus pandemic presents a dire need
to add automation to industrial meat processing to ensure
production continues even with limited floor workers.
Hart et al. (2020) described a situation originating in a
Smithfield processing plant in Sioux Falls, South Dakota
(USA), where more than 300 plant workers tested posi-
tive for COVID-19 in April 2020 and the plant was closed,
which led to a severe hike in meat products price due
to the disruption in production. This problem highlights
an urgent need to develop nondestructive testing meth-
ods that will reduce human contact during food produc-
tion. The foundation technology for automation and AI
in the food industry are smart sensing systems that can
assess food quality and perform the same function done
by humans. Many of the described nondestructive tech-
niques should be developed so that they can become part
of the foundation of automated food quality assessment in
the food industry.

Another technology that has great promise in the mod-
ern meat industry is portable and handheld optical devices.
These systems should allow for quick and easy spot check-
ing and could be of great value during several stages of
production and sale of meat products. However, the devel-
opment of such devices has been very limited due to fac-
tors such as low camera quality (when compared to indus-
trial cameras) and poor usage conditions (lack of dexterity
in the use of the device often impacts accuracy) (Kademi
et al., 2019; Kiani et al., 2016; Yao et al., 2019). In the
case of e-nose, the application challenges include a shot
life span of sensors, and also the type and detection accu-
racy of the sensor array. For this reason, the materials
used for e-nose sensors should have a very high sensitiv-
ity to the samples being detected. Another challenge is the
lack of miniaturization of the e-nose sensing system. This
should be achieved to develop novel portable devices with
reduced integrated sensors to enhance detection limit, sen-
sitivity, and working range, as well as minimizing costs
and simplifying analyses. Similarly, the development of
mobile phone applications based on CV will be desired to
allow consumers to evaluate the quality and safety of meat.
The innovation of both technologies will be promising to
watch, as there has not been enough work done to fully
realize the ideas. As shown in this section, there are many
possibilities that researchers can pursue to aid in the mod-
ernization and improvement process of the meat industry.
All of these applications have significant benefits to both
producers and consumers and have enough merit to war-

rant future work. The overall comparisons of five primary
nondestructive techniques are summarized in Table 7.

6 CONCLUSION

In this paper, we presented a comprehensive review of
the conventional and nondestructive methods for evalu-
ating the quality and safety of meat and meat products,
highlighting the limitations of the conventional methods
and the need for better solutions that are adapted for cur-
rent industrial use. We summarized five emerging nonde-
structive techniques that have been used for meat qual-
ity and safety detection, namely, (i) e-nose, (ii) CV, (iii)
spectroscopy, (iv) HSI, and (v) MSI. Among the methods
reviewed, HSI shows great merits over the others based
on the degree of accuracy, versatility, and wide range of
applications it can be used for in meat quality and safety
assessment. However, its applications are still mostly at
the laboratory scale and are not fully developed yet for
an on-line industrial application. Similarly, the applica-
tions of e-nose are very promising for this industry but are
much less developed than optical methods. The require-
ments for chemical and signal processing, along with the
device limitations, restrict the scaling and proliferation of
these technologies for the time being. The need for auto-
mated nondestructive detection systems is highlighted due
to the experience forced on us by COVID-19 and other pos-
sible future public health outbreaks. In conclusion, these
techniques are shown to have the potential for applica-
tions on meat as nondestructive quality and safety detec-
tion tools. Despite current limitations, there are still a wide
breadth of possible improvements and research to be done,
which would allow for successful commercialization, espe-
cially the HSI- and MSI-based systems. Thus, future stud-
ies should focus on enhancing the accuracy, scalability,
robustness, and simplicity of these technologies, especially
for industrial applications.
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