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Abstract Urbanization has appropriated millions of

hectares of cropland, and this trend will persist as cities

continue to expand. We estimate the impact of this

conversion as the amount of land needed elsewhere to

give the same yield potential as determined by differences

in climate and soil properties. Robust spatial upscaling

techniques, well-validated crop simulation models, and

soil, climate, and cropping system databases are employed

with a focus on populous countries with high rates of land

conversion. We find that converted cropland is 30–40%

more productive than new cropland, which means that

projection of food production potential must account for

expected cropland loss to urbanization. Policies that protect

existing farmland from urbanization would help relieve

pressure on expansion of agriculture into natural

ecosystems.
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INTRODUCTION

Prior to the establishment of global supply chains and

modern transport systems, most large cities were provi-

sioned with food from surrounding farmland. For this

reason, many of the world’s major cities were established

in locations with good soils and adequate rainfall or irri-

gation to ensure a dependable food supply (Carter and Dale

1974). Hence, as urban populations grow, surrounding

highly productive croplands producing staple food crops

are converted to urban uses as well as higher-value veg-

etable and specialty crops. With rapid urban growth rates

of the past 30 years, global conversion of cropland near

urban areas has been occurring at 1.2 million ha year-1

(van Vliet 2019). Continuing rapid urbanization suggests

that conversion of agricultural lands for urban uses will

proceed rapidly into the foreseeable future (United Nations

2018). At the same time, land area devoted to production of

staple food crops is expanding worldwide at a rapid rate

(Cassman and Grassini 2020). Much of this expansion

occurs far from cities and comes at the expense of rain-

forests, wetlands, and grasslands, which reduces biodiver-

sity and water resources supported by these natural habitats

(Tilman et al. 2011; Mulyani et al. 2016; Lark et al. 2020).

At issue is the degree to which spatial changes in

cropland affect staple crop production capacity and yield

stability due to differences in soil and climate. For exam-

ple, if soil of new cropland holds less water or is located in

a region with harsher climate than converted cropland, a

decrease in yield potential and yield stability is likely to

occur, or vice versa. Here we define yield potential as the

yield obtained with good crop and soil management that

minimizes losses from abiotic and biotic stresses (Evans

1993). Robust estimates of differences in yield potential

between new and converted croplands are needed to assess

the impact on current and future production capacity of key

staple crops. From a purely economic point of view,

reduction in production potential of a given commodity

could be covered by imports assuming a country has the

purchasing power to do so. However, due to repeated

cycles of price spikes and embargoes on grain exports by

several major grain exporting countries (Mitra and Josling

2009), populous countries often establish policies to

achieve self-sufficiency for specific staple food crops to
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avoid supply chain disruptions that jeopardize food secu-

rity (Clapp 2017). Previous studies assessing the impact of

changes in cropland due to urbanization have been based

on total cropland, without distinguishing by crop type,

using calories equivalents to determine average changes in

productivity between new and converted land (Supple-

mentary Table S1). In contrast, we are not aware of any

study that has investigated how changes in cropland due to

urbanization would affect the potential capacity of specific

countries to produce key staple crops, such as rice in Asia

or maize in Sub-Saharan Africa.

This study utilizes robust spatial upscaling techniques,

well-validated crop-specific simulation models, and soil,

climate, and cropping system databases at finer spatial

resolution, using primary data sources as much as possible,

to estimate yield potential and yield stability of current and

newly developed croplands (Grassini et al. 2015; van

Bussel et al. 2015). To determine the impact on crop pro-

duction, we compare yield potential and yield stability of

cropland in regions with contracting or expanding pro-

duction area in the first decade of the new millennium for

rice in China (irrigated) and Indonesia (rainfed and irri-

gated) and rainfed maize in Nigeria. These countries and

crops were selected because (1) they have large popula-

tions and associated food demand, (2) are projected to

undergo rapid land-use change due to urbanization (Seto

et al. 2012; d’Amour et al. 2017), and (3) the evaluated

crops represent major staples in national diets, account for

a large proportion of total farmland in each country (http://

www.faostat.org), and their domestic demand will increase

in the future (van Ittersum et al. 2016; Agus et al. 2019;

Deng et al. 2019).

MATERIALS AND METHODS

Estimation of land productivity

Our analysis is based on comparison of annual crop yield

potential of converted and new croplands rather than on

differences in current farm yields of both land categories.

The latter approach can mask differences in the inherent

productive capacity of agricultural land, as determined by

soil quality and climate, due to differences in sophistication

of crop and soil management practices or access to inputs

and markets, all of which can limit yields (Lobell et al.

2009). In many developing countries, and especially at the

frontiers of current agricultural areas, farmers have limited

access to inputs, equipment, supporting services and tech-

nologies. However, we also evaluated current average

yields and the results are presented in Supplementary

Table S2 although we believe these results are less useful.

For example, substantial funding is allocated by

government agencies and charitable foundations (e.g., Bill

and Melinda Gates Foundation, CGIAR, USAID-Feed the

Future Initiative) to improve farmer access to markets,

technologies, and information in developing countries.

Therefore, an analysis to inform national policies con-

cerning agricultural development and land-use policies

based on current yields would not only mask the potential

impact of spatial changes in cropland based on use of

modern farming practices, but it would rapidly become

outdated as farmers gain access to markets, technologies,

and information.

Yield potential is the yield of a crop cultivar when

grown with water and nutrients non-limiting and biotic

stress effectively controlled (Evans 1993; van Ittersum and

Rabbinge 1997). Under these conditions, crop growth rate

is determined by solar radiation, temperature, atmospheric

CO2, and genetic traits that govern the length of growing

period and light interception by the crop. For rainfed crops,

rainfall amount and distribution and soil water holding

capacity also impose an upper limit to crop productivity.

Hence, yield potential is the most relevant parameter for

estimating crop production potential of irrigated crop sys-

tems, while water-limited yield potential is the appropriate

benchmark for rainfed crops. Current yield is defined as the

yield achieved in farmer’s fields in recent years within a

defined spatial unit.

We used crop models to estimate yield potential in each

country. The main challenge to obtain accurate simulations

using crop models is the availability of high-quality pri-

mary data for climate, soil, and crop management, which

are the most sensitive parameters determining yield

potential. Weather stations are sparse and soil and cropping

system information is rarely adequate to estimate yield

potential for many crop production areas in developing

countries. To overcome this limitation, we used the Global

Yield Gap Atlas (http://www.yieldgap.org, GYGA) ‘‘bot-

tom-up’’ spatial framework that identifies the minimum

number of sites needed for robust estimation of yield

potential at local, regional, and national scales (van Wart

et al. 2013; van Bussel et al. 2015; Hochman et al. 2016,

Morel et al. 2016; Rattalino Edreira et al. 2021).

The GYGA framework delimits climate zones (CZ)

based on spatial variation in three key variables influencing

crop growth and yield: growing degree days, temperature

seasonality, and aridity index (van Wart et al. 2013). The

framework evaluates all CZs that account for[ 5% of total

national harvested area for each crop (either irrigated or

rainfed water regime). Within each CZ, buffer zones of

100-km radius (called ‘‘sites’’ in main text) were created

around existing weather stations where measured weather

data were retrieved (Supplementary Figure S1). Each

buffer was ‘‘clipped’’ by CZs borders so that temperature

and rainfall regimes were relatively uniform within buffers.
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For each crop-water regime, buffers were selected

sequentially starting from the buffer with largest harvested

crop area, only including buffers that account for[ 1% of

national crop harvested area and minimizing overlap

(\ 20%) among adjacent buffers, until approximately half

the total national harvested area was covered for the target

crop. Crop area distribution maps of maize and rice around

2005 (average for 2004–2006), disaggregated by water

regime, were retrieved from the International Food Policy

Research Institute (IFPRI—MAPSPAM database 2016,

http://www.mapspam.info). MAPSPAM provides

10 9 10 km grid-cell resolution maps of harvested area for

each of the major food crops. In a few cases (14%) there

were no weather stations in areas where new cropland was

established. Additional buffers were created in selected

producing regions without MAPSPAM data or where there

were no weather stations. In the last case, we used sec-

ondary gridded weather data from the NASA-POWER

database (POWER 2017, http://power.larc.nasa.gov). A

total of 50, 55, and 16 buffers were created for irrigated

rice in China, rainfed or irrigated rice in Indonesia, and

rainfed maize in Nigeria, respectively.

Within each buffer, dominant soil types and crop man-

agement data were obtained from the GYGA database to

portray the dominant cropping system(s) used for simula-

tion of annual yield potential. In summary, crop manage-

ment, soil, and climate factors governing yield potential, as

well as sub-national data on current farm yields reported by

government agencies, were populated at the buffer level

using observed data to the extent possible. Upscaled esti-

mates of current yields and yield potential at CZ scales

were based on aggregation of crop area-weighted values of

all buffer zones within each CZ. A detailed description of

the GYGA spatial upscaling methodology can be found

elsewhere (Grassini et al. 2015; van Bussel et al. 2015;

http://www.yieldgap.org).

In selection of crop models, we gave preference to

models that have been rigorously evaluated for their ability

to reproduce yields in absence of nutrient limitations and

biotic stress. We used the ORYZA v3 crop model (Li et al.

2017) to simulate yield potential of irrigated rice in China

and lowland rainfed and irrigated rice in Indonesia, and the

Hybrid Maize model (Yang et al. 2017) for simulating

yield potential of rainfed maize in Nigeria. Both models

simulate crop growth and development on a daily time

step. Growth rates are determined by simulation of both

CO2 assimilation and respiration with partitioning coeffi-

cients to different organs dependent upon developmental

stage. Cultivar-specific coefficients for dominant rice

varieties in China and Indonesia were obtained from

Agustiani et al. 2018 and Deng et al. 2019, respectively.

Hybrid Maize requires a single genotype-specific input

parameter: growing degree days from crop emergence to

physiological maturity. All other parameters governing

photosynthesis, respiration, leaf area expansion, light

interception, biomass partitioning, and grain filling are

considered to be stable across modern maize hybrids. In all

cases, simulations of yield potential assumed absence of

insect pests, weeds, and diseases and no nutrient limita-

tions. To estimate rainfed yield potential, both models

account for timing and amount of rainfall as well as soil

properties influencing crop-water availability. Both

ORYZA v3 and Hybrid Maize models have been widely

evaluated on their ability to reproduce measured crop

phenology, biomass, yield, and other agronomic traits in

well-managed experiments (van Ittersum et al. 2016;

Agustiani et al. 2018; Deng et al. 2019). Simulations of

yield potential were based on 10–15 years of weather data

and dominant crop sequences at each site. In the case of

rainfed crops, yield potential was simulated separately for

the 2–3 dominant soil types within the buffer where the

climate station was located. For each site, yield potential

was estimated by averaging the yield potential simulated

for the different combinations of crop sequence and soil

type after weighting them for their relative share of rice or

maize harvested area within each buffer. In the case of

rainfed crops, initial soil water was estimated by initializ-

ing the model’s soil water routine at the beginning of the

preceding fallow period or using a fixed soil water content

at sowing as determined by expert opinion. Current yields

were obtained from official statistics at the lowest admin-

istrative level at which they are available within each

buffer, for the most recent five years. Using a longer time

period would bias estimation of current yields due to

influence of technology adoption trends (van Ittersum et al.

2013). Details on data sources to estimate yield potential in

each country and data sources can be found in Supple-

mentary Table S3 and elsewhere (van Ittersum et al. 2016;

Agustiani et al. 2018; Deng et al. 2019).

Impact of land conversion on production of key

staple crops

Three countries undergoing rapid urbanization during the

last few decades were selected as case studies (http://www.

oecd.org). As a first step, we evaluated the association

between the magnitude of population growth in major

cities (United Nations 2018) and changes in total crop area

of seven primary staple crops (rice, maize, wheat, soybean,

barley, sorghum, and cassava) from 2000 to 2010 in China.

We used crop area distribution in 2000 (average for

1999–2001) and 2010 (2009–2011) (IFPRI 2019a) from

MAPSPAM to estimate net change in crop area for that

10-year period in individual spatial grids of roughly 30

000 km2. Ten years provides a timeframe that is long

enough to assess changes in cropland, while using 3-year
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averages helps reduce the influence of short-term changes

in cropland area due to fluctuation in market prices or

unusual weather events like drought or floods. Similarly,

we used MAPSPAM to determine the expansion or con-

traction in crop area within each buffer and CZ, for specific

staple crops in Nigeria (maize), China (rice) and Indonesia

(rice) between 2000 and 2010. In Nigeria, maize is grown

under rainfed conditions, which means crop growth

depends on stored soil water at sowing and in-season

rainfall to meet its water requirements. In China, nearly all

rice is irrigated, while both irrigated and lowland rainfed

rice are grown in Indonesia.

Current yields and yield potential, as well as crop

intensity and yield stability, in buffers experiencing large

cropland conversion of rice or maize were compared with

those at buffers where cropland is currently expanding

(Fig. 2). We estimated yields on an annual basis to account

for the higher crop intensity in those regions where two or

even three crops were produced each year on the same

piece of land (rice in Indonesia and southern China). Then,

for each country, we calculated the average annual yield

(either current or potential) in CZs with expanded or con-

tracted crop-specific area, weighted by the crop area net

balance in buffers within each CZ (2000–2010). National

average yield in contracting or expanding areas were cal-

culated separately based on yields at the CZ level

according to the crop-specific area share of each CZ. For

each country, the ratio between the yield in CZs where crop

area is contracting and the yield in CZs where cropland is

expanding was estimated as follows:

National yield ratio ¼ Weighted yield in contracting CZ

Weighted yield in expanding CZ
:

ð1Þ

A yield ratio greater than one means that the new crop-

specific area is less productive than the one being

converted to other uses and, therefore, proportionally

more land is needed to compensate for each hectare lost.

For comparison, yield ratios were estimated separately

based on either current yields (Supplementary Table S2) or

potential yields as reported in the main text. In this study,

yields are reported at 15.5% and 14% seed moisture for

maize and rice, respectively, which correspond to the

commercial yield reporting standards for these crops.

RESULTS

Our study shows that population growth has been a key

driver of cropland change (Fig. 1). For example, in China,

total production area of seven major staple food crops

decreased substantially in regions surrounding the most

rapidly growing cities during the 2000–2010 period. In

contrast, cropland expansion occurred in central and

northeastern China where urban population growth was

much slower. Given the magnitude and extent of land-use

change, assessing yield differences of both converted and

new cropland is necessary to determine the impact of these

changes on national crop production potential.

One reason for differences in total grain production

between converted and new cropland is cropping intensity

(i.e., number of crops grown each year on the same piece of

land). In China, irrigated rice area has been decreasing in

regions surrounding mega cities such as Shanghai (current

population: 27 M (United Nations 2018)), Guangzhou

(13 M), and Hangzhou (8 M) where warm climate and long

growing season allow production of two rice crops per year

on the same field (called double cropping). Expansion of

irrigated rice production occurred mostly in central and

northeastern regions where only a single rice crop can be

grown each year given a cooler climate and shorter frost-

free period (Fig. 2a). National average annual yield

potential of converted rice land was 15.2 t ha-1 compared

with 11.8 t ha-1 for newly established rice land (Fig. 2b).

While yield potential for a single crop is highest in central

and northern provinces, total annual production potential

per hectare is about 70% greater in south and southeast of

China due to annual double cropping. Taking into account

all areas undergoing cropland conversion or expansion, the

area-weighted national yield ratio in China is 1.3 (Table 1),

which means that, on average at national scale, propor-

tionally more cropland (1.39) is required to replace the

productive potential of one hectare of rice land lost. Not

accounting for differences in cropping intensity would lead

to the (wrong) conclusion that new crop area in China has

higher rice yield potential than crop area lost. Yield sta-

bility on new and converted cropland, as quantified by the

inter-annual coefficient of variation (CV), is similar in both

cases because rice is produced with irrigation, which

avoids yield losses from drought and greatly increases

yield stability compared to rainfed crop production.

A similar situation occurs in Indonesia where highly

productive irrigated rice area in West and Central Java, the

island with fastest population growth (? 122 inhabitants

km-2 year-1 in 2000–2010; http://www.bps.go.id), has

been converted to other uses (Mulyani et al. 2016), while

rice area expanded mostly into more marginal agricultural

regions, with slower population growth, such as in South

Sumatra (? 14) and South Kalimantan (? 17) (Fig. 2c).

Total annual yield potential is about two-fold greater in

irrigated double (or even triple) rice systems in West and

Central Java compared with those marginal regions, where

single-crop tidal and flood-prone rice systems are dominant

(Fig. 2d). In these harsher environments, rice cultivation

depends on ocean tides and rainfall, which typically allow
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growing only one rice crop per year, which, in turn, has

lower yield potential due to exposure to both flooding and

drought stress. Considering all land conversion and

expansion throughout the country, national average yield

ratio in converted versus new rice land in Indonesia is 1.3

(Table 1).

In Nigeria, the greatest reduction in rainfed maize area

occurred in southern coastal regions with humid tropical

climate around Port Harcourt (? 0.7 M population

increase, 2000–2010). Most new maize area came from

northward expansion into the more sparsely populated

Guinea Savanna region, which has lower annual rainfall

and greater year-to-year variation in rainfall amounts

(Fig. 2e). As a consequence, rainfed yield potential of new

maize land is considerably lower and much less stable than

the converted land it replaced, with a national average yield

ratio of 1.4 (Fig. 2f; Table 1). In contrast to Indonesia and

China, farmers in most of Sub-Saharan Africa lack ade-

quate access to inputs and extension services. As a result,

the difference in potential productivity between new versus

converted land reported here is not captured when the

analysis is based on the very low current yields attained by

maize farmers throughout the country (1.8 t ha-1) (Sup-

plementary Table S2).

Sub-national estimates of annual yield potential for new

and converted cropland show enormous variation due to

endowments of climate and soil. For example, across rice

producing regions in China, total annual yield potential

ranges from 10 to 19 t ha-1 in both new and converted

croplands (Fig. 2). Similarly, wide ranges of annual pro-

duction potential can be observed across rice and maize

producing areas in Indonesia and Nigeria, respectively.

Hence, national average yield ratios based on area-weigh-

ted estimates of annual yield potential, as given in Table 1,

hide enormous variation in sub-national estimates of

annual production potential (Fig. 2). As a result, using a

fixed ratio to estimate the impact of land conversion on

crop production at national level can give misleading input

to inform national agricultural and land-use policies,

including prioritization of investments in agricultural

research and development.

DISCUSSION

Accuracy of estimated yield potential differences between

converted and new cropland is sensitive to data quality,

precision of cropland distribution maps, the spatial scale at

which data are analyzed and aggregated, and reliability of

Fig. 1 Changes in cropland area for seven major staple food crops (rice, maize, wheat, soybean, barley, sorghum, and cassava) (IFPRI 2019b;

http://www.mapspam.info) and changes in population of major cities from 2000 to 2010 (United Nations 2018). Labeled cities correspond to

urban centers with population growth larger than 2 million inhabitants in the 2000–2010 period
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crop yield potential simulations. We have confidence in the

spatial framework used for upscaling results from sub-na-

tional to national scale because it has proven to be robust in

estimating yield potential at sub-national to national scales

for a number of crops and countries across a wide range of

soils and climates (Rattalino Edreira et al. 2021; van Wart

Fig. 2 Left panels: net change in cropland area (2000–2010) in a China (irrigated rice), c Indonesia (rainfed and irrigated rice), and e Nigeria

(rainfed maize) (IFPRI 2019c; http://www.mapspam.info). Colored areas are those with at least 50 hectares of cropland per pixel (each

approximately 10 000 ha). Regions where crop area is contracting are shown in red, while regions where crop area is expanding are shown in

blue ([ 250 ha change per pixel in both cases). Right panels b, d, f: annual yield potential (t ha-1) at sites with significant change in net area

balance (greater than 15 000 and 10 000 hectares for rice and maize in the period from 2000 to 2010, respectively; blue triangles: positive net

change, red inverted triangles: negative net change). Yields at sites with no significant change in net area (smaller than 15 000 or 10 000 hectares

for rice and maize, respectively) are not shown. Weighted national yield averages (insets in right panels) were calculated using GYGA

aggregation procedures based on a climate zone spatial framework (van Bussel et al. 2015). A number of administrative capitals are shown as a

reference in left panels
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et al. 2013; Hochman et al. 2016; Deng et al. 2019).

Likewise, crop simulation models used to evaluate yield

potential have been widely validated in China, Southeast

Asia, and Sub-Saharan Africa (van Ittersum et al. 2016;

Agustiani et al. 2018; Deng et al. 2019). While we

attempted to use the best available sub-national data

sources for cropland distribution, cropping systems, cli-

mate, and soil properties as described by Grassini et al.

(2015), data quality is always a concern for long-term

weather records and soil properties, which are input to the

simulation models and, thus, may be a source of uncer-

tainty (http://www.yieldgap.org). Similarly, crop models

may not account for all possible factors limiting crop

production. For example, currently available rice simula-

tion models do not account for the negative effect of

alternate cycles of drought and submergence, which are

frequent in tidal and flood-prone systems of the new

Indonesian rice production areas but less common in

regions with irrigated production (Mackill et al. 1996).

Similarly, the best available rice models have limited

ability to simulate the effects of cold sterility (van Oort

et al. 2015), which may be important for estimating yield

potential in high-latitude temperate environments as found

in northeastern China where rice production area is

expanding. Our estimated yield ratios can also change in

the future due to climate change, which will alter yield

potential in most regions. For example, some low-lying

areas where rice is currently cultivated will be subject to

increasing problems of floods and land degradation due to

saltwater intrusion and subsidence (Rondhi et al. 2019).

Inclusion of these factors in simulating yield potential

would tend to increase estimated yield ratios between

converted and newly developed croplands as found in this

study. Finally, having more than two time points and a

longer timeframe would have been desirable to better

account for the influence of policies and interventions

within the agricultural sector on cropland changes and

would avoid confounding effects of changes in crop area

due to fluctuation in grain prices. However, this is not

possible given current data availability on crop-specific

area distribution.

Current trends indicate that increases in the supply of

staple food crops rely more on crop area expansion than on

the rise in yields, which reverses trends of previous decades

when crop yield increases were more prominent (Cassman

and Grassini 2020). Reliance on conversion of new land to

meet increasing food demand is amplified by loss of

existing farmland to urbanization. Hence, estimation of the

impact from these trends on food production capacity

provides critical input to development of agricultural and

land-use policies at national and global scales to achieve

appropriate balance between food security and environ-

mental goals. Using locally collected crop management,

soil, and weather data and robust simulations of crop yield

potential and yield stability, we found that average national

yield ratios between converted and newly developed

croplands range from 1.3 for rice in China and Indonesia to

1.4 for maize in Nigeria. Despite relatively little variation

in these national averages, there was enormous variation in

yield potential of both converted and new land at sub-

national scales in all three countries. Hence, average ratios

should be used with caution as input to strategic national

land-use plans. Similarly, use of current yields (d’Amour

et al. 2017), rather than yield potential, underestimates the

impact on productivity by a large margin when average

farm yields in both converted and new land are limited by

lack of inputs and technologies to overcome nutrient defi-

ciencies, weeds, and pests, which is the case for maize in

Nigeria. In addition, year-to-year variation in Nigerian

rainfed maize yield potential is two-fold larger on new

rainfed maize land than on maize area lost (Table 1), which

means food production on new land is much less reliable

Table 1 Yield ratios estimated by comparing the annual yield potential of areas converted to other uses versus new areas brought into crop

production during the 2000–2010 period. Crop intensity refers to the number of crops of rice (China and Indonesia) or maize (Nigeria) grown

each year on the same piece of land

Parameter China Indonesia Nigeria

Irrigated rice Ricea Rainfed maize

Converted New Converted New Converted New

Crop intensity (crops year-1) 1.7 1.2 1.7 1.4 1 1

Irrigation proportion (%) 100 100 94 20 Nil Nil

Annual yield potential (t ha-1) 15.2 11.8 16.9 13.4 11.6 8.5

Yield ratio 1.3 – 1.3 – 1.4 –

Yield stability (CV in %) 8 8 4 3 27 51

Yield stability is estimated by the inter-annual coefficient of variation in annual yield potential
aIncludes irrigated and lowland rainfed rice
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than on converted land. Similar assessments are possible

for other countries that have sub-national data on changes

in population (United Nations 2018), crop production area

(IFPRI 2019a; http://www.mapspam.info), and crop pro-

duction systems, soils, and climate (http://www.yieldgap.

org).

Conversion of key staple cropland for urban use can be

penny wise when substantial profits accrue from such land

development. But these conversions can also be pound

foolish for several reasons when new cropland has sub-

stantially lower yield potential, less yield stability, or both.

First, a yield ratio greater than one increases pressure to

further expand cropland area to meet food demand through

conversion of rainforests and grasslands at the expense of

biodiversity and other ecosystem services provided by

natural habitat. Second, deforestation and conversion to

agricultural land use accounts for 17% of global green-

house gas emissions contributing to climate forcing (Bar-

ker et al. 2007). Third, urbanization of croplands with

irrigation infrastructure and cropland expansion toward

rainfed areas with great year-to-year variation in rainfall

make food production more vulnerable to expected climate

change, which includes more erratic and extreme rain

events (Mereu et al. 2015; Rondhi et al. 2019). Fourth, in

rainfed systems, reduced yield stability makes it riskier to

invest in fertilizer and other inputs to raise yields in new

production areas, which in turn contributes to slower rates

of increase in crop yields (Grassini et al. 2015, Sadras et al.

2019). And fifth, while we assessed impact based solely on

differences in annual crop yield potential, the overall cost

would be higher if one also considers the greater produc-

tion costs (fertilizer, labor, transportation) and required

investments in infrastructure (roads, canals, drainage sys-

tems) associated with establishing crop production in

remote areas where expansion typically occurs. National

demand for rice will increase substantially in China and

Indonesia (Agus et al. 2019; Deng et al. 2019) and for

maize in Nigeria (van Ittersum et al. 2016). Hence con-

tinuation of current cropland trends, with net loss and gain

in most and less productive regions, respectively, will put

further pressure on closing yield gaps and/or increased

reliance on grain imports to meet the domestic demand.

CONCLUSIONS

We conclude that in countries where yield ratios between

converted and new land are large, as found in this study,

there is strong justification for land-use policies that seek to

conserve prime farmland dedicated to cultivation of key

staple crops at the periphery of urban areas. This must be

supported by agricultural development and land-use poli-

cies seeking to accelerate yield gains on existing farmland

through sustainable intensification while also ensuring

conservation of natural ecosystems (Garnett et al. 2013;

d’Amour et al. 2017; Cassman and Grassini 2020). Con-

tinuing current land-use trajectories undermines progress

toward the tripartite goals of food security, conservation of

natural resources, and addressing the threat of climate

change.
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