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ARTICLE INFO ABSTRACT

Keywords: Microbes play key roles in animal welfare and food safety but there is little understanding of whether micro-
PQUIU’Y‘ carcass biomes associated with livestock vary in space and time. Here we analysed the bacteria associated with the
Microbiome ) carcasses of the same breed of 28 poultry broiler flocks at different stages of processing across two climatically
;::S:;embarmde sequencing similar UK regions over two seasons with 16S rgetabarcode DNA sequencing. Numbers of taxa types did not differ
Region by region, but did by season (P = 1.2 x 10~ °), and numbers increased with factory processing, especially in

summer. There was also a significant (P < 1 x 10~%) difference in the presences and abundances of taxa types by
season, region and factory processing stage, and the signal for seasonal and regional differences remained highly
significant on final retail products. This study therefore revealed that both season and region influence the types
and abundances of taxa on retail poultry products. That poultry microbiomes differ in space and time should be
considered when testing the efficacy of microbial management interventions designed to increase animal welfare

Community profile

and food safety: these may have differential effects on livestock depending on location and timing.

1. Introduction

Poultry is the second largest source of animal protein consumed by
humans world-wide, and over 118 million tonnes of poultry was pro-
duced globally in 2017 (OECD/FAO, 2018). Each year human
food-related illness costs the UK alone £1.8 billion (FSA, 2013) and
causes 310,000 to 600,000 deaths world-wide (WHO, 2015). Research
has understandably concentrated on ways to reduce this burden by
identifying and reducing pathogenic organisms within the microbiomes
of livestock destined for human consumption.

To date the majority of poultry microbiome studies have evaluated
digestive tracts due to their importance in animal health, but since
viscera are typically removed and not consumed, these studies are
limited in their understanding of the microbiological safety of retail
poultry products. Studies that have evaluated poultry -carcass

microbiomes are very limited: one recent study focussed on changes in
poultry carcass microbiomes through the abattoir and found a drop in
bacterial load and change in microbiome in response to an immersion
chilling intervention (Handley et al., 2018). We are unaware of any
studies that have evaluated the effect of environmental and various
food-chain processing interventions on poultry (or any other meat)
carcass microbiomes destined for human consumption.

There is increasing evidence that microbiomes associated with hor-
ticultural systems differ by region (Bokulich et al., 2014; Taylor et al.,
2014), and that these may correspondingly influence the quality of
agricultural products (Knight et al., 2015), but there is little to no
analogous data on whether livestock microbiomes display any larger
scale temporal or seasonal patterns. A difference among chicken caecal
microbiomes from five regions in Tibet was noted by one study, but this
observation was not formally statistically tested (Zhou et al., 2016), and

Abbreviations: PERMANOVA, Permutational multivariate analysis of variance; QIIME2, Quantitative insights into microbial ecology; UK, United Kingdom.

E-mail address: mgoddard@lincoln.ac.uk (M.R. Goddard).

* Corresponding author. School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, Lincoln, LN6 7DL, United Kingdom.

1 Current addresses: Max Planck Institute for Evolutionary Biology, Plén, Germany.
2 Current addresses: Plant and Food Research Ltd., Mount Albert, Auckland, New Zealand.

3 Joint first authors.

https://doi.org/10.1016/j.fm.2021.103878

Received 21 September 2020; Received in revised form 18 December 2020; Accepted 2 August 2021

Available online 5 August 2021

0740-0020/© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).


mailto:mgoddard@lincoln.ac.uk
www.sciencedirect.com/science/journal/07400020
https://www.elsevier.com/locate/fm
https://doi.org/10.1016/j.fm.2021.103878
https://doi.org/10.1016/j.fm.2021.103878
https://doi.org/10.1016/j.fm.2021.103878
http://crossmark.crossref.org/dialog/?doi=10.1016/j.fm.2021.103878&domain=pdf
http://creativecommons.org/licenses/by/4.0/

B.J. Schofield et al.

caeca are not usually destined for human consumption. Faecal micro-
biome comparisons of broilers and egg-laying hens from four different
European countries showed different antibiotic resistance gene preva-
lence in microbial communities, but there was no comparison of overall
microbiomes (Videnska et al., 2014). To our knowledge, no studies have
investigated the effect of seasonality on livestock microbiomes. Knowl-
edge of whether any microbiome patterns exist for livestock retail
products is valuable to help contextualise the effects of livestock man-
agement on food safety.

Whilst Next-Generation Sequencing (NGS) approaches have been
widely applied to investigate the microbiomes of chicken and other
livestock gastrointestinal tracts, the microbiology of retail poultry
products has been investigated with culture-dependent techniques;
however, several studies have shown the majority of species in the
poultry gut are not yet culturable (Shang et al., 2018). Only recently has
the food sector started to move towards the application of
culture-independent techniques to investigate the microbiomes of food
products at different stages of the production process (Feye et al., 2020;
Ricke et al., 2017).

Here we address these gaps in knowledge and evaluate whether there
are regional and/or temporal variances in livestock carcass micro-
biomes. We test and quantify the effect of season (winter and summer)
and climatically comparable locations (two UK regions separated by
400 km in an East-West orientation) on commercial broiler poultry
carcass bacterial microbiomes from the same breed (Ross 308) reared on
the same feed formulation. We go on to quantify whether any environ-
mentally derived microbiome differences persist through the food chain
to final retail products.

2. Materials and methods
2.1. Sample collection

Twenty-eight Ross (Aviagen) 308 breed poultry flocks that were all
reared on the same feed formulation were sampled at multiple stages
during processing across winter (January-March) and summer (May-
—August) of 2017. Flocks were equally split between two East-UK and
West-UK areas separated by 400 km on a 53-55°N latitude (the precise
locations are commercially confidential): these regions are geographi-
cally separated but climatically comparable as they are at approximately
the same latitude with a mean difference of less than 1 °C and 2 mm
rainfall annually across the last decade (Met Office, 2020). Each flock
was sampled at three different stages of processing: start — immediately
after plucking; mid — after evisceration and a cold carcass rinse; and end
— after 48 h in cold storage in retail packaging. Four replicates of five
homogenised whole neck flaps were taken aseptically at each sample
point. Neck flaps were chosen as they are the accepted area for sampling
for Campylobacter both within the UK and EU (EU Reg, 2073/2005);
samples were placed in a sterile recovery diluent and homogenised using
a standard “Stomacher” paddle blender. A total of 336 samples were
obtained and immediately transported to the University of Lincoln on
dry ice.

2.2. DNA extraction and sequencing

DNA was extracted using QIAGEN DNeasy Blood and Tissue DNA
extraction kit (QIAGEN GmbH, Hilden, Germany), following the man-
ufacturer’s instructions. Samples were fully homogenised and DNA was
extracted from a 10 mL sub-sample that was centrifuged at 14,500 rpm
and the pellet resuspended in 200 pL of Lysis buffer. Extracted DNA was
quantified fluorimetrically using the Quant-iT™ ds DNA assay kit (Tecan
Microplate reader, 480 nm, Tecan, Durham, NC, USA) and quality was
assessed using NanoDrop™ 2000c Spectrophotometer (Thermo Scien-
tific, Wilmington, DE, USA). The V3/V4 area of the bacterial 16S rRNA
gene was PCR-amplified in 50 pL reactions with Kapa HiFi Hotstart
Readymix (Kapa Biosystems Inc., Wilmington, MA, USA) using
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Mlumina_16S_341F and Illumina_16S_805R primers (Zheng et al., 2015).
PCR products were purified using Agencourt AMPure XP beads ac-
cording to the manufacturer’s instructions (Beckman Coulter, Fullerton,
CA, USA). Purified PCR products were sent to the Earlham Institute
(Norwich, UK) for library construction and sequencing on an Illumina
MiSeq sequencing platform with a 250 bp paired-end read metric. Raw
sequences were uploaded on SRA with the following BioProject acces-
sion number PRINA613256.

2.3. Bioinformatic analysis

Paired-end 250 bp reads were quality checked using FastQC v0.11.6
(Andrews et al., 2015). QIIME2 (v2018.6) was used to process and
analyse the sequence data (Bolyen et al., 2018). Paired end sequences
were denoised with ‘dada2’ (Callahan et al., 2016), and clustered into
amplicon sequences variants (ASVs) using ‘vsearch’, and then further
clustered into ASVs groups with an identity of >97 % (Rognes et al.,
2016). Variance-stabilizing normalization (Muletz Wolz et al., 2018) on
sequence counts was performed in R v3.6.3 (R Core Team, 2020) using
CSS normalization using ‘metagenomeSeq’ and ‘phyloseq’ package
(McMurdie and Holmes, 2013; Paulson et al., 2013; Weiss et al., 2017).
Bacterial ASVs were annotated using q2-feature-classifier in QIIME2
(v2018.6; Bolyen et al., 2018; Bokulich et al., 2018).

2.4. Statistical analysis

The >97 % ASV table was read into R v3.6.3 (R Core Team, 2020) for
statistical investigation with the ‘vegan’ package (Dixon, 2003),
including the generation of NMDS plots. Compositional dissimilarities
among replicates were evaluated through PERMANOVA based on Jac-
card (1912) distance metrics based on presence/absence and abun-
dances. Jaccard distances were calculated using the ‘vegdist’ function
and PERMANOVA was performed over 1000 permutations using the
‘adonis’ function. ASV numbers (richness) were calculated for each
sample and analysed with Kruskal-Wallis tests, and P values were
calculated by comparing each value of H to the appropriate y2.1; dis-
tribution, where a = number of groups, and epsilon-squared estimates of
effect size were calculated with E> = H/((n>1)/(n+1)), where n =
number of observations. To identify ASVs that are indicative of factors of
interest (season, region, factory stage), an indicator species analysis was
conducted using the ‘IndVal’ function of the ‘labdsv’ package in R
(Dufrene and Legendre, 1997). ASVs were classified as significantly
indicative at corrected Benjamini-Hochberg false discovery rate (fdr) <
0.05 (Benjamini and Hochberg, 1995).

3. Results

Due to commercial constraints that prevented sampling, or loss of
sample integrity in transit, 302 of the potential 336 samples went for-
ward for DNA sequencing, and a total of 8,673,822 16S rRNA sequence
reads were obtained with an average of 62,212 + 2266 (mean =+ stan-
dard error of the mean) reads per sample. 2875 bacterial amplicon
sequence variants (ASVs, which we herein call taxa) with >97% simi-
larity were revealed in the sequence data, and these spanned 40 phyla,
83 classes and 127 orders. Table S1 reports ASV information, including
season, location and stage of factory process.

The differential seasonal and regional samples allow the influence of
these aspects to be evaluated; the first factory stage sample point
(immediately after plucking) estimates the microbiome of the incoming
flock, and the mid (after evisceration and a cold carcass rinse) and final
retail pack sample points evaluate the effect of factory processing on
these microbiomes. The final retail pack sample estimates the micro-
biomes of poultry products destined for human consumption. We chose
to evaluate bacterial communities via DNA sequencing using three
standard ecological metrics: 1) differences in the absolute numbers of
taxa, also known as richness; 2) differences in the types (presence/
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absence) of taxa, and; 3) differences in the abundances of taxa or com-
munity composition (Morrison-Whittle and Goddard, 2015).

3.1. The difference in numbers of taxa (richness) across time, space and
factory stage

The number of different types bacterial taxa on poultry carcasses was
not significantly different between regions (Kruskal-Wallis, P = 0.77, H
= 0.089; mean 158 and 165 taxa for East-UK and West-UK respectively),
but there was a highly significant difference by season (P = 1.2 x 10~ %%,
H = 82.3), with an average of 84 (or 70%) more taxa per sample in
summer than winter (Fig. 1, mean summer and winter 203 and 120 taxa
respectively). There was also a highly significant difference in taxa
numbers by factory stage (P = 1.5 x 1075, H = 23.1): the numbers of
taxa increased by an average of ~30 per sample between each stage
from 133 taxa at the start to 190 at retail pack (Fig. 1). We compared the
relative differences in taxa richness between factory stages in both
seasons and regions independently, and the significant difference in taxa
number by season, but not region, persisted at each stage in the factory
(Table 1). The seasonal difference is greatest on final retail products,
with an average of 109 more taxa per sample in summer than winter
(Table 1; Fig. 1, summer and winter end 243 and 134 taxa respectively).
There was also a significant increase in taxa numbers through the factory
in both summer and winter independently. This increase was greatest in
summer (P =1 x 1076, H = 23.6), with an average increase of 80 taxa
per sample and less but still significant in winter (P = 7 x 1074 H=
11.5), with on average increase of 31 taxa per sample.

While there are significant differences by both season and factory
stage, season explains 3.5-fold more of the variance in taxa numbers
than factory stage (E2 = 0.273 and 0.077 for season and factory stage),
showing that season has a relatively larger effect than factory processing
on differences in taxa numbers (Fig. 1). Thus, the salient finding is that
numbers of taxa on poultry carcasses differ by season, and that seasonal
differences are amplified by factory processing. There was a greater
increase in taxa numbers from the initial stage to retail products in
summer than winter.

skeskosk

S _ Kk
=3 -

_ o '

ok 3 - R

= -
S -— o T
@ - '
o v o :
S ' .
3

Numbers of taxa

Winter —
Summer —|
East-UK —
West-UK —

Winter —
Summer —
East-UK —
West-UK —

Winter —
Summer —
East-UK —
West-UK —

Start Mid End

Fig. 1. Boxplots of species richness (counts of taxa types) comparing different
seasons and UK regions at each stage of the factory (start, middle, end). ***
indicates significant differences within factory stages at P < 0.01.
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3.2. The difference in types of taxa across time, space and factory stage

There was a highly significant difference in the types of bacterial taxa
present on poultry carcasses between both seasons and regions (P <
0.0001; Table 1; Fig. 2), with between 4.65 and 7.91% (from the R
values) of the variance in taxa presences explained by these factors.
There were also highly significant differences in the presences of taxa at
different factory stages (P < 0.0001; R? = 0.101; Fi g. 2); however, the
significant differences by season and region persisted through the fac-
tory and remained strongly significant on retail products (Table 1,
Fig. 2). We quantified the strength of the effect of season and location on
differences in the types of taxa present and compared this to the effect
size of transitioning through the factory by comparing the R? values
from PERMANOVA analyses, and this revealed that the size of the dif-
ferences imposed by processing through the factory (~10%) is approx-
imately the same magnitude as imposed by season or region (~8%). The
salient finding is that the types of taxa on poultry carcass microbiomes
significantly varied by region and season, and these differences were not
eroded by factory processing, as the regional and seasonal difference in
bacterial taxa types remained strong on retail products.

3.3. The difference in abundances of taxa across time, space and factory
stage

PERMANOVA analyses revealed there were highly significant dif-
ferences (P < 0.0001; Table 1) in taxa abundances across both seasons
and regions that explained 3.53-7.30% of the total variance in bacterial
abundances (Table 1; Fig. 3). There were also highly significant differ-
ences in the abundances of taxa at different factory stages (P < 0.0001;
R? = 0.1109; Fig. 3). The marked difference in abundances between
regions and seasons was not eroded by factory processing as highly
significant differences in the abundances of bacterial taxa between
seasons and regions remained on retail packaged products (Table 1). The
size of the effect of factory processing on differences in taxa abundances
was slightly greater than that of season and region (R = 10% and 6%
respectively). Again, the salient finding was that abundances of taxa on
poultry carcass microbiomes significantly varied by region and season,
and these regional and seasonal differences were not diluted by factory
processing as the regional and seasonal effect remained strong on retail
products (Table 1).

Indicator analyses revealed the bacterial genera most over-
represented in summer samples (fdr P < 0.05) included Faecalibacte-
rium, Streptococcus, Lactobacillus, Megamonas, Helicobacter, Phasco-
larctobacterium, and bacterial genera and families most indicative of
winter samples included Bacteroides, Alkalibacterium, Staphylococcus,
Blautia, Enterobacteriaceae, Microbacteriaceae, Arcobacter, Rikenella-
ceae, and Micrococcaceae (Fig. 4). Aeromonadaceae, Acinetobacter, Ba-
cillus, Lactobacillus, Wautersiella, Chryseobacterium, Clostridiaceae and
Bifidobacterium, were most indicative of the East-UK samples while
Bacteroides, Alkalibacterium, Enterococcus, Enterobacteriaceae and
Anoxybacillus are indicative of West-UK ones (Fig. 4). All indicator taxa
(fdr P < 0.05) are reported in Fig. 4 and Table S2.

4. Discussion

The microbiomes associated with livestock play fundamental roles in
animal health and food safety and understanding how both the envi-
ronment and factory processes interact to influence the types and
abundances of microbes associated with products destined for human
consumption is a step towards understanding how to best manage these.
Here we show that the types and abundances of bacterial taxa on poultry
carcasses significantly vary in time and space, and while these also
change through factory processing, the seasonal and regional differences
remain significant on retail products. Passing through the factory exerts
about the same size difference as the ‘environmental’ effects of location
and season in terms of defining the types and abundances of microbes
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Table 1
Kruskal-Wallis (Numbers), and PermANOVA (Types and Abundances) from 100,000 randomisations, probability results comparing differences by season and region
for the numbers, types (via a binary Jaccard dissimilarity matrix) and abundances (via an abundance Jaccard dissimilarity matrix) of taxa at each factory processing
stage. Effect sizes (ranging from O to 1) are shown as E for Kruskal-Wallis and R? for PermANOVA analyses. Bold indicates strongly statistically significant values (P <
0.001).

Start Mid End

P E*/R? P E%/R? P E%/R?
Numbers
Season 7x10~7 0.250 6x10~7 0.250 2x10~1° 0.414
Region 0.964 <0.001 0.536 <0.001 0.636 <0.001
Types
Season 9.9x107° 0.0680 9.9x10~° 0.0634 9.9x10~° 0.0791
Region 9.9x10~° 0.0620 9.9x10~° 0.0554 9.9x10~° 0.0465
Abundances
Season 9.9x10~° 0.0766 9.9x10~° 0.0454 9.9x10~° 0.0486
Region 9.9x107° 0.0634 9.9x10~° 0.0648 9.9x10~° 0.0352

A. Season B. Region
< | ]
S ] 3 1
L]
u
N o
o o
| ]
3 3
o o
g s ° ° g S
z =z
N ~
S 7 . 8 |
= start = start
o mid e mid
< 4 end < 4 end
g = Summer =l East
N = Winter West
A
T T T T T T T T
00.5 0.0 0.5 1.0 00.5 0.0 0.5 1.0
NMDS1 NMDS1

Fig. 2. Non-metric Multidimensional Scaling plot reporting pairwise binary Jaccard distances between samples by A) Season and by B) Region, by factory stage.
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Fig. 3. Non-metric Multidimensional Scaling plot reporting pairwise abundance based Jaccard distances between samples by A) Season and by B) Region, by
factory stage.

associated with poultry carcasses. There were no differences in the ab- processes in all aspects of microbiomes, but that transitioning through
solute numbers of taxa by region, but there were by season, with sum- the factory does not erode the regional and seasonal differences, is that
mer having 70% more taxa types, and the numbers of taxa types on factory processing homogenises microbiomes within a flock as it passes
poultry carcasses increased through the factory, especially in summer. through a factory. Even the largest of sampling efforts will only ever be

One explanation for the observation of a difference due to factory able to sample a fraction of the 30,000-plus birds in a flock, as our ‘start’
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Taxonomy
Acinetobacter Faccalibacterium prausnitzii

A Acinetobacter johnsonii B Fiavobasteriin
+ Aeromonadaceae A Helicobacter
® A]kalibactgrium . A Lachnospiraceae
¢ Anoxybacillus kestanbolensis .
¥ Arcobacter ¢ Lactobacillus

_ Megamonas
B Bacillus .
% Bacteroides X Ml.cmct.)ccaceae
O [Barnesiellaceae] H Nelslsena-
A Bifidobacterium B Oscillospira
B Blautia [0 Phascolarctobacterium
B Caloramator ¢ Pscudomonas
¥ Campylobacter Ruminococcaceae
X Chryseobacterium Ruminococcus
m Clostridiales O Shewanella
B Comamonadaceae A Staphylococcus
A Comamonas fx Streptococcus
+ Corynebacterium A Veillonellaceae
X Enterobacteriaceae 0O Wautersiella
3 Enterococcus 7 Weissella

Indicator value

c 0000

<59% 60-69% 70-79% 80-89% 90-100%

Fig. 4. Venn-like diagram showing taxa indicative of seasons and regions. Taxa in the central portions of ellipses are indicative of that region/season generally. Taxa
in the peripheral portions of ellipses, that overlap with another ellipsis, are indicative of that region in that season only; e.g. Campylobacter are overrepresented in
summer across both regions, but Ruminococcus is indicative of the East-UK region only in summer. The percent indicator value for each taxa is represented by circle
sizes. The genera, or lowest known classification, is shown for each taxa by symbols as described in the figure, data underlying this figure are in Table S2.

samples did. If there is within flock variance for microbiomes, then
samples from birds early in the factory, that have been exposed to fewer
of the plant’s processing stages, will be less representative of the average
microbiome of the entire flock. It is not possible to clean apparatus in-
between birds of the same flock meaning microbiomes from flocks
become increasingly homogenised by factory processing machinery.
Correspondingly, points further down the factory line, where carcasses
have been exposed to more machinery, will report microbiomes that are
more representative of the homogenised microbiome from the entire
flock. If this is the case, the prediction is that samples further down the
factory chain will report a greater number of taxa types as these reflect
the accumulation of bacteria from the entire flock. This prediction is in
line with the observation here that the number of taxa types significantly
increased from initial stages to retail packs (Fig. 1). That the signals for
region and season are not eroded by this flock homogenisation process
signifies the underlying microbiomes associated with flocks differ in
space and time.

An average of 6 % of the variance in the types of taxa is explained by
region and season (Table 1), meaning the majority of bacterial types are
similar between regions and seasons. However, these small differences
translate to highly significant differences for the types and abundances
of bacterial taxa between regions and seasons. Most of the taxa identi-
fied as indicative of a particular season or region are generally also re-
ported from poultry gastrointestinal tracts (Oakley and Kogut, 2016;
Sergeant et al., 2014; Wei et al., 2016; Xiao et al., 2017), suggesting that
much of this bacterial community come to be on carcasses during pro-
cessing, as is expected. However, some taxa are not part of expected gut
communities, and thus potentially represent bacteria that reside on/in
other parts of the birds or are environmentally derived (Fig. 4), and
some of these include Alkalibacterium, Jeotgalicoccus, Lysinibacillus,
Akkermansia, Christensenellaceae, Puniceicoccaceae, Fluviicol, Aminiphila-
ceae and Psychrobacter (also identified from poultry by Handley et al.
(2018). Jeotgalicoccus, for example, has been isolated from poultry house
air (Martin et al., 2010). Some of these taxa have also been reported to
be involved in spoilage: Janthinobacterium lividum may cause a violet
discoloration in rabbit meat (Giaccone et al., 2008). It is possible that
variance in carcass associated microbiomes may effect shelf-life or even

quality attributes of the final product, as has been shown for horticulture
produce (Knight et al., 2015); however, these possibilities remain un-
explored for livestock products.

It is important to note that we analysed DNA to evaluate bacterial
diversity, and this will have derived from both live and dead bacteria.
The diversity of microbial communities associated with retail products
provides no measure of food safety generally as certain bacteria such as
Christensenellaceae (Waters and Ley, 2019), Lactobacillus (Mookiah et al.,
2014) and Bacillus (Grant et al., 2018), which were recovered here, are
correlated with health benefits when consumed by humans. In addition,
it is possible more diverse carcass microbiomes may be beneficial as the
abundance of benign and beneficial bacteria may prevent human
pathogens from becoming established. A minuscule fraction of the
microbiome revealed here are negatively associated with food-safety.
Just three of the 2875 ASVs and only 0.2% of sequence reads were
assigned to the Campylobacter genus: the DNA may have derived from
dead cells and these bacteria are easily rendered safe with appropriate
cooking or freezing. Ninety percent of Campylobacter reads were from
summer samples, and indicator analysis shows this genus was identified
as over-represented in summer (Fig. 4). This is in line with observations
of a greater incidence of campylobacteriosis in summer in the UK at least
(e.g. Nichols et al., 2012) but to our knowledge this is the first report of
differential Campylobacter seasonal incidences associated with retail
products using NGS approaches. No other human pathogens (Listeria,
Salmonella) were recovered in the data.

Overall, this is the first objective demonstration of spatial and tem-
poral variance in livestock microbiomes destined for consumption.
These flocks had the same genetics (Ross 308) and were produced and
managed by the same company including being reared on the same feed
formulation from the same supplier. These general spatiotemporal dif-
ferences correlate with patterns seen in other non-livestock agricultural
systems (Bokulich et al., 2014; Taylor et al., 2014). It is tempting to
conclude that the differential conditions between regions and seasons
contributed to the development of the small but significant differences
in poultry microbial communities. However, there are two ecological
processes that define why bacterial communities may differ in space and
time: natural selection and neutral (chance) processes (Morrison-Whittle
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and Goddard, 2015). It may well be that differential environmental
conditions in these regions and at these times of year subject bacterial
communities associated with poultry to different selection pressures,
and any difference observed are a result of this. Equally, selection may
have had no hand in defining the types and abundances of bacteria: it
may just be chance which types of bacteria reside in an area and become
associated with any particular flock at a particular time. This experi-
mental design does not allow us to tease these apart; however, differ-
ences in mean temperatures in these two regions across the last decade
between seasons is marked at ~10 °C (but there is only a ~2 mm dif-
ference in rainfall), while overall mean differences between regions are
negligible, at <1 °C and 2 mm rainfall (Met Office, 2020).

Lastly, any current and future methods designed to manipulate
poultry microbiomes or evaluate the effect of feed (a core component of
poultry production) or other husbandry factors need to be cognizant of
variation in livestock microbiomes in time and space. For example, a
particular microbial control or feed method optimised at one location or
in one season may not have the same effect at other locations or times
due to differential background bacterial communities. This might be
particularly important when designing methods to control human
pathogens. Increasing our understanding of livestock microbiomes, the
factors that influence them, and how commensals and pathogens
interact will help facilitate the implementation of sustainable farming
methods that maximise food quality and safety, and possibly reduce
antibiotic use in both livestock and humans.
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