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A B S T R A C T   

Climate change is one of the threats to the dairy supply chain as it may affect the microbiological quality of raw 
milk. In this context, a probabilistic model was developed to quantify the concentration of Escherichia coli in raw 
milk and explore what may happen to France under climate change conditions. It included four modules: initial 
contamination, packaging, retailing, and consumer refrigeration. 

The model was built in R using the 2nd order Monte Carlo mc2d package to propagate the uncertainty and 
analysed its impact independently of the variability. The initial microbial counts were obtained from a dairy farm 
located in Saudi Arabia to reflect the impact of hot weather conditions. This country was taken as representative 
of what might happen in Europe and therefore in France in the future due to climate change. A large dataset 
containing 622 data points was analysed. They were fitted by a Normal probability distribution using the fit-
distrplus package. The microbial growth was determined across various scenarios of time and temperature 
storage reflecting the raw milk supply-chain in France. Existing growth rate data from literature and ComBase 
were analysed by the Ratkowsky secondary model. Results were interpreted using the nlstools package. 

The mean E. coli initial concentration in raw milk was estimated to be 1.31 [1.27; 1.35] log CFU/ mL and was 
found to increase at the end of the supply chain as a function of various time and temperature conditions. The 
estimations varied from 1.73 [1.42; 2.28] log CFU/mL after 12 h, 2.11 [1.46; 3.22] log CFU/mL after 36 h, and 
2.41 [1.69;3.86] log CFU/mL after 60 h of consumer storage. The number of milk packages exceeding the 2-log 
French hygiene criterion for E. coli increased from 10% [8;12%] to 53% [27;77%] during consumer storage. In 
addition, the most significant factors contributing to the uncertainty of the model outputs were identified by 
running a sensitivity analysis. The results showed that the uncertainty around the Ratkowsky model parameters 
contributed the most to the uncertainty of E. coli concentration estimates. 

Overall, the model and its outputs provide an insight on the possible microbial raw milk quality in the future in 
France due to higher temperatures conditions driven by climate change.   

1. Introduction 

The global average temperature is forecasted to increase to more 
than 2.0 ◦C due to climate change, and this led to several international 
efforts be undertaken, to curb the greenhouse gas emission of world 
economies (Raftery, Zimmer, Frierson, Startz, & Liu, 2017). The change 
in temperature in Europe is dependent on the Representative Concen-
tration Pathways (RCP) which is projected to be 1–4.5 ◦C for RCP 4.5 
and 2.5–5.5 ◦C for RCP 8.5 by 2071–2100 relative to 1971–2005 tem-
peratures (European Environment Agency, 2017). In metropolitan 

France, the projected increase in temperatures range from 1.6 ◦C to 
2.7 ◦C (RCP 4.5) and 3.2–4.9 ◦C (RCP 8.5) by 2071–2100 with 
1976–2005 as the reference period (Météo-France, 2021). The associ-
ated changes with these are the increase in precipitation levels and more 
frequent occurrence of extremely high-temperature periods during 
summer (European Environment Agency, 2017). 

These projected changes have implications on food systems in terms 
of food security and food safety (FAO, 2020; WHO, 2019). These include 
the dairy supply chain, especially its farming stage where higher average 
temperatures and occasional extreme hot conditions (e.g. heatwaves) 
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influence the occurrence of heat stress in cows (for temperatures greater 
than 25 ◦C) (Kekana, Nherera-Chokuda, Muya, Manyama, & Lehloenya, 
2018), reduction in cow milk production (Chari & Ngcamu, 2017; 
Mauger, Bauman, Nennich, & Salathé, 2015; St-Pierre, Cobanov, & 
Schnitkey, 2003), and increase in the microbial load of milk products 
(Summer, Lora, Formaggioni, & Gottardo, 2019; van der Spiegel, van 
der Fels-Klerx, & Marvin, 2012). This effect on the microbiological 
properties may pose challenges to the efficiency of existing food safety 
controls. 

Raw milk is currently consumed in several European countries (e.g. 
Italy, Slovakia, Austria, France and others) and is usually sold to con-
sumers in packaged form or through vending machines while local 
cheesemakers use it to make artisanal raw milk cheeses. However, it is 
undeniable that raw milk poses a risk to human health. Several food-
borne illnesses and outbreaks have been linked to the consumption of 
raw milk (EFSA, 2015) and artisanal cheeses due to Escherichia coli 
(Yoon, Lee, & Choi, 2016). Several studies have highlighted the 
contamination pathways of this pathogen in the early stages of raw milk 
production and its growth under favourable conditions throughout the 
milk supply chain (Perrin et al., 2015). 

Dairy milk farming in France is at present a mixture of small, me-
dium, and large-scale dairy farming with small-scale being the most 
common whereas in hot climate countries such as in the Middle East, 
large-scale dairy farming is commonly used. In this latter system, hus-
bandry conditions are characterized by the presence of highly mecha-
nized equipment and a strict application of hygienic conditions. This set- 
up extends from cow rearing to the transportation of raw milk: appli-
cation of good veterinary practices, control of milk quality, maintenance 
of cold chain, etc. This system is the reason for high milk productivity, 
safe milk, and steady supply of dairy products to the market especially in 
regions previously considered unsuitable for milk production (Alqaisi, 
Ndambi, Uddin, & Hemme, 2010). Such countries with hot weather 
conditions might help understanding what might occur in the future for 
some of European countries currently undergoing temperature shifts due 
to climate change. In this respect, studies on the current microbiological 
status of foods from hot weather conditions can be used as a proxy or 
representative for the potential future impacts on food safety. 

In France, raw milk intended for human consumption is currently 
regulated by the French Ministry of Agriculture through an adminis-
trative order (Ministère de l’agriculture, de l’agroalimentaire et de la 
forêt, 2012). This decree specifies the product form in which raw milk 
may be sold, the time frame from milking to consumption, and how the 
cold chain must be maintained. In France, raw milk is available to 
consumers in packaged form or sold through vending machines. These 
rules are designed to meet the hygiene criteria for raw milk against 
microbial hazards such as E. coli which is among the most common 
contaminant in raw milk and widely used indicator of hygiene criteria 
(EFSA, 2015; Martin, Trmčić, Hsieh, Boor, & Wiedmann, 2016). The 
seasonal effect on E. coli in cattle has been reported in several studies 
including Fairbrother & Nadeau (2006); Hussein & Sakuma (2005) and 
Ranjbar, Safarpoor Dehkordi, Sakhaei Shahreza, & Rahimi (2018). 
Moreover, in their longitudinal risk factor analysis conducted on mul-
tiple ranches located on the California Central Coast, Benjamin, Jay- 
Russell, Atwill, Cooley, Carychao, Larsen, & Mandrell, (2015) 
observed a positive increase of E. coli O157 with the soil temperature 
(from 21 ◦C to 26⋅1◦C). According to the hygiene criteria, based on three 
class attribute sampling plans, E. coli concentration in raw milk cannot 
exceed 2 log CFU/mL (Ministère de l’agriculture, de l’agroalimentaire et 
de la forêt, 2012). In addition to this, an internal hygiene criterion is 
observed by French dairy farmers selling raw milk at local markets, 
where the E. coli concentration in raw milk is limited to 1 log CFU/mL 
prior to retailing (information provided by a French raw milk farming 
Expert). 

In this context, the aim of this paper was to build a probabilistic 
model to quantify the concentration of E. coli in raw milk and explore 
what may happen to raw milk sold in France under climate change 

conditions. Probabilistic modelling approaches are highly valuable 
because they allow the modelling of scenarios, taking uncertainty and 
variability into account (Koutsoumanis & Aspridou, 2016; Nauta, 2000). 
Probabilistic modelling has been applied in pasteurized milk to assess 
safety from spoilage organisms (Schaffner, Mcentire, Duffy, Montville, & 
Smith, 2003) and E.coli O157:H7 (Clough, Clancy, & French, 2006). In 
raw milk this modelling approach has been used to assess safety from 
microbiological hazards such as Listeria monocytogenes (Latorre et al., 
2011) and chemical hazards such as SEA toxin (Crotta et al., 2016; 
Heidinger, Winter, & Cullor, 2009). Risk assessments of E. coli O157:H7 
in raw milk were performed to determine the infections after the con-
sumption of raw milk using probabilistic modelling techniques (Giaco-
metti et al., 2012; Grace et al., 2008). These studies reflect two different 
retailing scenarios: Giacometti et al. (2012) have performed a risk 
assessment on vended raw milk while Grace et al. (2008) evaluated the 
informally marketed raw milk. 

Therefore, the first novelty of the study presented here lies in having 
built a farm-to fork probabilistic assessment model to evaluate the E. coli 
concentration under hot weather conditions. For this purpose, an orig-
inal dataset from a large-scale farm in Kingdom of Saudi Arabia have 
been collected and analysed. Next, the current raw milk handling 
practices in France has been introduced in the model to run realistic 
scenario. The second novelty of this study is to present a 2nd order 
Monte Carlo model, separating uncertainty and variability, applied to 
raw milk consumption and the interpretation of its outputs by sensitivity 
analysis. 

2. Materials and methods 

2.1. Model description 

The model describes the level of contamination of packaged raw milk 
from dairy farms up to consumer place in France. The sale of raw milk on 
local market within few hours after milking is allowed under French 
regulation (Ministère de l’agriculture, de l’agroalimentaire et de la forêt, 
2012) considering the followings conditions: storage temperature lower 
than 8 ◦C along the whole supply-chain and a consumption within 72 h 
maximum (information provided by a French raw milk farming Expert). 

The current steps that raw milk undergoes prior to the consumption 
were used to split the model into four modules (Table 1). For each 
module, inputs and latent variables (i.e. not directly observed or 
measured but used in the model) are also presented. As the total dura-
tion of time from milking until consumption was 72 h maximum, the 
duration of scenarios in each of the modules were set in order to meet 
this time frame. 

2.2. Module 1: Raw milk contamination level in bulk milk tanks at farm 
setting 

The initial contamination levels of E. coli in raw milk, as represen-
tative of hot weather conditions, were obtained from a set of data 
collected in bulk milk tank in 2019 at AlSafi-Danone, AlKharj, Kingdom 
of Saudi Arabia. 

The average temperature in Alkharj, where the farm was located, in 
2019 varied between 13.9 ◦C (January, the coldest month) and 36.9 ◦C 
(August, the hottest month). In comparison, in France (average values 
from 30 different locations), the temperature during summer reached 
20.1 ◦C (June 2019), 23 ◦C (July 2019) and 21.8 ◦C (August 2019). This 
average temperature included daily fluctuations; during the hottest 
period of the day (midday and beginning of afternoon), the temperatures 
fluctuated between 25 and 27 ◦C with several peaks above 30 ◦C 
observed in France during July 2019. 

The E. coli counts in raw milk were obtained by performing the 
colony count method based on the norm NF ISO 4832 (updated in 2006). 
An undiluted 1 mL of raw milk sample were transferred to Petri dishes 
while 10–12 mL of violet red bile agar (VRBA) (Oxoid, Ltd., UK) (cooled 
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into 45 ± 1 ◦C) was also added and solidified as the initial layer. An 
overlay of 3–5 mL of VRBA was then subsequently added to the original 
basal-sample medium. The plates were then incubated at 37 ± 1◦ C for 
24 h. Colonies showing purplish red color with a reddish zone of 
precipitated bile (≥0.5 mm diameter) were enumerated. 

The E. coli counts represented 1695 data points taken from the op-
erations for the year 2019 in different farm units. The dataset was 
checked and cleaned. Only the farm unit containing the most number of 
data (622 data points) was selected for further analysis since mixing data 
from the different farm units would have brought additional variability. 
The data were fitted to Normal, Gamma, and Lognormal distributions 
using the R package fitdistrplus. The final probability distribution was 
selected based on its fitting in the Cullen and Frey diagram and statis-
tical performance in terms of Akaike Information Criterion (AIC). A 
bootstrap procedure was subsequently performed to quantify the un-
certainty and build a confidence interval around the distribution 
parameter estimates. 

In this module, the temperature in the milk tank was assumed to 
follow the cold chain requirements of the French standard in raw milk 
production, i.e. ≤ 4 ◦C. This assumption was confirmed by data (tem-
perature probe in the tank). Therefore, significant microbial growth of 
E. coli was not considered in this module. 

2.3. Module 2: Packaging of raw milk 

The packaging of raw milk (in 1L-pack) is a partitioning process that 
follows the Poisson process as described by Nauta, (2005). The unit 
operations within this module (e.g. volumetric filling and packaging) 
were assumed to be in-compliance with the French standard of main-
taining temperatures 2–4 ◦C of raw milk during packaging (Ministère de 
l’agriculture, de l’agroalimentaire et de la forêt, 2012). Therefore, 

during this procedure, any significant additional microbial contamina-
tion and growth was not considered. 

2.4. Module 3: Retailing 

Packs of raw milk were assumed to be sold in the farm or nearby 
markets and sold to consumers within the period of 12 h (i.e. maximal 
time between milking and selling raw milk allowable in France). The 
retailing temperature conditions should be between 2 and 4 ◦C but in 
practice it could reach 8 ◦C (information provided by a French raw milk 
farming Expert). This value was then chosen as maximal and worst-case 
scenario. 

2.5. Determination of growth kinetic parameters 

The growth parameters of E. coli in milk were obtained from the 
literature and Combase. First, the literature search was done in Web of 
Science using the combination of the topic terms: growth and (raw and 
milk), and (Escherichia and coli) and (Temperature). These terms yielded 
77 research articles and were filtered based on their titles to keep only 
milk as the suspending medium (i.e. raw milk cheese studies were dis-
carded). Moreover, challenge test studies which included E. coli in the 
presence of antimicrobials were excluded. When the growth studies 
were done in one temperature value, the article was also discarded. 
Three research papers were retained from this search, all coming from 
one research laboratory (Ačai, Valík, Medved’Ová, & Rosskopf, 2016; 
Medveďová, Györiová, Lehotová, & Valík, 2020; Medveďová, Rosskopf, 
Liptáková, & Valík, 2018). These papers have utilized only one strain of 
E. coli which have been isolated from a raw milk cheese. Growth studies 
obtained from these papers were strictly below 30 ◦C. 

Second, the results from Combase were also used to obtain the 

Table 1 
Model inputs and latent variables implemented in the model. When the input is deterministic, the value is given. When it is pure variability, the distribution is given. 
However, when the inputs included both uncertainty and variability, its structure is more complex, it is given in the core document but not in this Table.  

Name Abbreviation Description Unit Uncertainty Variability Determinsitic Latent/ 
input 

Module 1: Bulk milk tank  
Bulk milk tank concentration logN0 Normal distribution + Bootstrap to assess 

uncertainty 
log CFU/ 
mL 

x x  Input 

Module 2: Packaging of raw milk  
Volume per pack Vp Deterministic mL   1000 Input 
Concentration of microorganisms 

per pack 
N1 Poisson (10logN0 × Vp) CFU/ 

pack 
x x  Latent 

Concentration of microorganisms 
per mL 

logN1 log10 (N1/pack) log CFU/ 
mL    

Latent 

Module 3: Growth at Retailing  
Secondary model Ratkowsky 

Slope 
Slope Uniform in the Variability dimension, Normal in 

the Uncertainty dimension 
h− 1/2.◦

C− 1 
x x  Input 

Secondary model Ratkowsky 
Intercept 

Intercept Uniform in the Variability dimension, Normal in 
the Uncertainty dimension 

h− 1/2 x x  Input 

Secondary model Ratkowsky 
Tmin 

Tmin Probabilistic as result of calculation (i.e. - 
Intercept/Slope) 

◦C x x  Latent 

Temperature at retail (local 
market) 

TemperatureR Deterministic ◦C   8.0 Input 

Square root of growth rate 
(square root of µmaxR)  

Probabilistic as result of calculation 
(i.e. Slope × (TemperatureR-Tmin)) 

h− 1/2 x x  Latent 

Time at retail 
(between milking and selling at 
local market) 

TimeR Deterministic h   12 Input 

Concentration after retailing logN2 Probabilistic as result of calculation 
(i.e. log N1 + µmaxR × TimeR) 

logCFU/ 
mL 

x x  Latent 

Module 4: Growth during consumer storage  
Temperature of consumer 

refrigerators 
TemperatureC Normal ◦C  N (6.1, 

2.8)  
Input 

Square root of growth rate 
(square root of µmaxC)  

Probabilistic as result of calculation 
(i.e. Slope×(TemperatureC-Tmin)) 

h− 1/2 x x  Latent 

Time before consumption 
scenarios 

TimeC Deterministic h   12, 36, 60 Input 

Concentration at consumption logN3 Probabilistic as result of calculation 
(i.e. logN2 + µmaxC × TimeC) 

logCFU/ 
mL 

x x  Output  
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growth kinetics of E. coli in raw milk with the following search criteria: 
microorganism (E. coli), food (milk), Aw (0.95–1.00), Temperature 
(<30 ◦C). This yielded 24 records but four growth curves were discarded 
because E. coli was grown in fermented milk. This form of milk might 
contain metabolites produced by lactic acid bacteria (LABs) that could 
have exerted inhibitory properties during the growth of the other mi-
croorganisms. The 20 growth curves that were retained came from one 
research paper (Kauppi, Tatini, Harrell, & Feng, 1996). 

The list of E.coli strains obtained from both resources (i.e. literature 
and ComBase), its origins and the temperature conditions are presented 
in Table 2. 

The µmax obtained from the literature and Combase were all esti-
mated by the researchers through the use of the Baranyi and Roberts 
model. Next, to take into account the strain variability, each strain 
dataset was analysed separately. The square root of the maximum 
growth rates (µmax) were fitted against temperature values. An equation 
derived from the Ratkowsky model (Eq. (1)) was used to estimate the 
parameters, as the temperature values were sub-optimal (<30 ◦C) 
(Ratkowsky, Lowry, McMeekin, Stokes, & Chandler, 1983). The slope 
and the intercept of the straight line were estimated through linear 
regression in R using the lm function to finally obtain the Tmin, Eq. (2). 
̅̅̅̅̅̅̅̅̅̅̅μmax√

= Slope × Temperature+ Intercept (1)   

Tmin = (-Intercept/Slope)                                                                  (2) 

To determine the potential growth of E. coli (Δ log N) after different 
storage time values in the retailing and consumer modules, the expo-
nential model was used, considering no lag phase Eq. (3) (Nauta, Lit-
man, Barker, & Carlin, 2003).  

Δ log N=µmax × Time                                                                    (3)  

2.6. Module 4: Refrigeration before consumption 

The conditions during the consumer refrigeration stage were simu-
lated in order to determine its influence on the microbial concentration 
in packaged raw milk products. The refrigeration temperatures obtained 
by Roccato et al. (2017) for countries located in Northern Europe (N: 
6.1, 2.8), which France is part of, was used in the assessment model. The 
duration of refrigeration, chosen as realistic scenarios were 12, 36 and 
60 h. These different scenarios complete the allowable period of time for 
human consumption set to a maximum of 72 h in France (information 
provided by a French raw milk farming Expert). 

2.7. Modelling 

The exposure assessment model was implemented in R software (R 
Core Team, 2019). The bootstrap procedures were carried out using the 
bootdistcens package of the fitdistrplus (Delignette-Muller & Dutang, 
2015). The second order Monte Carlo procedure was used to propagate 
uncertainty and variability separately using the mc2d package (Pouillot 
& Delignette-Muller, 2010). The number of iterations performed for 
uncertainty was 1000 and for variability 100,000. 

2.8. Uncertainty analysis 

A sensitivity analysis was performed to evaluate the impact of un-
certainty on the main model output, i.e. the microbial concentration at 
the consumer level (log N3). The tornadounc function of the mc2d 
package was used with the Spearman rank correlation method. The re-
sults obtained from this analysis determined the influence of the input 
uncertainties on the uncertainty around the 95th percentile of log N3. 
This percentile was chosen as representative of the upper tail of the 
distribution of E. coli concentration. 

3. Results 

3.1. Module 1: Initial microbial load in bulk milk tank 

The initial microbial concentration (namely, logN0) was obtained 
from the one-year operation in a dairy farm in Saudi Arabia. The data 
were fitted by normal, log normal, and, gamma distributions and the 
results were compared based on the AIC value (Table 3). The normal 
distribution provided the best fit (AIC = 903). A bootstrap procedure 
was then performed to estimate the uncertainty around the normal 
distribution parameters (Fig. 1a). This resulted in an estimated mean 
value of 1.31 log CFU/mL with a confidence interval of 1.27–1.35, and, a 
standard deviation of 0.53 with a confidence interval of 0.50–0.57. 

The probability of the milk tanks exceeding the E. coli criteria was 

Table 2 
E.coli strains, temperature conditions used in the growth studies on milk and estimated growth kinetic parameters from linear regression.   

Information collected from literature or ComBase Estimated growth kinetic parameters generated in this present study 

Strain Origins Temperature (◦C) Reference Slope Sd 
slope 

Intercept sd 
Intercept 

Tmin 

Escherichia coli BR Isolated from Slovakian 
Brydzna cheese 

8,10,12,15,18,21,25,30 ◦C Medveďová et al., 
2018 

0.0392* 0.005 − 0.1598¤ 0.088 4.07 

Escherichia coli BR Isolated from Slovakian 
Brydzna cheese 

6,12,15,18,21,25,30 ◦C Medveďová et al., 
2018 

Escherichia coli BR Isolated from Slovakian 
Brydzna cheese 

10,12,15,18,21,25,30 ◦C Ačai et al., 2016 

Escherichia coli O104:H21 
str 13A 

USFDA collection 6.5,7.5,8.5,9.5 ◦C Kauppi et al.1996 0.028 0.003 − 0.121 0.028 4.25 

Escherichia coli O111-NM 
str 403 

USFDA collection 6.5,7.5,8.5,9.5 ◦C Kauppi et al.1996 0.0388** 0.007 − 0.2176¤ 
¤ 

0.055 5.60 

Escherichia coli O157:H7 USFDA collection 6.5,9.5,12.0 ◦C Kauppi et al.1996 0.035 0.000 − 0.171 0.003 4.82 
Escherichia coli O157:H7 

str.22 
USFDA collection 6.5,7.5,8.5,9.5 ◦C Kauppi et al.1996 0.032 0.008 − 0.147 0.060 4.53 

Escherichia coli O22:H8 
str.406 

USFDA collection 6.5,7.5,8.5,9.5 ◦C Kauppi et al.1996 0.031 0.004 − 0.143 0.036 4.64 

* and ** values used to build the probability distribution regarding the slope. 
¤ and ¤¤ values used to build the probability distribution regarding the intercept. 

Table 3 
Results of the initial microbiological concentration (logN0 in log CFU/mL) dis-
tribution fitting.  

Normal Log Normal Gamma distribution 

AIC: 903.13 
Mean: 1.31 [1.26,1.35] 
Sd: 0.53 [0.50, 0.57] 

AIC: 975.19 
Meanlog: 0.17 [0.13; 0.21] 
Sdlog: 0.48 [0.45; 0.51] 

AIC: 907.95 
Shape: 5.21 [4.67; 5.81] 
Rate: 3.98 [3.53; 4.48]  
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also determined (Table 4). In this assessment, the number of bulk milk 
tanks that exceed the 2-log was estimated to 10.0% with a confidence 
interval of 8.0–12.0% while probability to exceed 1-log was estimated to 
72.0% with a confidence interval of 69.0–75.0%. The impact of this 
initial microbial concentration on the final concentration prior to con-
sumption is reflected in the next modules. 

3.2. Module 2: Packaging of raw milk 

The packaging of raw milk from bulk milk tank into a 1L pack is a 
partitioning process. This follows the Poisson distribution of the mi-
crobial counts across the packaged products per batch. The number of 
packaged products exceeding the two hygiene criteria for raw milk 
namely, 2-log limit (10.0%, CI: 8.0–12.0) and the 1-log limit (72.0%, CI: 
69.0–75.0) were in high numbers (Table 4). These values were the same 
as the previous module, showing here that partitioning did not have 
effect on the concentration level, likely to be linked with the relatively 
high initial E. coli count in raw milk. 

3.3. Module 3: Retailing 

3.3.1. Determination of growth parameters 
The microbial growth rates extracted from the literature and Com-

base were from different strains of the pathogenic E. coli. For the liter-
ature search, we obtained three papers that have used the same strain 
which is isolated from a Slovakian cheese (Ačai et al., 2016; Medveďová 
et al., 2020, 2018). These studies performed growth studies in milk with 
a total of 34 temperature data. As such, the growth parameters obtained 
from these were compiled into the E. coli BR strain (Table 2). The search 
in Combase has yielded records from four different strains of E. coli all 
from one study (Kauppi et al., 1996). 

The square root of the µmax was then plotted at function of tem-
peratures, along with the adjusted model (Fig. 2). The parameters 
namely, slope and intercept, determined from a linear regression using 
the Ratkowsky model are reported in Table 2. The slope and intercept 
estimates were used to determine the Tmin values obtained for each 
strain. The range of the Tmin value estimated from the literature and 
combase is also visible in Fig. 2, it was between 4 and 6 ◦C. The strain 
variability was captured by building a uniform distribution from the 
strain having the highest Tmin up to the strain having the lowest Tmin 
values. These strains were E. coli O111-NM str 403 (5.60 ◦C) and E. coli 

Fig. 1. Cumulative probability distribution of E. coli concentration in raw milk across the different modules. (a) Initial microbial concentration and after partitioning, 
(b) after 12 h of retailing, (c) after 12 h of consumer refrigeration, (d) after 36 h of consumer refrigeration, (e) after 60 h of consumer refrigeration. The light grey 
corresponds to the lower and upper limits of the 95% uncertainty interval, the dark grey corresponds to the 25th and 75th percentiles of the uncertainty. 

R. Feliciano et al.                                                                                                                                                                                                                               



Food Research International 149 (2021) 110679

6

BR (4.07 ◦C) for the highest and lowest Tmin value, respectively. The 
strain uncertainty was captured in a Normal distribution using the 
standard error around the slope estimates (and the intercept, respec-
tively) of the strain having the highest and lowest Tmin: slopemax and 
slopemin (interceptmax and interceptmin, respectively). For instance, 
the lowest slope estimate was fitted by the Normal distribution N (0.039, 
0.005). 

The results of the 2nd order Monte Carlo simulation analysing the 
uncertainty and variability of the Tmin is presented in Fig. 3. The 
different strains of E. coli have a mean value of 4.7 ◦C with a 95% 
confidence interval of [1.8; 7.6]◦C. This large confidence interval 
around the mean value reflects the uncertainty in the estimation process 

due to lack of data and model misfit when applying the Ratkowsky 
secondary model. Its influence on the final output will be assessed by 
sensitivity analysis hereafter. Besides, Tmin variability is also large with 
variation from a 5th percentile estimated to 3.4 ◦C [-0.3; 6.5]◦C up to a 
95th percentile estimated to 6.1 ◦C [3.2; 9.8]◦C. 

3.3.2. Microbial growth during retailing period 
The growth parameters estimated by analysing data from both the 

literature and Combase were used to predict the growth rate of E. coli 
under specific temperature conditions and then to determine the mi-
crobial concentration during retailing (log N2). The microbial load 
during retailing depends on temperature but also on duration of 
retailing on local markets. The maximal duration was set to 12 h (i.e. 
maximal time between milking and selling raw milk allowable in 
France). 

The E. coli concentration (1.53 [CI:1.30; 2.11] and sd 0.55 [CI:0.51; 
0.67] log CFU/mL) in raw milk after 12 h at 8 ◦C (Fig. 1b) was greatly 

Table 4 
E. coli concentration in bulk milk tank and packaged raw milk: mean value, 
standard deviation, 95th percentile of the distribution; probability of exceeding 
the 2-log and 1-log limit at different stages across the dairy supply chain. Results 
are provided with the median estimate and its uncertainty interval.  

Time Mean 
concentration 

Standard 
deviation 

95th 
percentile of 
the 
concentration 

Exceeding 
2-log CFU/ 
mL 

Exceeding 
1-log CFU/ 
mL 

Bulk milk tank 
– 1.31 [1.27; 

1.35] 
0.53 
[0.50; 
0.57] 

2.19 [2.12; 
2.26] 

0.10 [0.08; 
0.12] 

0.72 [0.69; 
0.75] 

Packaging 
– 1.31 [1.27; 

1.35] 
0.53 
[0.50; 
0.56] 

2.19 [2.11; 
2.25] 

0.10 [0.08; 
0.12] 

0.72 [0.69; 
0.75] 

Retailing 
12 h 1.53 [1.30; 

2.11] 
0.55 
[0.51; 
0.67] 

2.42 [2.17; 
3.16] 

0.19 [0.09; 
0.57] 

0.83 [0.71; 
0.97] 

Consumer refrigeration scenarios 
12 h 1.73 [1.42; 

2.28] 
0.62 
[0.54; 
0.83] 

2.77 [2.36; 
3.73] 

0.31 [0.15; 
0.61] 

0.88 [0.77; 
0.97] 

36 h 2.11 [1.46; 
3.22] 

1.00 
[0.58; 
2.06] 

3.87 [2.50; 
7.33] 

0.45 [0.18; 
0.78] 

0.91 [0.78; 
0.99] 

60 h 2.41 [1.69; 
3.86] 

1.46 
[0.76; 
2.89] 

5.17 [2.85; 
9.76] 

0.53 [0.27; 
0.77] 

0.91 [0.81; 
0.98]  

Fig. 2. The square root of the µmax of the different E.coli strain (markers), collected at various temperature values, with the adjusted values of square root of the 
µmax (line). 

Fig. 3. The cumulative probability distribution of the Tmin (◦C) estimate, 
reflecting strain variability and uncertainty including in the estimate. The light 
grey corresponds to the lower and upper limits of the 95% uncertainty interval, 
the dark grey corresponds to the 25th and 75th percentiles of the uncertainty. 
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higher than the E. coli concentration in the farm just after milking 
(Fig. 1a). The probability to exceed 1-log was estimated to be around 
83.0 %, with a confidence interval of 71.0–97.0 and the probability to 
exceed 2-log was estimated to 19.0 %, with a confidence interval of 
9.0–57.0 (Table 4). 

3.4. Module 4: Refrigeration before consumption 

Three refrigeration times during storage at consumer’s place were 
considered in the consumer module model. The refrigeration tempera-
tures were those determined by (Roccato et al., 2017) for countries 
located in Northern Europe. The E. coli concentration in raw milk is 
provided in Table 4 along with the probability to exceed the hygiene 
criteria. 

The consumer scenario of storage for 12 h resulted in a probability of 
31.0 % with a confidence interval of 15.0–61.0% of exceeding the 2-log 
hygiene criterion while a much higher probability is achieved with the 
more stringent 1-log criterion (88.0% with a confidence interval of 
77.0–97.0%). The 1-log criterion was provided by a French raw milk 
farming Expert as the maximal acceptable limit for E. coli in milk fore-
seen to be consumed without any heating step. 

The changes with the microbial concentration from the initial mi-
crobial load in bulk milk tanks (logN0) to the end of consumer’s storage 
(logN3) are depicted in the cumulative distribution graphs (Fig. 1c-e). In 
these figures, it can be seen that the changes in the distribution of values 
shift towards higher microbial counts while the uncertainties sur-
rounding the predicted values also increase across the dairy supply 
chain. 

As indicated in Table 1 the inputs containing uncertainty namely, 
initial E. coli concentration (mean, LogN0_mean_U and standard devia-
tion, LogN0_sd_U), slope (minimum value of slope, slopemin and 
maximum value of slope, slopemax) and the intercept (minimum value, 
interceptmin and maximum value, interceptmax) were presented. These 
uncertainties were then propagated in the model during the computa-
tion of the latent variables. The impact of uncertainty on the output 
(logN3) was then assessed using sensitivity analysis. The output of these 
were shown in the tornado plots that captured all the uncertainties and 
reflected their impact on the uncertainty of the estimates during con-
sumer storage (Fig. 4a-c). 

Unsurprisingly, as already highlighted when describing the Tmin 
estimated values, most of the uncertainty came from the characterisa-
tion of the intercept and slope associated with the strain growth pa-
rameters: the uncertainties generated to estimate interceptmin and 
interceptmax, slopemin and slopemax were the major source of uncer-
tainty around the 95th percentile of logN3 probabilistic distribution. 
This result was observed across the three consumer refrigeration sce-
narios. On the other hand, uncertainties from logN0 parameters (i.e. 
logN0_mean_U and logN0_sd_U) had a limited contribution to the un-
certainty around the 95th percentile of logN3 probabilistic distribution. 
A slight difference could be observed for the 60 h-consumer-storage 
scenario (Fig. 4c) where logN0_mean_U contributed more to the un-
certainty of the output than logN0_sd_U, in contrast to what was 
observed in the previous two scenarios. 

4. Discussion 

4.1. The probabilistic assessment model 

The probabilistic modelling tools were demonstrated to be useful in 
estimating accurately the level of concentration of E. coli in raw milk at 
the time of consumption. The model was constructed to determine the 
possible impact of current raw milk practices in France under climate 
change conditions. To this end, the initial microbial load was obtained 
from a dairy farm located in a hot region to represent to a certain extent 
the effect of higher temperatures on the microbial load of raw milk. At 
the farm, it was assumed that the temperature of the milk cooling tank 

complied with the legislation (≤4◦C). This assumption seemed realistic 
for a scenario in France because the farm facilities allow for a permanent 
and efficient refrigeration system. Nevertheless, if the temperature was 
higher than 4 ◦C at (small) farms in France, the quality of the milk at the 
time of consumption would be even worse than estimated in this study. 
Therefore, it can be said that the “4◦C-assumption” leads to an under-
estimation of the exposure level. 

Next, by modelling, the concentration of E. coli in raw milk at retail 
and after consumer refrigeration was estimated. The modelling method 
adopted here aimed to analyse uncertainty independently of variability; 
it was implemented with E coli but it is sufficiently generic and 
straightforward to be re-used for other spoilage or pathogenic bacteria 
in the dairy supply-chain. 

The distribution fit of E.coli observed in this study follows a normal 
distribution while it was not the case in several risk assessments where 
researchers described E. coli O157:H7 raw milk counts using different 

Fig. 4. Tornado plot illustrating the sensitivity analysis results: correlation 
between inputs’ uncertainty and uncertainty around the 95th percentile of E. 
coli concentration (log N3) during consumer refrigeration module. (a) 12 h, (b) 
36 h and (c) 60 h refrigeration times. 
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distributions such as uniform distribution (Clough, Clancy, & French, 
2009), lognormal distribution (Giacometti et al., 2012), Poisson distri-
bution (Perrin et al., 2015), or even Beta distribution to describe the 
prevalence in raw milk from vending machines in Northern Italy (Gia-
cometti et al., 2013). The distribution fit we found is different from these 
studies because the model was built with E. coli counts from bulk milk 
tanks obtained as part of regular quality control monitoring of dairy 
farm while in these previous studies the pathogenic E.coli strains were 
described. The authors have not analysed an original set of data but 
derived their estimates from existing data such as prevalence of E. coli in 
the herd, lactating cows and the faeces contamination of the tank and 
contamination during milking (Clough et al., 2009), in-line filter counts 
(Perrin et al., 2015), and faecal contamination of raw milk and counts 
from raw milk in vending machines (Giacometti et al., 2013). 

The packaging phase which is a partitioning process was described 
using the Poisson distribution as recommended by Nauta, (2005). It 
should be noted that the possible variation of the conditioning volume 
(depending on the type of equipment available on the farm) has not been 
taken into account; this could have had an influence if the contamina-
tion had been much lower. Nonetheless, more generally, partitioning is 
an important step to keep in mind when building a farm-to-fork model. 

During retailing and consumer storage, some E. coli strains have the 
ability to continue growing in raw milk even within the cold chain as the 
temperature is not strictly kept at values lower than 4 ◦C and a tolerance 
up to 8 ◦C is accepted for selling raw milk in French local markets (in-
formation provided by a French raw milk farming Expert). The current 
conditions during the retailing have shown that the difference in the 
estimated mean concentration between packaging and after retailing of 
12 h resulted to a 0.22 log CFU/mL growth (0.23 log CFU/mL at 95th 
percentile) (Δlog N retail). This shows the importance of the French 
policy on maintaining the cold chain during the retailing of raw milk 
(8 ◦C maximum, 12 h maximum) in controlling the E. coli concentration 
levels. 

On the opposite the model outputs showed further increase of E. coli 
during the different consumer refrigeration scenarios (Δlog N consumer) 
where the estimated mean concentration grew to 0.2 log (12 h), 0.58 
(36 h) and 0.88 (60 h) log CFU/mL. Since a probabilistic assessment was 
performed, it is also possible to interpret the result considering the 95th 
percentile of the distribution: in that case, the growth reached up to 0.35 
(12 h), 1.45 (36 h) and 2.75 (60 h) log CFU/mL. Regarding the domestic 
temperature variation, there are two distinct phenomena: the variation 
in refrigerator temperature, from home to home (Roccato et al. 2017) 
and for a given home refrigerator, the variation of temperature during 
the day (Evans & Redmond, 2016) if for instance the consumer opens the 
refrigerator to serve himself/herself a glass of milk. The first source of 
variability was integrated in the model but not the second due to a lack 
of data to build a dynamic fluctuation of temperature without intro-
ducing too much uncertainty. It can be assumed that the daily temper-
ature fluctuation would have a negative effect on the final 
contamination level, leading here to an underestimation of the exposure 
level. 

Overall, if the E. coli concentration observed in hot weather condi-
tions became the norm in the future for metropolitan France, raw milk 
consumption might be of concern. This is mainly because, as shown by 
the current probabilistic model, the initial E. coli contamination level 
will lead to non-compliance of packaged raw milk to the 2-log limit even 
if the cold chain was maintained. Having said that, the maximum stor-
age of 72 h might be questioned in the future as it brings an additional 
burden to the final contamination. 

The model developed was also able to show that the influence of 
uncertainty and variability in the predicted outcomes. Using 2nd order 
Monte Carlo technique, uncertainty from the inputs should be propa-
gated across the model independently of variability to make the output 
estimate more accurate (Duqué, Canon, Haddad, Guillou, & Membré, 
2021). As a result, the estimates of the model (i.e. the probability dis-
tribution descriptors such mean, 95th percentile, probability to exceed 1 

or 2 log CFU/mL) are presented with their confidence intervals reflect-
ing uncertainty. Also, it was demonstrated here that the separation of 
uncertainty and variability is relatively easy to implement. However, 
this comes at the cost of requiring more details about the data. It is 
hoped that this will lead to more exposure assessment papers imple-
menting the separation of uncertainty and variability in their models in 
the future. Nonetheless, it was shown here that Tmin had both a large 
variability and uncertainty range. The large variability range reflected 
the fact that E.coli strains were capable of growing within a wide tem-
perature range. In this respect, our assessment model is on the safe-side 
as it covers pathogenic and non-pathogenic E.coli strains; indeed it has 
been reported that pathogenic E. coli strains have the ability to grow and 
survive lower temperatures better than the non-pathogenic ones (Far-
rokh et al., 2013; Vidovic, Mangalappalli-Illathu, & Korber, 2011). 

Although our model was a farm-to-fork model, it is important to keep 
in mind that climate change is a multi-faceted phenomenon that can 
affect the other parts of the dairy supply chain. As such other possible 
effects of climate change may also be seen (e.g. higher temperature 
during transportation, disruption of the supply chain due to flooding). 
These events may have consequential impact on food safety and quality 
such as allowing or supporting E. coli growth. Therefore, once these are 
determined, ways on how to incorporate these in the probabilistic model 
developed can be further explored in the future. 

4.2. The use of hot weather conditions and E. coli as test organism in 
understanding the future of raw milk consumption 

The current probabilistic model has shown that raw milk consump-
tion might pose microbial food quality concerns in the future under hot 
weather conditions brought by climate change. In order to understand 
the possible impact of hot weather conditions on raw milk, data from a 
dairy farm in Saudi Arabia was obtained. These were considered to be 
representative of what initial microbial counts might look in the future 
for countries undergoing shifts in high temperature due to climate 
change. The selection of this farm allowed an insight to a certain extent 
on what microbial quality might look like in the future under hot 
weather conditions. The comparison with the farms in France is possible 
because in the farm selected in our study, Holstein breed cows (a very 
common breed in France for milk production) are raised. Also, the best 
practices in dairy farming such as good veterinary practices (GVP) and 
good hygiene practices (GHP) applied at the farm are comparable with 
the ones being applied elsewhere with the difference only in its location 
and hot weather conditions. 

The data used are E. coli counts from bulk milk tanks, collected and 
analysed as part of routine operations. These were used to assess the raw 
milk contamination just after the milking step. This approach supports 
the notion that the contamination pathway of E. coli in the dairy supply- 
chain starts in the early stages of raw milk supply chain (Perrin et al., 
2015). E. coli was used in this study because aside from being a microbial 
hazard commonly linked with raw milk consumption it is also a 
microorganism that is foreseen to pose a concern in the future for the 
raw milk produced under hot weather conditions (Fairbrother & 
Nadeau, 2006). E. coli has been widely reported to survive and prolif-
erate in hot weather conditions and during summer season (Hussein & 
Sakuma, 2005; Ranjbar, Safarpoor Dehkordi, Sakhaei Shahreza, & 
Rahimi, 2018). In addition, it is known for its prevalence within farms 
that is facilitated by increased cow shedding and growth in feeds which 
are both highly occur during hot weather conditions (Fairbrother & 
Nadeau, 2006). 

As such, the results of the model built here have shown that the 
current practice of drinking raw milk in France might need to be 
revisited since the current hygiene criteria for packaged raw milk might 
be difficult to meet in the future if hotter conditions become the stan-
dard. Indeed, the estimated mean value at the initial concentration (log 
N0) was estimated to 1.33 log CFU/mL, however the 95th percentile 
reached 2.19 log CFU/mL. This is not in line with the hygiene criterion 
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of 2-log limit for the E. coli in France (Ministère de l’agriculture, de 
l’agroalimentaire et de la forêt, 2012): it was estimated that 10% of the 
raw milk package exceed the criterion. Nevertheless, this estimated 
value seems to be consistent with the results in other places such as in 
New York state (23% of the milk producers had more than 2-log) (Boor, 
Brown, Murphy, Kozlowski, & Bandler, 1998). It is important to keep in 
mind that these results do not represent a safety concern but a hygienic 
concern. The presence of high amounts of E. coli signifies faecal 
contamination, which is an indicator of hygiene and associated veteri-
nary practices at the farm level (Martin et al., 2016). It was reported that 
the pathogenic strains Shiga-toxin producing E. coli was isolated in 
0.4–1.7% in raw milk from the EU (during 2005–2008) while in France 
the isolates were around 3.4–15 % of the samples (Farrokh et al., 2013). 

The dairy farming systems such as the one used in this study are 
raising Holstein breed cows that are kept inside large, naturally venti-
lated farm buildings, where they do not go outside or for very limited 
time during the day because cows suffer from heat stress when they are 
exposed to temperature above 25 ◦C (information provided by a French 
veterinary expert). Although these systems can be seen in European 
countries, adoption to these farming conditions varies. This is particu-
larly true in France where the dairy farms are medium-scale farms and 
with the widespread use of production machinery (Poczta, ́Sredzińska, & 
Chenczke, 2020). Nevertheless, the shift to this system is taking place in 
southern France, where its adoption has been accelerated by the regular 
occurrence of heat waves during the summer period (information pro-
vided by a French veterinary expert). Another challenge to its wide-
spread adoption is the shift towards sustainability with efficient use of 
resources, implementation of recovery mechanisms and pressure from 
consumers to devolve to localized farms (Thorpe, Schmalzried, & Fallon, 
2010). These barriers to acceptance may hinder present adoption but 
may not completely prevent it given the intensification of climate 
change effects. Overall, it is hoped that the implication of the results 
obtained in this study may be useful in understanding the impact of 
climate change driven hot weather conditions on the microbial quality 
of raw milk which is expected to be more apparent in the future. 
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approach to assess the compliance to a performance objective (PO) of 
Campylobacter jejuni in poultry meat in France. International Journal of Food 
Microbiology, 336. https://doi.org/10.1016/j.ijfoodmicro.2020.108916. 

EFSA. (2015). Scientific Opinion on the public health risks related to the consumption of 
raw drinking milk. EFSA Journal, 13(1), 3940. https://doi.org/10.2903/j. 
efsa.2015.3940. 

European Environment Agency. (2017). Climate change, impacts and vulnerability in 
Europe 2016 an indicator based report. https://doi.org/10.2800/534806. 

Evans, E. W., & Redmond, E. C. (2016). Time-Temperature Profiling of United Kingdom 
Consumers’ Domestic Refrigerators. Journal of Food Protection, 79(12), 2119–2127. 
https://doi.org/10.4315/0362-028x.Jfp-16-270. 
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Roccato, A., Uyttendaele, M., & Membré, J. M. (2017). Analysis of domestic refrigerator 
temperatures and home storage time distributions for shelf-life studies and food 
safety risk assessment. Food Research International, 96, 171–181. https://doi.org/ 
10.1016/j.foodres.2017.02.017. 

Schaffner, D. W., Mcentire, J., Duffy, S., Montville, R., & Smith, S. (2003). Monte Carlo 
Simulation of the Shelf Life of Pasteurized Milk as Affected by Temperature and 
Initial Concentration of Spoilage Organisms. Food Protection Trends, 23(12), 
1014–1021. 

St-Pierre, N. R., Cobanov, B., & Schnitkey, G. (2003). Economic losses from heat stress by 
US livestock industries1. Journal of Dairy Science, 86(SUPPL. 1), E52–E77. https:// 
doi.org/10.3168/jds.S0022-0302(03)74040-5. 

Summer, A., Lora, I., Formaggioni, P., & Gottardo, F. (2019). Impact of heat stress on 
milk and meat production. Animal Frontiers, 9(1), 39–46. https://doi.org/10.1093/ 
af/vfy026. 

Thorpe, Lorna, Schmalzried, Hans D., & Fallon, L. Fleming (2010). Proposed Mega- 
Dairies and Quality-of-Life Concerns: Using Public Health Practices to Engage 
Neighbors. Public Health Reports, 125(5), 754–758. https://doi.org/10.1177/ 
003335491012500518. 

van der Spiegel, M., van der Fels-Klerx, H. J., & Marvin, H. J. P. (2012). Effects of climate 
change on food safety hazards in the dairy production chain. Food Research 
International, 46(1), 201–208. https://doi.org/10.1016/j.foodres.2011.12.011. 

Vidovic, S., Mangalappalli-Illathu, A. K., & Korber, D. R. (2011). Prolonged cold stress 
response of Escherichia coli O157 and the role of rpoS. International Journal of Food 
Microbiology, 146(2), 163–169. https://doi.org/10.1016/j.ijfoodmicro.2011.02.018. 

WHO. (2019). Food safety, climate change and the role of WHO (pp. 1–7). pp. 1–7. 
Retrieved from http://www.who.int/globalchange/publications/quantitative-% 
0Ahttps://www.who.int/foodsafety/publications/all/Climate_Change_Document. 
pdf?ua=1. 

Yoon, Y., Lee, S., & Choi, K. H. (2016). Microbial benefits and risks of raw milk cheese. 
Food Control, 63, 201–215. https://doi.org/10.1016/j.foodcont.2015.11.013. 

R. Feliciano et al.                                                                                                                                                                                                                               

https://doi.org/10.1080/00330124.2014.921017
https://www.legifrance.gouv.fr/eli/arrete/2012/7/13/AGRG1229148A/jo/texte
https://www.legifrance.gouv.fr/eli/arrete/2012/7/13/AGRG1229148A/jo/texte
https://doi.org/10.1016/S0168-1605(00)00225-7
https://doi.org/10.1016/j.ijfoodmicro.2004.10.027
https://doi.org/10.1016/S0168-1605(02)00374-4
https://doi.org/10.1111/risa:2015.35.issue-110.1111/risa:12267
https://doi.org/10.3390/agriculture10040092
https://doi.org/10.1016/j.ijfoodmicro.2010.07.011
https://doi.org/10.1016/j.ijfoodmicro.2010.07.011
https://doi.org/10.1038/nclimate3352
https://doi.org/10.1038/nclimate3352
https://doi.org/10.1186/s13756-018-0345-x
https://doi.org/10.1128/JB.154.3.1222-1226.1983
https://doi.org/10.1128/JB.154.3.1222-1226.1983
https://doi.org/10.1016/j.foodres.2017.02.017
https://doi.org/10.1016/j.foodres.2017.02.017
http://refhub.elsevier.com/S0963-9969(21)00578-0/h0215
http://refhub.elsevier.com/S0963-9969(21)00578-0/h0215
http://refhub.elsevier.com/S0963-9969(21)00578-0/h0215
http://refhub.elsevier.com/S0963-9969(21)00578-0/h0215
https://doi.org/10.3168/jds.S0022-0302(03)74040-5
https://doi.org/10.3168/jds.S0022-0302(03)74040-5
https://doi.org/10.1093/af/vfy026
https://doi.org/10.1093/af/vfy026
https://doi.org/10.1177/003335491012500518
https://doi.org/10.1177/003335491012500518
https://doi.org/10.1016/j.foodres.2011.12.011
https://doi.org/10.1016/j.ijfoodmicro.2011.02.018
https://doi.org/10.1016/j.foodcont.2015.11.013

	Probabilistic modelling of Escherichia coli concentration in raw milk under hot weather conditions
	1 Introduction
	2 Materials and methods
	2.1 Model description
	2.2 Module 1: Raw milk contamination level in bulk milk tanks at farm setting
	2.3 Module 2: Packaging of raw milk
	2.4 Module 3: Retailing
	2.5 Determination of growth kinetic parameters
	2.6 Module 4: Refrigeration before consumption
	2.7 Modelling
	2.8 Uncertainty analysis

	3 Results
	3.1 Module 1: Initial microbial load in bulk milk tank
	3.2 Module 2: Packaging of raw milk
	3.3 Module 3: Retailing
	3.3.1 Determination of growth parameters
	3.3.2 Microbial growth during retailing period

	3.4 Module 4: Refrigeration before consumption

	4 Discussion
	4.1 The probabilistic assessment model
	4.2 The use of hot weather conditions and E. coli as test organism in understanding the future of raw milk consumption

	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgement
	References


