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Predictive Microbiology
Quantitative Microbial Ecology of Food

In vitro
environment     microbial response

In vivo
growth / no growth,
probability of growth,
lag time, doubling time,
time to reach a certain conc.
full growth / survival curves

(dynamic response)
metabolic production

temperature, pH, water activity,
atmosphere composition,
additives, food structure
competition among organisms



“Classical” Predictive Models I.

Linear thermal death model
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“Classical” Predictive Models II.
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Growth model analogous to the linear death model.



Response surface fitted to the 
logarithm of observed growth rates
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1988)



Predictive microbiology:
Quantitative Microbial Ecology of Food

Environment Microbial kinetics (Response)
Temperature

pH
water availability

atmosphere
preservatives
competition

food structure
etc .

µ : max.spec.growth 
rate

ln (cell.conc.)

timelag

Bacterial curve with the main parameters 
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ComBase Consortium, 2003

US Department of 
Agriculture,
Agricultural 
Research Service

FSA, UK

Institute of Food 
Research, Norwich, UK

Eastern Regional Research Center
Wyndmoor, PA, USA

e-ComBase: 2yrs Accompanying Measures project to 
populate ComBase by data from Supporting Partners

EC  Quality of Life and Management of Living Resources (QoL)
Key Action 1 - Food, Nutrition and Health



e-COMBASE SUPPORTING  INSTITUTES 
contributing to ca 20% of ComBase

SUPPORT. One record = one response (generally 
logcount curve) to one combination of conditions

Pathogens in food; ca 200 rec.Unilever Research Sharnbrook. UK

Listeria growth in presence of LAB; ca 50 rec.Budapest University, Hungary.

Spoilage organisms; ca 500 rec.Campden and Chorlywood FRA. UK

Pathogens in broth, inactivation and survival; ca 100 rec.University of Reading. UK
Spoilage organisms in broth and food; ca 500 rec.Metropolitan University. London UK 

Pathogens at low water activity; ca 100 rec.Public Health Laboratory Services - UK
Pathogens and spoilage, in broth and milk    ca 50 rec.Technical University of Bratislava, Slovakia

Spoilage organisms, mainly in olives; ca 2000 rec.Agricultural University of Athens. Greece
Growth and survival of various pathogens; ca 400 rec.INRA, Avignon. France
Spoilage organisms in broth and seafood; ca 200 rec.Danish Institute of Fisheries Research

Pathogens, spoilage; mainly in MA; viable count curves 
and doubling times measured by OD; ca 2000 rec.

Dpt Nutr. y Brom. III. Univ.Complutense, 
Spain

OD-derived rates of spoilage organisms;ca 1000 rec.Dept of Ind. Microbiol., Univ. Complutense

Listeria in vegetables;ca 500 rec.Dept. Food Micro.;  Univ. Cordoba, Spain

Spoilage organisms in broth and food; ca 200 rec.Veterinary University of Viennna, Austria

Lactic acid bacteria in broth and food; ca 500 rec.TNO, Holland

In cheese and salami; ca 1500 rec.Instituto Zooprfilatico Sperimentale
Brescia, Italy



Quimper
London

Madrid
Bologna

Budapest
Pamplona

Crete

Norwich

New Orleans
SloveniaWashington

Sydney
Melbourne

Hobart

Kuala LumpurComBase
seminars and 

workshops 
2003-2004

Monterrey



http://www.ifr.ac.uk/safety/comicro/



Search criteria and results from 
the ComBase Internet browser



Growth Predictor: successor of 
Food MicroModel

(http://www.ifr.ac.uk/Safety/GrowthPredictor)

http://www.ifr.ac.uk/Safety/GrowthPredictor


Currently available predictors
 

Pathogen Modeling Program ( USDA-ARS ERRC, US ) 
http://www.arserrc.gov/mfs/pathogen.htm

 Growth Predictor
for food microbiology

Developed at the 
Institute of Food Research

funded by the
Food Standards Agency

Growth Predictor (FSA-IFR, UK), the successor of Food MicroModel
http://www.ifr.ac.uk/Safety/GrowthPredictor

Forecast (Campden and Chorleywood, UK):  
+44 (0)1386 842071 (Buro service, not software).

Seafood Spoilage Predictor (Institute of Fisheries Research, Denmark): 
www.dfu.min.dk/micro/ssp

Food Spoilage Predictor (University of Tasmania, Australia): 
www.hdl.com.au/html/body_fsp.htm



www.combase.cc now and in the future

rate (log conc/h):   0.05

lag (h) :       7.2

rate (log conc/h):  0.045 

lag (h) :     15

Fit
PredictionLag: 

Depends on the 
“work to be done” 
during lag  
(uncertainty).

Typical lag is 
predicted via 
typical “work to 
be done” 
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