Predictive modeling of microbial growth under dynamic conditions

József Baranyi Institute of Food Research, Norwich, UK

http://www.ifr.ac.uk/safety/comicro/

Predictive Microbiology

Quantitative Microbial Ecology of Food

In vitro
environment → microbial response
In vivo

temperature, pH, water activity, atmosphere composition, additives, food structure competition among organisms

"Classical" Predictive Models I.

Linear thermal death model

"Classical" Predictive Models II.

Growth model analogous to the linear death model.

Response surface fitted to the logarithm of observed growth rates

Fitting a quadratic multivariate polynomial.

Data: Salmonellae at 15°C (Gibson et al, 1988)

Predictive microbiology: Quantitative Microbial Ecology of Food

Environment

Temperature pH water availability

atmosphere preservatives competition food structure etc.

Microbial kinetics (Response)

Bacterial curve with the main parameters

Dynamic conditions

$$\frac{dy}{dt} = \mu_{\max}(T(t))$$

$$\mu_{\text{max}} = b(T(t) - T_{\text{min}})^2$$

$$\Delta y = b(T(t) - T_{\min})^2 \Delta t$$

ComBase Consortium, 2003

Institute of Food Research, Norwich, UK

US Department of Agriculture, Agricultural Research Service

Eastern Regional Research Center Wyndmoor, PA, USA

e-ComBase: 2yrs Accompanying Measures project to populate ComBase by data from Supporting Partners

EC Quality of Life and Management of Living Resources (QoL)
Key Action 1 - Food, Nutrition and Health

e-COMBASE SUPPORTING INSTITUTES contributing to ca 20% of ComBase

SUPPORT. One record = one response (generally logcount curve) to one combination of conditions

Dept. Food Micro.; Univ. Cordoba, Spain	Listeria in vegetables;ca 500 rec.
Dept of Ind. Microbiol., Univ. Complutense	OD-derived rates of spoilage organisms;ca 1000 rec.
Budapest University, Hungary.	Listeria growth in presence of LAB; ca 50 rec.
Dpt Nutr. y Brom. III. Univ.Complutense, Spain	Pathogens, spoilage; mainly in MA; viable count curves and doubling times measured by OD; ca 2000 rec.
Danish Institute of Fisheries Research	Spoilage organisms in broth and seafood; ca 200 rec.
INRA, Avignon. France	Growth and survival of various pathogens; ca 400 rec.
Agricultural University of Athens. Greece	Spoilage organisms, mainly in olives; ca 2000 rec.
Technical University of Bratislava, Slovakia	Pathogens and spoilage, in broth and milk ca 50 rec.
Public Health Laboratory Services - UK	Pathogens at low water activity; ca 100 rec.
Metropolitan University. London UK	Spoilage organisms in broth and food; ca 500 rec.
University of Reading. UK	Pathogens in broth, inactivation and survival; ca 100 rec.
Unilever Research Sharnbrook. UK	Pathogens in food; ca 200 rec.
Campden and Chorlywood FRA. UK	Spoilage organisms; ca 500 rec.
TNO, Holland	Lactic acid bacteria in broth and food; ca 500 rec.
Veterinary University of Viennna, Austria	Spoilage organisms in broth and food; ca 200 rec.
Instituto Zooprfilatico Sperimentale Brescia, Italy	In cheese and salami; ca 1500 rec.

ComBase seminars and workshops 2003-2004

Sydney Melbourne

Hobart •

http://www.ifr.ac.uk/safety/comicro/

Search criteria and results from the ComBase Internet browser

Growth Predictor: successor of Food MicroModel

(http://www.ifr.ac.uk/Safety/GrowthPredictor)

Currently available predictors

Pathogen Modeling Program (USDA-ARS ERRC, US) http://www.arserrc.gov/mfs/pathogen.htm

http://www.ifr.ac.uk/Safety/GrowthPredictor

Forecast (Campden and Chorleywood, UK): +44 (0)1386 842071 (Buro service, not software).

Seafood Spoilage Predictor (Institute of Fisheries Research, Denmark): www.dfu.min.dk/micro/ssp

Food Spoilage Predictor (University of Tasmania, Australia): www.hdl.com.au/html/body_fsp.htm

Growth Predictor

funded by the

Food Standards Agency

www.combase.cc now and in the future

Lag:

Depends on the "work to be done" during lag (uncertainty).

Typical lag is predicted via typical "work to be done"

ifn