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In meeting near- and long-term climate change mitigation goals 
(for example, the Paris Agreement), the energy sector accounts 
for the majority of greenhouse gas (GHG) emissions in most 

nations and is thus the target of most present-day emissions miti-
gation policies. However, agriculture, forestry and other land use 
(AFOLU) account for 20–25% of global GHG emissions in 20101 and 
cannot be ignored in the context of meeting ambitious long-term 
climate change mitigation targets. Both the magnitude of baseline 
emissions and the relative lack of available technologies to elimi-
nate these emissions make AFOLU emissions especially important 
in the context of climate change mitigation. This is in contrast to the 
energy sector, which can see its emissions become net zero or even 
net negative if carbon-removal technologies are used2.

The future emissions reduction potential in the AFOLU sector 
has been characterized in the literature as having relatively large 
emission reductions available at low cost compared with other 
sectors3–5. However, the emissions reduction potentials are under-
stood to be limited, with full (100%) removal not possible regard-
less of effort in many cases6. Moreover, Hasegawa et al. highlighted 
remarkable food security concerns associated with the inclusion of 
AFOLU in climate change mitigation actions7; they also compared 
the impacts of climate change and its mitigation on agricultural pro-
duction and concluded that the latter would be larger7. Although 
such impacts are understood to be heterogeneous within any popu-
lation (for example, low-income consumers are less able to with-
stand agricultural commodity price shocks), regional averages are 
nevertheless useful for comparing scenario outcomes. The present 
study contributes to this discussion by starting with the observation  

that there are three main channels by which AFOLU-focused 
climate change mitigation policies may exacerbate food insecu-
rity. One is promotion of large-scale bioenergy crop expansion; 
low-emissions scenarios in integrated assessment models (IAMs) 
have highlighted the potential importance of bioenergy, particularly 
bioenergy with carbon capture and storage (BECCS), for reducing 
costs and enabling deep system-wide emissions mitigation8–10. The 
consequent competition between food and bioenergy production 
can cause increased prices and reduced supplies of food crop com-
modities. Second, policies that price or constrain non-CO2 emis-
sions from agricultural production can directly increase costs of 
food production and thus food commodity prices11,12. The third 
channel is afforestation policies, which incentivize a reduction in 
cropland and pastureland supply.

While these secondary impacts of AFOLU emissions mitigation 
have been addressed in the literature13,14, and one such study pro-
poses inclusive policy designs to prevent adverse side effects, the 
present body of knowledge has not identified the relative impor-
tance of the factors that drive potential food security risk in a sin-
gle consistent analytical framework. Studies have focused on each 
element individually; for example, the direct impacts of non-CO2 
emissions reductions15 or the implications of bioenergy expansion12. 
Afforestation has also been addressed individually, albeit for car-
bon sequestration potential16,17. Some studies have examined the 
degree of potential carbon sequestration of afforestation and the 
costs thereof and have warned that food insecurity may result from 
forest carbon sequestration18,19. A remarkable study20 incorporated  
these three factors and climate change impacts on yield but did 
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not consider the stringent climate policy in line with the Paris 
Agreement, which aims to limit the global mean temperature 
increase to below 2 °C over pre-industrial levels, and limited physi-
cal indicators such as emissions, bioenergy, land use and the num-
ber of people at risk of hunger are reported.

Here we show the relative extent to which energy crop expan-
sion, non-CO2 emissions reduction in the agricultural sector and 
afforestation affect agricultural markets and food security under 
climate mitigation scenarios. Understanding the potential risk of 
food insecurity associated with these three GHG emissions abate-
ment strategies is key to the design of policies that reduce emis-
sions while minimizing unintended adverse consequences. To 
analyse each cause individually, we examine several scenarios that 
are consistent with limiting the global mean temperature increase 
to below 2 °C. Figure 1 summarizes the logical chains of the causes 
and effects of climate change mitigation measures on risk of hun-
ger and agricultural price increases as adopted in this study—and 
discussed in greater detail later. To investigate the uncertainty 
range, this study employ six global agroeconomic models repre-
senting agriculture and land-use systems and their emissions—
namely AIM/Hub21, CAPRI22, FARM23, GCAM24, GLOBIOM25 and 
MAGNET–IMAGE26. For the scenarios, the carbon prices, bioen-
ergy production requirements and forested land area are harmo-
nized where possible among the models. AIM/Hub, FARM and 
GCAM represent the land-use and energy systems explicitly; there-
fore, afforestation and the bioenergy land requirement are endog-
enously determined in response to carbon prices. Other models 
use exogenous parameters to achieve the scenarios’ specifications. 
We found that the models’ representations of non-CO2 emissions 
pricing were generally consistent, whereas the implementation of 

afforestation-related policies varied from one model to the next. We 
also employ a ‘hunger measurement tool’ which encompasses aver-
age calorie consumption per person, minimum calorific require-
ment and the coefficient of variation (CV) of the food-consumption 
distribution within countries. This enables us to explore the num-
ber of people at risk of hunger7,27,28. For comparison, we also ran 
baseline scenarios that excluded new climate policies to extend the 
historical trend, including land management or regulation. Further 
scenario assumptions can be found in Methods. The scenarios 
analysed in this study assume the socioeconomic background of 
Shared Socioeconomic Pathways (SSP) 2 (refs. 29,30), and for the cli-
mate policy scenarios, representative concentration pathway (RCP) 
2.6 equivalent carbon prices are applied, which are taken from the 
SSP database. To explore the socioeconomic uncertainty, we have 
also examined scenarios under SSP1 (‘Sustainability’) and SSP3 
(‘Regional Rivalry’). See Methods for more details and illustration 
of the overall research framework (Supplementary Fig. 1). Note that 
climate change impacts are not taken into account in this scenario 
framework; therefore, uncertainty associated with the state of the 
climate (that is, RCPs) and climate models assessed in previous 
studies7 are beyond the scope of this study. Neither do we consider 
climate variability, which has been discussed in the literature, but 
these should be carefully considered as recent literature reports31.

Results
Main indicators. In the baseline scenarios, global average calorie 
availability over the upcoming decades continuously increases, 
mainly due to income growth in developing countries, which 
drives food demand, reaching 3,058 kcal per person per day in 2050 
(2,996–3,260 kcal among the models; hereafter, ranges indicate  
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Fig. 1 | Representation of climate change mitigation measures and their potential effects on agricultural prices and the risk of hunger. The three 
measures considered—namely afforestation, bioenergy and non-CO2 emissions reduction—are shown in the green boxes and can be decomposed into 
secondary factors (blue boxes). These can affect agricultural production costs, which in turn might affect food security. Sectoral policies and lifestyle 
changes (grey arrows at the bottom) can be targeted at different elements of the figure.
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the inter-model spread; Fig. 2a). Accordingly, the number of people 
at risk of hunger declines overtime, to 417.6 million (288.6 mil-
lion–564.4 million) in 2050 (Fig. 2b). This trend is consistent with 
the earlier studies7,13,32. The models’ general agricultural producer 
price indices are projected to be almost constant over this time 
frame, with a range of 0.95 to 1.15 in 2050 (Fig. 2c). A similar degree 
of inter-model variation in projected prices has been observed in 
earlier studies as well33. Agricultural demand increases and tech-
nological improvement are the main upward and downward driv-
ers of prices, respectively, which tend to offset each other. Crop 
production, livestock production, food consumption, agricultural 
price, cropland and pastureland information can be found in the 
Supplementary Information.

Under the climate change mitigation scenario to attain well 
below 2 °C global mean temperature, we implemented carbon (or 
GHG) pricing, although not all of the models in the study have 

explicit representations of such pricing, so the exact implemen-
tation of this policy is model-specific (Supplementary Fig. 2). A 
previous model comparison capped the carbon price for AFOLU 
emissions at US$200 t−1 CO2-equivalent (CO2e) (ref. 13); however, 
because carbon prices are not expected to exceed that level by 2050, 
we did not apply such a cap in this study. Along with the carbon 
emissions price imposition (that is, carbon tax), GHG emissions 
mitigation actions are carried out by the agricultural and land-use 
system, pushing up the production cost, land rent and agricultural 
commodity producer prices (Fig. 2c). Consequently, calorie avail-
ability decreases by 117 (19–142) kcal per capita per day, and the 
population at risk of hunger increases by 117.7 (19.5–155.4) mil-
lion in 2050, and that increases over the period (Fig. 2a,b). For most 
indicators, climate change mitigation policy impacts increased as 
the level of climate change mitigation strengthened over time (49.8 
(3.5–99.4) million in 2030).
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Shifting to the decomposition analysis, the population at risk 
of hunger in 2050 increases by 41.9 million due to afforestation, 
10.8 million from bioenergy production and 26.7 million from 
non-CO2 emissions abatement (Fig. 1e; numbers are multi-model 
medians). These can be mostly explained by average food consump-
tion decrease (Fig. 2d) as a consequence of agricultural commodity 
price increases (Fig. 2f). For example, afforestation, bioenergy and 
non-CO2 emissions induce agricultural price increases by 17.2%, 
1.4% and 7.8%, respectively (numbers are multi-model medians of 
a volume-weighted composite agricultural commodity that includes 
all crop and livestock products). Whereas the median shows the 
relative magnitudes of the three individual causes, the uncertainty 
can be assessed in the inter-model variability. The impact of mod-
elled afforestation policies on additional risk of hunger ranges 
from 11.6 million to 70.4 million persons. These model variations 
would depend on the representation of the mitigation measures and 
model structure which are discussed in detail later. Given that there 
is model uncertainty, we carried out a sensitivity analysis to test 
whether a specific ‘extreme’ model would lead to this conclusion. 
This sensitivity analysis is conducted by withdrawing one model 
and iterating for all models. The conclusion is that our results are 
not dependent on a specific model (Supplementary Fig. 3). Also, 
analysis based on all models with complete sets of scenarios show 
similar patterns (Supplementary Fig. 4).

Note that models which include explicit energy and economic 
components show non-agricultural and non-land use related 
effects to some extent (for example, income loss associated with 
low-carbon energy technologies). It would be smaller than others 
except for AIM/Hub, which shows 29.0 million additional people 
becoming at risk of hunger (Supplementary Fig. 5).

Drivers of food price increases. Afforestation for the purpose of 
sequestering carbon from the atmosphere to the terrestrial system 
is incentivized by economically valuing terrestrial carbon above 
and belowground. Total CO2 emissions drastically decrease in 
the mitigation scenarios (Fig. 3a), becoming negative by 2050 in 
most of the scenarios (median: −3.80 Gt CO2; from −0.24 Gt CO2 
to −13.74 Gt CO2). Accordingly, forested area increases by 11.1% 
(17.5–24.7%) in 2050 relative to baseline scenarios, and these 
expansions put additional pressure on the agricultural sector  
(Fig. 3e). Land rent (average land rent among land-use sectors) can 
also increase due to land carbon sink prices; both factors would 
increase the average land rent by 67%, 172% and 366% in 2050 
relative to the baseline scenarios in GCAM, MAGNET–IMAGE 
and AIM/Hub models, respectively. The pastureland also decreases 
accordingly (Supplementary Fig. 6).

Non-CO2 emissions mitigation is the second-largest contributor 
to the price increases associated with mitigation measures. There are 
basically two factors to increase the agricultural production prices. 
First, CH4 and N2O emissions abatement technologies are imple-
mented endogenously, which directly increases the agricultural 
production costs, particularly in livestock products (Supplementary 
Fig. 7). Second, where CO2 emissions can attain negative values if 
CO2-removal technologies are applied, non-CO2 emissions cannot 
become negative and do not approach zero in the scenarios; residual 
emissions remain at 74.5% (56.5–87.8%) of baseline emissions (Fig. 
3b,c). These values are slightly greater than existing literature but 
probably due to the sectoral coverage differences because the lit-
erature also includes non-agricultural related emissions34,35. These 
remaining emissions are subject to the carbon price, increasing 
the costs of crop and animal commodity production. Interestingly, 
these relatively modest non-CO2 emissions reductions in the agri-
cultural sector imply large reductions in the energy system at these 
carbon prices (Fig. 3h).

Finally, the bioenergy crops can compete with food crops 
for cropland, putting upward pressure on land rents and thus  

agricultural commodity prices. Current model estimates show the 
bioenergy cropland area is 185 (61–494) million ha in 2050 under 
the full mitigation policy, which accounts for 11% of present-day 
total cropland area (Fig. 3d).

Although afforestation and bioenergy both need large amounts 
of land and therefore might compete with land for food produc-
tion, results suggest that the effect of afforestation is larger than 
bioenergy. This is because afforestation requires more land than 
bioenergy in the scenarios, which is probably due to differences in 
long-term emissions mitigation potential per unit land area, partic-
ularly when the bioenergy crop commodities are used with carbon 
capture and storage for negative-emissions final energy production. 
In the bioenergy scenario, bioenergy land increase by 109 (56–690) 
million ha in 2050, along with even a small increase of cropland 
(the median change is +23 million ha, with a range from −59 mil-
lion ha to +86 million ha); whereas in the afforestation scenario, for-
est area increases by 420 (74–895) million ha, with the decrease of 
cropland by 103 (39–148) million ha. Further, while the amount of 
cropland allocated to bioenergy production is determined by the 
bioenergy commodity demands of the energy system, the amount 
of land dedicated to afforestation has no practical limit36. In terms 
of characterizing the inter-model variability, it would be worthwhile 
to understand the contribution of the different models’ structures 
and assumptions to the consequent reported results. Four models 
reported in Fig. 3 use land-nesting representations—either logit 
or CET functions (AIM/Hub, FARM, GCAM and MAGNET–
IMAGE)—of which three are CGE models (AIM/Hub, FARM and 
MAGNET–IMAGE). However, even models of a similar structural 
type have quite different results in this study, suggesting that other 
factors such as the parameterization of the land allocation decisions 
are stronger drivers of the inter-model variability. For example, 
AIM/Hub and GCAM use relatively flexible parameters for com-
petition between cropland and forest, whereas MAGNET–IMAGE 
has less flexibility (Supplementary Table 1). Moreover, the biofuel 
representation varies among models as Supplementary Table 1 indi-
cates. Practically, it would be difficult to fully harmonize it owing to 
the diversity of the model types and characteristics, which should be 
taken into account when interpreting the results.

The above-mentioned three drivers are also compatible with 
the carbon prices that clearly show the correlation, while there 
are some inter-model variations in the carbon-price assumptions  
(Fig. 3g–i). Food consumption, agricultural prices and risk of hunger 
similarly show the clear responses to carbon prices (Supplementary 
Fig. 8). However, looking at the emissions reduction over the 
food-consumption changes, the models’ dependency is remark-
able, and for example, GLOBIOM shows relatively low efficiency in 
terms of emissions reduction over the food-consumption changes 
(in other words, food consumption is more elastic); CAPRI shows 
opposite trends (Supplementary Fig. 9).

Regional implications. The impacts of the three mitigation mea-
sures for risk of hunger show similar patterns to the global results 
described in the prior section. In the baseline scenarios, the risk of 
hunger in most regions except for Sub-Saharan Africa is projected 
to decrease over time, mainly driven by long-term per capita income 
growth as shown in the global results, which might not be the case 
in the short term due to COVID-19. China and India show higher 
income growth than most other countries, and thus the risk of hun-
ger rapidly decreases from 2010 to 2050 to 43.6 (21.4–70.0) million 
and 79.0 (22.6–100.0) million, respectively (Fig. 4a). Population 
at risk of hunger in African regions increases slightly from 164.5 
million in 2010 to 167.2 (67.6–176) million in 2050, mainly due to 
population growth. In this time frame, Africa’s share of the global 
total increases from 21.1% in 2010 to 31.2% (23.0–40.0%). The rela-
tive impact of full emissions mitigation on the portion of the popu-
lation at risk of hunger is generally similar across regions; still, the  
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absolute population at risk of hunger in any scenario and region 
largely depends on each region’s baseline projection. Consequently, 
the African region has the largest population at risk of hunger in 
2050 at 35.3 (10.5–69.5) million (Fig. 4a). The decomposition of 
three mitigation measures differs remarkably between Asian and 
African regions: Asian regions have relatively high impacts from 
non-CO2 emissions mitigation, whereas African regions show large 
impacts from afforestation policies. Asia has higher future income 
per capita than Africa (Supplementary Fig. 9), which leads to higher 
meat and dairy consumption (Supplementary Figs. 11 and 12), 
which entails prominent and difficult-to-abate non-CO2 emissions. 
Another contributing factor is land rent, which is generally lower in 
Africa than in Asia, and as such, a price on terrestrial carbon can be 
expected to have a greater impact in Africa. More detailed regional 

results are shown in Supplementary Fig. 13. Note that whereas the 
irrigated rice area in Asia is considerable and causes relatively high 
CH4 emissions, this is not the main driver of the above-mentioned 
land and commodity price changes (Supplementary Fig. 14).

Socioeconomic variations. Socioeconomic development is one of 
the key elements that determines future agricultural market and 
food security conditions. As such, we carried out a sensitivity test 
under different socioeconomic assumptions: SSP1 and SSP3, which 
span a wide range for the future (low population and high economic 
growth in SSP1 and high population and low economic develop-
ment in SSP3)37. In baseline scenarios, the total population at risk 
of hunger decreases faster in SSP1 than SSP2 due to the rapid eco-
nomic development, particularly in current low-income countries 
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in SSP1. Meanwhile, SSP3 shows the population at risk of hunger 
reacting opposite of SSP1’s direction, generally increasing or at least 
maintaining present-day risk over the next couple of decades (Fig. 
5a). The response to the climate mitigation policies differs, and 
the risk of hunger in SSP1 and SSP3 increases by 61.1 (12.3–73.9) 
million and 359.3 (264.7–557.3) million compared with baseline 
scenarios respectively in 2050. This could be partly due to the dif-
ferences in baseline hunger projections, but more importantly, the 
risk of hunger in SSP3 should be more sensitive than others to the 
same carbon price because the average per capita income is low and 

thus there is a larger number of people in poverty. The percentage 
changes give clearer characteristics of SSPs; namely 28.4% (4.2–
47.9%) and 46.1% (36.0–66.2%) in SSP1 and SSP3, respectively. 
Similar behaviour from agricultural commodity price changes is 
shown in Supplementary Fig. 7.

In contrast to the total effects of climate mitigation, the decom-
position of three causes show similar trends in all SSPs (Fig. 5d–f). 
In SSP1, afforestation, bioenergy and non-CO2 abatement induce 
additional risk of hunger by 37.6 million, 3.0 million and 17.5 mil-
lion (model medians, respectively), while in SSP3 they are 132.7 
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million, 49.7 million and 74.4 million (model medians), respectively 
in 2050. This further supports our findings in SSP2 shown earlier. 
It can also be interpreted that regardless of future socioeconomic 
conditions, the afforestation and non-CO2 reductions are the main 
factors prescribing the impacts of emissions mitigation broadly on 
the agricultural sector.

Discussions and Conclusions
We have estimated the three main causes of food insecurity and 
agricultural commodity price and land-use changes associated with 
climate change mitigation measures, namely afforestation, bioen-
ergy expansion and non-CO2 emissions abatement. Afforestation 
policies caused the greatest adverse side effects on food security, 
followed by non-CO2 abatement policies. We confirm this finding 
under different socioeconomic assumptions with multiple global 
agricultural economic models. We further demonstrate that specific 
extreme models do not lead our conclusion. Regionally, Sub-Saharan 
Africa is most vulnerable to these shocks. Our results indicate the 
complexity and challenges in AFOLU emissions mitigation policy 
from multiple angles. The actual risk of hunger in response to agri-
cultural price increases or mean food-consumption decreases is dif-
ficult to elucidate due to the complex nature of hunger and poverty. 

Our results require careful interpretation; however, the avoidance of 
this potential issue is worthy of consideration.

As shown in Fig. 1, a key element in the causal chain between emis-
sions mitigation policy and food insecurity is the cost of agricultural 
commodity production. The most stringent climate-stabilization 
scenarios rely heavily on negative emissions technologies such as 
afforestation and BECCS, and mitigation of non-CO2 emissions is 
also quite important under low or net zero emissions conditions4,38. 
The carbon pricing on land carbon stock generally increases the 
land rent and motivates landowners to expand forests. The higher 
the carbon prices and forest primary productivity, the stronger this 
incentive is. These dynamics drive agricultural commodity produc-
tion costs upward. Bioenergy production can trigger similar effects 
through generally similar causal mechanisms, increasing land rent 
due to the additional competition. Mitigating non-CO2 emissions 
has a different mechanism of increasing agricultural production 
costs; these policies directly increase the food crop production 
costs, both due to the cost of the abatement technologies deployed 
and the additional costs from any remaining emissions that are not 
abated. Nevertheless, non-CO2 mitigation measures impact more 
substantially a subgroup of sectors with higher emissions intensity 
per kcal, such as livestock products compared with afforestation 
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that targets all cropland and grassland without distinction. Once 
climate policy would give incentives to these measures, it might be 
difficult to cut off the left arrows in Fig. 1. One possibility to pre-
vent this situation would be societal transformation (for example, 
reducing energy demand drastically39 and/or lifestyle changes40). 
Although such outcomes are possible, they should not be assumed 
for present-day policy modelling and assessment.

The impact from these three drivers on the ‘secondary factors’, 
shown in Fig. 1 may be addressed through policy. For example, even 
if large-scale afforestation and bioenergy expansion occurs, land 
rent impacts on cropland could be controlled by policy such as sub-
sidies for production of food crops. Note that without the carbon 
pricing on land carbon sinks, there would be strong incentives to 
cultivate bioenergy crops to attain negative emissions associated 
with BECCS; to deter this, policies related to non-food land demand 
may be needed41,42. Regarding the arrows from secondary effects to 
the production costs in Fig. 1, there are still important roles for pol-
icy, but technology can also help to mitigate any adverse impacts. 
One issue of subsidy policy in general is the scale of the market 
distortion; the scenarios show production cost increases by around 
30% relative to baseline, which would require substantial subsidy 
budgets. Note that carbon tax revenue might be the right candidate 
for this purpose43. Technological progress in non-CO2 emissions 
reduction and bioenergy yield would mitigate the agricultural cost 
increases. Although it is essential to encourage the research and 
development of these technologies, progress on specific individual 
technologies is unpredictable; therefore, it is important to maintain 
or increase investment in this area in general.

Aside from the supply-side management, demand-side transi-
tions may mitigate the adverse side effects such as dietary shifts 
reducing meat consumption44,45, changing food distribution prac-
tices to better meet the needs of the most vulnerable, reducing food 
waste or implementing subsidies for consumption14,46. In particular, 
the scale of subsidy is reported to be small, and despite the challenges 
associated with the implementation of food policies, several options 
are available to avoid the food security concerns often linked to cli-
mate mitigation. Alternatively, a reduction in food waste may have 
considerable potential since food waste volume is currently substan-
tial. In any case, the above-mentioned measures may not be effective 
in isolation. We would need holistic approaches for food security 
under deep decarbonization transition. Note that trade is under-
stood to be important for resolving discrepancies between supply 
and demand and mitigating price shocks; however, at least within 
the framework of our study, trade alone does not resolve these issues 
because climate policy (that is, carbon price) is implemented glob-
ally. If trade barriers were alleviated, the adverse effects of climate 
change mitigation on hunger risk would be moderated. However, 
such a decision would impact the baseline scenario design.

Whereas the main results of this study were true for most—if not 
all—participating models, it is worth noting that some of the vari-
ability in the results may be explained by the models’ structural rep-
resentations. For example, models that show relatively high impacts 
of afforestation policies are AIM/Hub, GCAM and MAGNET–
IMAGE, all of which have explicit representations of land rent, and 
in all cases, the emissions mitigation policies with afforestation led 
to remarkable increases in land rental rates due to the pricing of ter-
restrial carbon. In contrast, GLOBIOM has no explicit land rent, and 
the cost increase in agricultural commodities is instead caused by a 
shift in cropland from high- to low-productivity land areas. In addi-
tion to structural differences, there is also notable uncertainty that is 
due to different parameterization; for example, models with similar 
structural land nesting can return dramatically different results if 
using different elasticities. A previous study compared IAM model 
performance based on a sensitivity analysis of specific parameters 
but focused mainly on land-use changes30; a similar analysis focused 
on hunger risk should be conducted in a future study.

Whereas in this study we focused on agricultural and food security 
aspects, the policies analysed also probably have ancillary impacts, 
some positive (for example, biodiversity, ecosystem services) and 
some negative (for example, eutrophication). Reforestation with 
native species can have additional environmental co-benefits in 
regenerating habitat47. In contrast, if the afforestation purely aims to 
sequester the maximum possible amount of carbon from the atmo-
sphere, the tree species selected might be non-native and cause neg-
ative ecosystem impacts. Some models represent entire economic 
systems, including general equilibrium effects (for example, labour 
allocation changes, consumption of other goods, price changes 
and macroeconomic feedbacks); such effects have only partly been 
addressed in the literature11,48,49. Moreover, nitrogen pollution and 
water consumption may be exacerbated by climate change mitiga-
tion50–52; more comprehensive and geographically detailed envi-
ronmental assessment would allow such an analysis. Finally, the 
models used in this study require continuous model-improvement 
efforts such as validation of the assumed parameters to better reflect 
historical trends. We also see several large differences in base year 
(for example, land-use data), and future studies should invest some 
effort in making those differences smaller.

Methods
We carried out a scenario analysis to decompose the effects of afforestation, 
bioenergy and non-CO2 abatement on agricultural markets and food security. 
The overall research framework is shown in Supplementary Fig. 1. For this 
scenario analysis, we employed six state-of-the-art global agricultural economic 
or integrated assessment models that sufficiently represent the agricultural 
sector and land use to assess the interaction between climate mitigation and 
food security. Global economic models compute the agricultural consumption, 
production, land use and associated emissions by crops and livestock and forestry. 
Food-consumption data from the models are then provided to a hunger assessment 
tool, which computes individual countries’ food-consumption distribution and 
population at risk of hunger. To identify the magnitude of three causes on the 
agricultural market, we developed a sensitivity scenario protocol that involved 
systematically switching on/off the different mitigation options. Basically, 
the models react to mitigation policies that cause the prices of agricultural 
commodities to increase because of agricultural production-cost increases. While 
this price change can induce food-consumption shifts such as from rice to other 
cereals, the total food consumption decreases. Here we describe (1) the scenario 
definition and protocol, (2) a brief model overview for each agricultural model (a 
summary is in Supplementary Table 1) and (3) the hunger tool description.

Scenarios and experiment design. We developed a set of scenarios that combine 
three socioeconomic conditions and one mitigation policy scenario (and one 
baseline scenario) that are consistent with the 2 °C goal stated in the Paris 
Agreement, which is equivalent to the RCP2.6 level of emissions reduction 
for the main assessment53. These mitigation policy scenarios include a variety 
of land-based abatement options but apply the same carbon prices. For the 
socioeconomic assumptions, we used three SSPs from the internationally 
developed SSP framework designed to conduct cross-sectoral assessments of 
climate change impact, adaptation and mitigation29. The SSPs are representative 
future scenarios, which include both qualitative and quantitative information in 
terms of challenges in mitigation and adaptation to climate change. In this study, 
we used three SSP scenarios from the SSP framework, that is, ‘sustainability’ 
(SSP1)26, ‘middle of the road’ (SSP2)54 and ‘regional rivalry pathways’ (SSP3)21 
to address the uncertainty of socioeconomic conditions (Supplementary Fig. 
15). We implement SSP-dependent agricultural yield, food preference and so 
on beyond population and gross domestic product as shown in Stehfest et al.30 
We did not explicitly represent additional land-degradation effects in our crop 
yield projection (Supplementary Fig. 16), although these are of concern55,56. They 
are basically in line with the historical trends while there are variations among 
regions and crops57. These are wholly model-dependent assumptions that we 
did not harmonize, and thus it is natural that variation should emerge. There are 
some responses to mitigation policies which are quite limited because we assume 
that climate conditions are unchanged. Incorporating these effects could change 
the numerical results, reducing the amount of arable land available for energy 
crops or afforestation, ultimately decreasing mitigation potential. Incorporating 
land-recovery effects would produce the opposite results.

To isolate the effect of each land-based mitigation option (afforestation, 
bioenergy and non-CO2 emissions reduction plus carbon-price imposition), we 
used a recently developed58,59 and widely applied methodology30 that identifies the 
individual effects of an input factor with a limited number of model experiments 
even in a complex system. In general, we could classify the mitigation options into 
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four categories, that is, afforestation, bioenergy, non-CO2 pricing and other (tax on 
non-agriculture and land-use sectors). The first three are land-related mitigation 
options and are the focus of this study. Therefore, we designed three scenarios with 
each applying only one of the land-related mitigation options and one scenario 
that applies all three options simultaneously, as shown in Supplementary Table 
3 (for the models with non-agricultural sectoral emissions—for example, energy 
sectors—including AIM/Hub, GCAM and FARM, because it is difficult to turn 
off these mitigation options, tax on non-agricultural sectoral emissions was also 
applied in these four scenarios).

Both the baseline and mitigation scenarios are sub-optimal scenarios in terms of 
agricultural productivity, production and consumption structure from the perspective 
of reducing hunger risk and achieving emissions abatement at the lowest cost. There 
can be non-economic barriers to fulfilling the optimal condition (for example, 
filling the yield gap and realizing environmentally friendly dietary patterns). If 
climate change mitigation policy packages could be designed to change the assumed 
socioeconomic conditions simultaneously, underlying the baseline scenarios, then 
both the population at risk of hunger and GHG emissions would decrease.

We have also run sensitivity scenarios with AIM/Hub, FARM and GLOBIOM, 
where most mitigation measures are available and only one is switched off; each of 
these models sufficiently represents all agricultural activities and GHG emissions 
(Supplementary Tables 1 and 3). Note that while non-CO2 emissions from 
agricultural sectors are fully covered, soil organic carbon, emissions due to biomass 
burning associated with land clearing and changes in agricultural biomass are 
not considered. This exercise could enhance the robustness of our decomposition 
methodology, which is similar to the way carried out by other studies in the climate 
change analysis literature30,60 (Supplementary Table 4). However, it should be 
noted that because there are individual model characteristics, there can be some 
biases originated from model representations. For example, multiple cropping is 
represented in four out of six models. For all mitigation scenarios, a global uniform 
carbon tax (except for FARM, which applies an endogenous carbon price) was 
imposed in these mitigation scenarios54, as shown in Supplementary Fig. 2. Model 
submission status is shown in Supplementary Table 5.

Regarding non-agricultural sectors’ interactions, models without representation 
of non-agricultural sectors (CAPRI, GLOBIOM and MAGNET–IMAGE) can be 
assessed by directly comparing baseline and mitigation scenarios. For the models 
with representation of non-agricultural sectors (AIM/Hub, GCAM and FARM), 
we need to further identify the effect of non-agricultural activity (for example 
macroeconomic feedback associated with energy system changes) and thus we 
run all mitigation measures off scenarios (Supplementary Table 6). The final result 
presented was the average of scenario sets and decomposition method, which 
aimed to account for the uncertainty in modelling capacity and decomposition 
method. For bioenergy, Supplementary Table 7 shows model output.

We show the main baseline indicators for crop production (Supplementary 
Fig. 17), livestock production (Supplementary Fig. 18), food consumption 
(Supplementary Fig. 19), population at risk of hunger (Supplementary Fig. 20), 
agricultural price index (Supplementary Fig. 21), cropland (Supplementary Fig. 
22), pastureland and its changes relative to baseline scenarios (Supplementary Figs. 
23 and 6), land-use composition (Supplementary Fig. 24), food use ratio for coarse 
grain (Supplementary Fig. 25) and ruminant meat consumption share in total meat 
consumption (Supplementary Fig. 26; note that this trend may not fully reflect the 
recent historical decreasing trend).

Model description. This section describes the main features of each model. 
Because many models used in this study participated in the earlier studies (for 
example, ref. 13), this section can be similar to the description in those papers13.

AIM/Hub21, which is formerly named AIM/CGE, is a one year step 
recursive-type dynamic general equilibrium model that covers all regions of the 
world. The AIM/Hub model includes 17 regions and 42 industrial classifications. 
For appropriate assessment of bioenergy and land-use competition, agricultural 
sectors are also highly disaggregated61. Details of the model structure and 
mathematical formulae are described by Fujimori, Masui and Matsuoka62. The 
production sectors are assumed to maximize profits under multi-nested constant 
elasticity substitution functions and each input price. Energy-transformation 
sectors input energy and value added are fixed coefficients of output. They are 
treated in this manner to deal with energy conversion efficiency appropriately in 
the energy-transformation sectors. Power generation values from several energy 
sources are combined with a logit function. This functional form was used to 
ensure energy balance because the constant elasticity substitution function does 
not guarantee an energy balance. Household expenditures on each commodity 
are described by a linear expenditure system function. The parameters adopted 
in the linear expenditure system function are recursively updated by income 
elasticity assumptions27. Land use is determined by logit selection61. Land-use 
change emissions are derived from the forest-area change relative to the previous 
year multiplied by the carbon stock density, which is differentiated by global 
agroecological zones. Non-energy related emissions other than land-use change 
emissions are assumed to be in proportion to the level of each activity (such as 
output). CH4 has a range of sources, mainly the rice production, livestock, fossil 
fuel mining and waste-management sectors. N2O is emitted as a result of fertilizer 
application and livestock manure management and by the chemical industry.

MAGNET–IMAGE (Modular Applied GeNeral Equilibrium Tool-Integrated 
Model to Assess the Global Environment) is the combination of the agroeconomic 
model MAGNET63 and the integrated assessment model IMAGE64. MAGNET is 
a multi-regional, multi-sectoral, applied general equilibrium model64 based on 
neo-classical microeconomic theory which is an extension of the standard Global 
Trade Analysis Project (GTAP) model. The core of MAGNET is an input–output 
model, which links industries in value-added chains from primary goods to final 
goods and services for consumption. Input and output prices are endogenously 
determined by the markets to achieve supply and demand equilibrium. The 
agricultural sector is represented in high detail compared with standard CGE 
models. Developments in productivity are driven by a combination of assumptions 
on autonomous technological change provided by IMAGE and by economic 
processes as modelled by MAGNET (that is, substitution between production 
factors). Land is modelled as an explicit production factor described by a land 
supply curve, constructed with land availability data provided by IMAGE.

IMAGE is a comprehensive integrated assessment framework, modelling 
interactions between the human and natural systems64. The framework comprises 
a number of sub-models describing land use, agricultural economy, the energy 
system, natural vegetation, hydrology and the climate system. In this study, 
specifically, the land component is applied, which represents land use, crop 
production, afforestation and the carbon cycle spatially explicitly at a 5 arc-minute 
resolution.

Emissions in MAGNET are coupled to all relevant sectors. Technical mitigation 
of non-CO2 GHG emissions from agriculture is based on Lucas et al.65 The residual 
emissions are taxed in MAGNET. The costs of technical mitigation are also 
implemented as part of the tax. The level of avoided deforestation and afforestation 
policy is determined in IMAGE through the climate policy model FAIR-SimCAP 
that makes a cost-effectiveness assessment of these mitigation options compared 
with other options in the energy and industry sectors16. The policy measures are 
subsequently implemented in MAGNET through reduced land availability.

GLOBIOM (GLobal BIOsphere Management) model, which is a partial 
equilibrium model66, represents the competition between different land use-based 
activities. It includes a detailed representation of the agricultural, forestry and 
bioenergy sectors, which allows for the inclusion of detailed grid-cell information 
on biophysical constraints and technological costs and a rich set of environmental 
parameters, including comprehensive AFOLU GHG emission accounts and 
irrigation water use. For spatially explicit projections of the change in afforestation, 
deforestation, forest management and their related CO2 emissions, GLOBIOM is 
coupled with G4M (Global FORest Model)67. As outputs, G4M provides estimates 
of forest-area change, carbon uptake and release by forests and supply of biomass 
for bioenergy and timber.

GCAM integrated assessment model links modules of the economy, energy 
system, agriculture and land-use system and climate68–70. The agriculture and 
land-use component determines supply, demand and prices for crop, animal and 
forestry production and bioenergy based on expected profitability. In doing so, 
the model determines land allocation across these categories and pastureland, 
grassland, shrubland and noncommercial forestland. The agriculture and land-use 
component of GCAM is fully coupled with the energy, economic and climate 
modules within GCAM; that is, all four components are solved simultaneously. In 
the version of GCAM used in this study, bioenergy provides the primary linkage 
between the agriculture and land-use component and the energy component, 
with bioenergy produced by the land system and consumed by the energy system. 
The agriculture and land component is coupled to the energy economy through 
bioenergy and carbon prices. Carbon prices are imposed iteratively until the 
prescribed climate target is reached. The carbon prices influence the cost of fossil 
fuel energy technologies, and the profitability of land-cover options. In particular, 
GCAM assumes the carbon price is applied to carbon stocks held in the terrestrial 
system, incentivizing land owners to increase these stocks. As a result, strong 
incentives exist to expand carbon stocks under a climate policy, resulting in 
substantial afforestation. The agriculture and land-use component is connected 
to the climate through emissions (CO2 and non-CO2), which are produced by 
the land system and passed into the climate system to calculate concentrations, 
radiative forcings and other climate indicators.

CAPRI (Common Agricultural Policy Regionalised Impact) modelling system 
is an economic large-scale, comparative–static, partial equilibrium model focusing 
on agriculture and the primary processing sectors (www.capri-model.org). CAPRI 
comprises two interacting modules, linking a set of mathematical programming 
models of EU regional agricultural supply to a spatial multi-commodity 
model for global agri-food markets. The regional EU supply models depict a 
profit-maximizing behaviour of representative farms for all EU NUTS 2 regions 
(that is, the nomenclature of territorial units for statistics is a hierarchical system 
developed by EUROSTAT for dividing up the economic territory of the European 
Union), taking constraints related to land availability, nutrient balances for 
cropping and animal activities and policy restrictions into account. The market 
module consists of a spatial, non-stochastic global multi-commodity model for 
about 60 primary and processed agricultural products, covering 77 countries in 
40 trading blocks. Bilateral trade flows and attached prices are modelled based on 
the Armington assumption of quality differentiation71. The behavioural functions 
in the market model represent supply and demand for primary agricultural and 
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processed commodities (including human and feed consumption, biofuel use 
and import demand from multilateral trade relations), balancing constraints 
and agricultural market policy instruments (that is, import tariffs, tariff rate 
quotas, producer and consumer support estimates and so on). With regard 
to GHG accounting, CAPRI calculates EU agricultural GHG emissions for 
the most important N2O and CH4 emission sources based on the inputs and 
outputs of agricultural production activities, following to a large extent the 2006 
Intergovernmental Panel on Climate Change guidelines. It also includes specific 
technical and management-based GHG mitigation options for EU agriculture into 
account. GHG emissions for the rest of the world are estimated on a commodity 
basis in the market model72.

FARM (Future Agricultural Resources Model) is a global computable general 
equilibrium (CGE) model with 13 world regions that operates in five-year steps 
from 2011 to 210173. Data requirements include a base-year social accounting 
matrix from GTAP at Purdue University, energy balances from the International 
Energy Agency, land use from the Food and Agriculture Organization (FAO) 
of the United Nations and agricultural production from FAO. FARM has been 
extended in many ways beyond the ‘GTAP in GAMS’ model described in Lanz 
and Rutherford74: conversion from comparative–static to a recursive–dynamic 
framework; conversion of the consumer demand system from constant elasticity 
of substitution to the linear expenditure system; allowing for joint products in 
production functions; introduction of land classes for agricultural and forestry 
production; and introduction of electricity-generating technologies. Two markets 
are important for bioelectricity: the market for land and the market for electricity. 
Bioelectricity must compete against crops, pasture and forest for land, and must 
also compete for a share of electricity generation. Land shifts among crops, 
pasture and forests in response to population growth, dietary preference, changes 
in agricultural productivity and policies such as a renewable portfolio standard 
or a carbon tax. Land competition is based on the land rent for each competing 
use: land use is adjusted within agroecological zones until rents at the margin are 
equal. The relatively simple market-clearing conditions for land allocation may 
not accurately represent the current heterogeneous land market; at the same time, 
however, this representation has the advantage of maintaining the land area’s 
physical balance. CO2 capture and storage is available for electricity generated from 
fossil fuels and from bioelectricity.

Model characteristics. Each model has individual characteristics that include 
advantages and disadvantages. Here we briefly describe them. CGE models, AIM/
Hub, FARM and MAGNET have the advantage of being able to take into account 
the whole economic system with interaction of macroeconomic feedback and 
microeconomic price adjustments. AIM/Hub and FARM explicitly represent 
energy systems and emissions in physical terms. This enables them to consistently 
deal with the energy market, including bioenergy substitution with other energy 
carriers for energy demand and energy supply (bioenergy power generation) and 
consistent GHG emissions. MAGNET does not represent them, which could be 
a potential disadvantage, but it compensates for this by linking to the IMAGE 
model. Meanwhile, CGE models mostly have relatively coarse agricultural sector 
resolutions compared with partial equilibrium models, which may sometimes 
be a disadvantage. Within the partial equilibrium models, GCAM and other 
models (CAPRI and GLOBIOM) differ significantly in the sense that GCAM 
includes energy systems and their emissions explicitly with detailed technological 
resolutions. As indicated earlier, this characteristic can provide a physically 
consistent picture of energy, agriculture and land-use interactions. CAPRI and 
GLOBIOM have relatively detailed sectoral and spatial resolutions that allow 
exploration of food production and consumption details, which is usually a strong 
advantage. GLOBIOM offers an advanced representation of livestock production 
systems and forestry.

Estimates of people at risk of hunger. In principle, the risk of hunger 
can be calculated by referring to the mean calorie consumption, which is 
the same approach as in AIM/Hub and IMAGE. The narrow definition of 
undernourishment or hunger is a state of energy (calorie) deprivation lasting 
over one year; this does not include the short-lived effects of temporary crises75,76. 
Furthermore, this does not include inadequate intake of other essential nutrients75. 
The population at risk of hunger is a proportion of the total population and is 
calculated using equation (1):

Riskt = POPt × PoUt (1)

where t is year, Riskt is the population at risk of hunger in year t, POPt is the 
population in year t and PoUt is the proportion of the population at risk of hunger 
in year t.

According to FAO methodology77, the proportion of the population at 
risk of hunger is defined using equations (2)–(4). With the FAO methodology, 
the proportion is calculated using three parameters: the mean food calorie 
consumption per person per day (cal), the mean minimum dietary energy 
requirement (M) and the coefficient of variation of the food distribution of the 
dietary energy consumption in a country (CV). The food distribution within a 
country is assumed to follow a log normal distribution. The proportion of the 
population under the mean minimum dietary energy requirement (M) is defined 

as the proportion of the population at risk of hunger. The log normal distribution 
has two parameters, the mean μt and the variance σt, as in equation (2). The 
parameters μt and σt can be represented using the mean food calorie consumption 
per person per day (cal) and the coefficient of variation of the domestic 
distribution of dietary energy consumption (CV) as in equations (3) and (4).

Each IAM reports the mean food calorie consumption per person per day 
(cal). We standardize the base-year calorie consumption to what FAO reports and 
take the change ratio of each year to the base year for IAMs. We then compute the 
standardized calorie consumption to make a consistent number for those at risk of 
hunger. In this process, because the IAMs are regionally aggregated values, they are 
downscaled to the individual country level by taking the base-year value reported 
by FAO and future change ratio from IAMs. The CV is an indicator of food 
security observed in a household survey conducted by the FAO. It ranges from 0 
to 1. FAO country data for CV are weighted on the basis of population data in the 
base year and aggregated to regional classification to obtain the CV of aggregated 
regions. The CV is changed over time with the consideration of income growth 
dynamics as presented in Hasegawa et al.27 Note that there is an assumption that 
the future CV changes of each region is based on the current regional value.

PoUt = Φ
(

log Mt −
μ(calt, σt)

σt

)

(2)

μ(calt, σt) = log calt −
σt
2

2 (3)

σt =
[

loge(CV
2
+ 1)

]0.5
(4)

where Mt is the mean minimum dietary energy requirement in year t, CVt is 
the coefficient of variation of the international distribution of dietary energy 
consumption in year t, Φ is the standard normal cumulative distribution and calt is 
the mean food calorie intake per person per day in year t.

The mean minimum dietary energy requirement (M) is calculated for each year 
and country by using the mean minimum dietary energy requirement in the base 
year at the country level78–80 and an adjustment coefficient for the minimum energy 
requirements per person in different age and sex groups79 and the population of 
each age and sex group in each year80, as in equations (5) and (6).

Mt = Mbase ×
MERt

MERbase
(5)

MERt =

∑

i,j RMERi,j × Pclassi,j,t
∑

i,j Pclassi,j,t
(6)

where i is age group, j is sex, Mbase is the mean minimum dietary energy 
requirement per person in the base year, MERt is the mean adjustment coefficient 
of minimum energy requirements per person in year t, MERbase is the mean 
adjustment coefficient of the minimum energy requirements per person in the base 
year, RMERi,j is the adjustment coefficient for the minimum energy requirements 
per person of age i and sex j and Pclassi,j,t is the population of age i and sex j in year t.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Model output data are available at https://doi.org/10.5281/zenodo.5793100. 
Data derived from the original scenario database, which are shown as figures 
but are not in the above database, are available upon reasonable request from the 
corresponding authors. Source data are provided with this paper.

Code availability
All code used for data analysis and creating the figures is available via Zenodo at 
https://zenodo.org/record/5793100#.YcB0w2jP2Uk.
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